Topics covered: rotation with spin, exchange symmmetry

1. A vector pointing in the θ, ϕ direction, can be formed by starting with a vector pointing along \vec{e}_{z}, then applying an active rotation by θ about the y -axis, followed by a rotation by ϕ about the z -axis.
(a) Verify this for an ordinary vector, by starting with the vector $(0,0,1)^{T}$ and using

$$
R_{y}(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \tag{1}\\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) ; \quad R_{z}(\phi)=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(b) Thus for a spin- $1 / 2$ system, the spin-up state with respect to the θ, ϕ direction can be found in the basis of S_{z} eigenstates, by starting with the spin-up state along \vec{e}_{z}, and applying unitary rotation operators, i.e.

$$
\begin{equation*}
\left|\uparrow_{\theta \phi}\right\rangle=e^{-\frac{i}{\hbar} \phi S_{z}} e^{-\frac{i}{\hbar} \theta S_{y}}\left|\uparrow_{z}\right\rangle . \tag{2}
\end{equation*}
$$

In this way, find the states $\left|\uparrow_{\theta \phi}\right\rangle$ and $\left|\downarrow_{\theta \phi}\right\rangle$.
(c) Compute the operator $S_{\theta \phi}$ using unitary rotation operators to transform S_{z}, and compare it to the result using the 3×3 rotation matrices.
(d) Using your results from parts (b) and (c), show explicitly that $S_{\theta \phi}\left|\uparrow_{\theta \phi}\right\rangle=\frac{\hbar}{2}\left|\uparrow_{\theta \phi}\right\rangle$ and $S_{\theta \phi}\left|\downarrow_{\theta \phi}\right\rangle=-\frac{\hbar}{2}\left|\downarrow_{\theta \phi}\right\rangle$.
2. The Bloch Sphere: The most-general spin- $1 / 2$ state is

$$
\begin{equation*}
|\psi\rangle=c_{\uparrow}\left|\uparrow_{z}\right\rangle+c_{\downarrow}\left|\downarrow_{z}\right\rangle, \tag{3}
\end{equation*}
$$

where c_{\uparrow} and c_{\downarrow} are c-numbers. This state is subject to the constraint $\left|c_{\uparrow}\right|^{2}+\left|c_{\downarrow}\right|^{2}=1$, and is defined only up to a global phase-factor. This means that it only requires two real numbers to specify a spin- $1 / 2$ state. The state $\left|\uparrow_{\theta \phi}\right\rangle$ from problem 1 has two free real-valued parameters. This means that every possible spin- $1 / 2$ state must be spin-up with respect to some axis. Determine the axis angles, (θ, ϕ), for a state of the form (3).
The dynamical evolution of a spin- $1 / 2$ state can therefore be viewed as the motion of a single point on a sphere of unit radius, known as the Bloch sphere, i.e. the state $|\psi(t)\rangle=c_{\uparrow}(t)\left|\uparrow_{z}\right\rangle+c_{\downarrow}(t)\left|\downarrow_{z}\right\rangle$ maps onto the coordinate $(\theta(t), \phi(t))$. Describe the trajectory on the Bloch sphere of an arbitrary initial state, subject to the Hamiltonian

$$
\begin{equation*}
H=\omega S_{z} . \tag{4}
\end{equation*}
$$

In addition, find the constant of motion, and express it in the form $f(\theta(t), \phi(t))=f(\theta(0), \phi(0))$.
3. Consider two identical spin- $1 / 2$ particles in a one-dimensional Harmonic oscillator potential, so that

$$
\begin{equation*}
H=H_{1}+H_{2} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
H_{j}=\frac{P_{j}^{2}}{2 M}+\frac{1}{2} M \omega^{2} X_{j}^{2} \tag{6}
\end{equation*}
$$

(a) Show that H, H_{1} and H_{2} form a set of 3 commuting observables, so that simultaneous eigenstates of H, H_{1} and H_{2} exist. Label these states as $\left|n_{1}, n_{2}\right\rangle$ where $H_{j}\left|n_{1}, n_{2}\right\rangle=E_{n_{j}}\left|n_{1}, n_{2}\right\rangle$, and $H\left|n_{1}, n_{2}\right\rangle=\left(E_{n_{1}}+E_{n_{2}}\right)\left|n_{1}, n_{2}\right\rangle$. Does the set $\left\{\left|n_{1}, n_{1}\right\rangle\right\}$ form a complete basis for the twoparticle orbital Hilbert space?
(b) Switch to relative and center-of-mass coordinates, by expressing the operators X_{1}, X_{2}, P_{1}, and P_{2}, in terms of the operators $X_{C M}, X, P_{C M}$ and P. Show that H separates as $H=$ $H_{C M}\left(X_{C M}, P_{C M}\right)+H_{r}(X, P)$. Show that $H, H_{C M}$ and H_{r} all commute, so that simultaneous eigenvalues of $H, H_{C M}$ and H_{r} exist. Label these states as $|N, n\rangle$, where $H_{C M}|N, n\rangle=E_{N}|N, n\rangle$, $H_{r}|N, n\rangle=E_{n}|N, n\rangle$, and $H|N, n\rangle=\left(E_{N}+E_{n}\right)|N, n\rangle$. Does the set of states $\{|N, n\rangle\}$ form a compete basis for the two-particle orbital Hilbert space?
(c) Let $X_{j}\left|x_{1}, x_{2}\right\rangle=x_{j}\left|x_{1}, x_{2}\right\rangle, X_{C M}\left|x_{C M}, x\right\rangle=x_{C M}\left|x_{C M}, x\right\rangle$, and $X\left|x_{C M}, x\right\rangle=x\left|x_{C M}, x\right\rangle$. The exchange operator is defined by $P_{1,2}\left|x_{1}, x_{2}\right\rangle=\left|x_{2}, x_{1}\right\rangle$. What is $P_{12}\left|x_{C M}, x\right\rangle$?
(d) Show that the states $\left|n_{1}, n_{2}\right\rangle$ are in general not eigenstates of the exchange operator, but that the states $|N, n\rangle$ are. What is the exchange eigenvalue of the state $|N, n\rangle$?
(e) If the two particles are in a spin-singlet state, which of the $|N, n\rangle$ states are forbidden? Which are forbidden for the spin-triplet state?
(f) Assume a zero-range interaction of the form $V\left(x_{1}, x_{2}\right)=g \delta\left(x_{1}-x_{2}\right)$. For the 'repulsive' case, $g>0$ will the true ground state be a singlet or triplet state? What about for 'attractive' interactions, i.e. $g<0$?

