PHYS852 Quantum Mechanics II, Spring 2010 HOMEWORK ASSIGNMENT 4: Solutions.

Topics covered: rotation with spin, exchange symmetry

1. A vector pointing in the θ, ϕ direction, can be formed by starting with a vector pointing along \vec{e}_{z}, then applying an active rotation by θ about the y -axis, followed by a rotation by ϕ about the z -axis.
(a) Verify this for an ordinary vector, by starting with the vector $(0,0,1)^{T}$ and using

$$
R_{y}(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \tag{1}\\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) ; \quad R_{z}(\phi)=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The vector $(0,0,1)^{T}$ is simply \vec{e}_{z}. Applying first the y rotation, and then the z rotation gives:

$$
R_{z}(\phi) R_{y}(\theta)\left(\begin{array}{l}
0 \tag{2}\\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
\sin \theta \cos \phi \\
\sin \theta \sin \phi \\
\cos \theta
\end{array}\right)
$$

we can recognize this as the unit vector $\vec{e}_{\theta \phi}$ that points in the θ, ϕ direction.
(b) Thus for a spin- $1 / 2$ system, the spin-up state with respect to the θ, ϕ direction can be found in the basis of S_{z} eigenstates, by starting with the spin-up state along \vec{e}_{z}, and applying unitary rotation operators, i.e.

$$
\begin{equation*}
\left|\uparrow_{\theta \phi}\right\rangle=e^{-\frac{i}{\hbar} \phi S_{z}} e^{-\frac{i}{\hbar} \theta S_{y}}\left|\uparrow_{z}\right\rangle . \tag{3}
\end{equation*}
$$

In this way, find the states $\left|\uparrow_{\theta \phi}\right\rangle$ and $\left|\downarrow_{\theta \phi}\right\rangle$.
first we note that

$$
e^{-\frac{i}{\hbar} \phi S_{z}}=\left(\begin{array}{cc}
e^{-i \phi / 2} & 0 \tag{4}\\
0 & e^{i \phi / 2}
\end{array}\right)
$$

and

$$
e^{-\frac{i}{\hbar} \theta S_{y}}=\cos (\theta / 2) I-i \sin (\theta / 2) \sigma_{y}=\left(\begin{array}{cc}
\cos (\theta / 2) & -\sin (\theta / 2) \tag{5}\\
\sin (\theta / 2) & \cos (\theta / 2)
\end{array}\right)
$$

this gives us

$$
\begin{align*}
e^{-\frac{i}{\hbar} \phi S_{z}} e^{-\frac{i}{\hbar} \theta S_{y}} & =\left(\begin{array}{cc}
e^{-i \phi / 2} & 0 \\
0 & e^{i \phi / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos (\theta / 2) & -\sin (\theta / 2) \\
\sin (\theta / 2) & \cos (\theta / 2)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos (\theta / 2) e^{-i \phi / 2} & -\sin (\theta / 2) e^{-i \phi / 2} \\
\sin (\theta / 2) e^{i \phi / 2} & \cos (\theta / 2) e^{i \phi / 2}
\end{array}\right) \tag{6}
\end{align*}
$$

Thus we have

$$
\left|\uparrow_{\theta \phi}\right\rangle=\left(\begin{array}{cc}
\cos (\theta / 2) e^{-i \phi / 2} & -\sin (\theta / 2) e^{-i \phi / 2} \tag{7}\\
\sin (\theta / 2) e^{i \phi / 2} & \cos (\theta / 2) e^{i \phi / 2}
\end{array}\right)\binom{1}{0}=\binom{\cos (\theta / 2) e^{-i \phi / 2}}{\sin (\theta / 2) e^{i \phi / 2}}
$$

and

$$
\left|\downarrow_{\theta \phi}\right\rangle=\left(\begin{array}{cc}
\cos (\theta / 2) e^{-i \phi / 2} & -\sin (\theta / 2) e^{-i \phi / 2} \tag{8}\\
\sin (\theta / 2) e^{i \phi / 2} & \cos (\theta / 2) e^{i \phi / 2}
\end{array}\right)\binom{0}{1}=\binom{-\sin (\theta / 2) e^{-i \phi / 2}}{\cos (\theta / 2) e^{i \phi / 2}}
$$

(c) Compute the operator $S_{\theta \phi}$ using unitary rotation operators to transform S_{z}, and compare it to the result using the 3×3 rotation matrices.
The operator $S_{\theta \phi}$ is given by definition as $S_{\theta \phi}=\vec{e}_{\theta \phi} \cdot \vec{S}$, which gives

$$
\begin{align*}
S_{\theta \phi} & =\sin \theta \cos \phi S_{x}+\sin \theta \sin \phi S_{y}+\cos \theta S_{z} \\
& =\frac{\hbar}{2}\left(\begin{array}{cc}
\cos \theta & e^{-i \phi} \sin \theta \\
e^{i \phi} \sin \theta & -\cos \theta
\end{array}\right) \tag{9}
\end{align*}
$$

Note that we have computed this by rotating the unit vectors. According to the lecture, there are two additional equivalent transformations. We can apply the inverse transformation to each component of \vec{S} via unitary operators, or we can apply the inverse transformation collectively to all three components via the 3×3 rotation matrix.

From part (b) we have

$$
U=\left(\begin{array}{cc}
\cos (\theta / 2) e^{-i \phi / 2} & -\sin (\theta / 2) e^{-i \phi / 2} \tag{10}\\
\sin (\theta / 2) e^{i \phi / 2} & \cos (\theta / 2) e^{i \phi / 2}
\end{array}\right)
$$

so that

$$
\begin{align*}
S_{\theta \phi} & =\left(U^{-1}\right)^{\dagger} S_{z} U^{-1} \\
& =U S_{z} U^{\dagger} \\
& =\frac{\hbar}{2}\left(\begin{array}{cc}
\cos (\theta / 2) e^{-i \phi / 2} & -\sin (\theta / 2) e^{-i \phi / 2} \\
\sin (\theta / 2) e^{i \phi / 2} & \cos (\theta / 2) e^{i \phi / 2}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
\cos (\theta / 2) e^{i \phi / 2} & \sin (\theta / 2) e^{-i \phi / 2} \\
-\sin (\theta / 2) e^{i \phi / 2} & \cos (\theta / 2) e^{-i \phi / 2}
\end{array}\right) \\
& =\frac{\hbar}{2}\left(\begin{array}{cc}
\cos (\theta / 2) e^{-i \phi / 2} & -\sin (\theta / 2) e^{-i \phi / 2} \\
\sin (\theta / 2) e^{i \phi / 2} & \cos (\theta / 2) e^{i \phi / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos (\theta / 2) e^{i \phi / 2} & \sin (\theta / 2) e^{-i \phi / 2} \\
\sin (\theta / 2) e^{i \phi / 2} & -\cos (\theta / 2) e^{-i \phi / 2}
\end{array}\right) \\
& =\frac{\hbar}{2}\left(\begin{array}{cc}
\cos ^{2}(\theta / 2)-\sin ^{2}(\theta / 2) & 2 \cos (\theta / 2) \sin (\theta / 2) e^{-i \phi} \\
2 \cos (\theta / 2) \sin (\theta / 2) e^{i \phi} & \sin ^{2}(\theta / 2)-\cos ^{2}(\theta / 2)
\end{array}\right) \\
& =\frac{\hbar}{2}\left(\begin{array}{cc}
\cos \theta & e^{-i \phi} \sin \theta \\
e^{i \phi} \sin \theta & -\cos \theta
\end{array}\right) \tag{11}
\end{align*}
$$

which remarkably gives the same result as Eq. (9).
The third approach gives

$$
\begin{align*}
\left(\begin{array}{c}
S_{x}^{\prime} \\
S_{y}^{\prime} \\
S_{z}^{\prime}
\end{array}\right) & =\left(R_{z}(\phi) R_{y}(\theta)\right)^{-1}\left(\begin{array}{c}
S_{x} \\
S_{y} \\
S_{z}
\end{array}\right) \tag{12}\\
& =R_{y}(-\theta) R_{z}(-\phi)\left(\begin{array}{c}
S_{x} \\
S_{y} \\
S_{z}
\end{array}\right) \tag{13}\\
& =\left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right)\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
S_{x} \\
S_{y} \\
S_{z}
\end{array}\right) \tag{14}\\
& =\left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right)\left(\begin{array}{c}
\cos \phi S_{x}+\sin \phi S_{y} \\
-\sin \phi S_{x}+\cos \phi S_{y} \\
S_{z}
\end{array}\right)
\end{align*}
$$

$$
=\left(\begin{array}{c}
\left.\cos \theta \cos \phi S_{x}+\cos \theta \sin \phi S\right) y-\sin \theta S_{z} \tag{15}\\
-\sin \phi S_{x}+\cos \phi S_{y} \\
\sin \theta \cos \phi S_{x}+\sin \theta \sin \phi S_{y}+\cos \theta S_{z}
\end{array}\right)
$$

identifying $S_{\theta \phi}=S_{3}^{\prime}$ gives

$$
\begin{equation*}
S_{\theta \phi}=\sin \theta \cos \phi S_{x}+\sin \theta \sin \phi S_{y}+\cos \theta S_{z} \tag{16}
\end{equation*}
$$

which again reproduces eq. (9).
(d) Using your results from parts (b) and (c), show explicitly that $S_{\theta \phi}\left|\uparrow_{\theta \phi}\right\rangle=\frac{\hbar}{2}\left|\uparrow_{\theta \phi}\right\rangle$ and $S_{\theta \phi}\left|\downarrow_{\theta \phi}\right\rangle=-\frac{\hbar}{2}\left|\downarrow_{\theta \phi}\right\rangle$.

$$
\begin{align*}
S_{\theta \phi}\left|\uparrow_{\theta \phi}\right\rangle & =\frac{\hbar}{2}\left(\begin{array}{cc}
\cos \theta & e^{-i \phi} \sin \theta \\
e^{i \phi} \sin \theta & -\cos \theta
\end{array}\right)\binom{\cos (\theta / 2) e^{-i \phi / 2}}{\sin (\theta / 2) e^{i \phi / 2}} \\
& =\frac{\hbar}{2}\binom{\cos \theta \cos (\theta / 2) e^{-i \phi / 2}+\sin \theta \sin (\theta / 2) e^{-i \phi / 2}}{\sin \theta \cos (\theta / 2) e^{i \phi / 2}-\cos \theta \sin (\theta / 2) e^{i \phi / 2}} \tag{17}
\end{align*}
$$

now we have

$$
\begin{equation*}
\cos ^{2}(\theta)=\frac{1}{2}(1+\cos (2 \theta)) \tag{18}
\end{equation*}
$$

so that

$$
\begin{equation*}
\cos \theta=2 \cos ^{2}(\theta / 2)-1 \tag{19}
\end{equation*}
$$

likewise

$$
\begin{equation*}
\sin \theta \cos \theta=\frac{1}{2} \sin (2 \theta) \tag{20}
\end{equation*}
$$

so that

$$
\begin{equation*}
\sin \theta=2 \sin (\theta / 2) \cos (\theta / 2) \tag{21}
\end{equation*}
$$

this gives

$$
\begin{align*}
S_{\theta \phi}\left|\uparrow_{\theta \phi}\right\rangle & =\frac{\hbar}{2}\binom{\left[2 \cos ^{3}(\theta / 2)-\cos (\theta / 2)+2 \sin ^{2}(\theta / 2) \cos (\theta / 2)\right] e^{-i \phi / 2}}{\left[2 \sin (\theta / 2) \cos ^{2}(\theta / 2)-2 \cos ^{2}(\theta / 2) \sin (\theta / 2)+\sin (\theta / 2)\right] e^{i \phi / 2}} \\
& =\frac{\hbar}{2}\binom{\cos (\theta / 2) e^{-i \phi / 2}}{\sin (\theta / 2) e^{i \phi / 2}} \\
& =\frac{\hbar}{2}\left|\uparrow_{\theta \phi}\right\rangle \tag{22}
\end{align*}
$$

and

$$
\begin{align*}
S_{\theta \phi}\left|\downarrow_{\theta \phi}\right\rangle & =\frac{\hbar}{2}\left(\begin{array}{cc}
\cos \theta & e^{-i \phi} \sin \theta \\
e^{i \phi} \sin \theta & -\cos \theta
\end{array}\right)\binom{-\sin (\theta / 2) e^{-i \phi / 2}}{\cos (\theta / 2) e^{i \phi / 2}} \\
& =\frac{\hbar}{2}\binom{[-\cos \theta \sin (\theta / 2)+\sin \theta \cos (\theta / 2)] e^{-i \phi / 2}}{[-\sin \theta \sin (\theta / 2)-\cos \theta \cos (\theta / 2)] e^{-p h i / 2}} \\
& =\frac{\hbar}{2}\binom{\sin (\theta / 2) e^{-i \phi / 2}}{-\cos (\theta / 2) e^{i \phi / 2}} \\
& =-\frac{\hbar}{2}\left|\downarrow_{\theta \phi}\right\rangle \tag{23}
\end{align*}
$$

2. The Bloch Sphere: The most-general spin- $1 / 2$ state is

$$
\begin{equation*}
|\psi\rangle=c_{\uparrow}\left|\uparrow_{z}\right\rangle+c_{\downarrow}|\downarrow z\rangle, \tag{24}
\end{equation*}
$$

where c_{\uparrow} and c_{\downarrow} are c-numbers. This state is subject to the constraint $\left|c_{\uparrow}\right|^{2}+\left|c_{\downarrow}\right|^{2}=1$, and is defined only up to a global phase-factor. This means that it only requires two real numbers to specify a spin- $1 / 2$ state. The state $\left|\uparrow_{\theta \phi}\right\rangle$ from problem 1 has two free real-valued parameters. This means that every possible spin- $1 / 2$ state must be spin-up with respect to some axis. Determine the axis angles, (θ, ϕ), for a state of the form (3).
The dynamical evolution of a spin- $1 / 2$ state can therefore be viewed as the motion of a single point on a sphere of unit radius, known as the Bloch sphere, i.e. the state $|\psi(t)\rangle=c_{\uparrow}(t)\left|\uparrow_{z}\right\rangle+c_{\downarrow}(t)\left|\downarrow_{z}\right\rangle$ maps onto the coordinate $(\theta(t), \phi(t))$. Describe the trajectory on the Bloch sphere of an arbitrary initial state, subject to the Hamiltonian

$$
\begin{equation*}
H=\omega S_{z} . \tag{25}
\end{equation*}
$$

In addition, find the constant of motion, and express it in the form $f(\theta(t), \phi(t))=f(\theta(0), \phi(0))$. We have

$$
\begin{equation*}
\left|\uparrow_{\theta \phi}\right\rangle=\cos (\theta / 2) e^{-i \phi / 2}\left|\uparrow_{z}\right\rangle+\sin (\theta / 2) e^{i \phi / 2}\left|\downarrow_{z}\right\rangle \tag{26}
\end{equation*}
$$

which means

$$
\begin{align*}
& c_{\uparrow}=\cos (\theta / 2) e^{-i \phi / 2} \tag{27}\\
& c_{\downarrow}=\sin (\theta / 2) e^{i \phi / 2} \tag{28}
\end{align*}
$$

inverting gives

$$
\begin{align*}
\theta & =2 \arctan \frac{\left|c_{\downarrow}\right|}{\left|c_{\uparrow}\right|} \tag{29}\\
\phi & =\arg \left[c_{\downarrow}^{2}+\left(c_{\uparrow}^{*}\right)^{2}\right] \tag{30}
\end{align*}
$$

The Hamiltonian generates time evolution via the transformation

$$
\begin{align*}
|\psi(t)\rangle & =e^{-\frac{i}{\hbar} H t}|\psi(0)\rangle \\
& =U_{R}\left(\phi(t) \vec{e}_{z}\right)|\phi(0)\rangle \tag{31}
\end{align*}
$$

where

$$
\begin{equation*}
\phi(t)=\omega t \tag{32}
\end{equation*}
$$

This means that an initial point on the Bloch sphere orbits around the z-axis, forming a line of constant latitude. The constant of motion is therefore

$$
\begin{equation*}
\theta(t)=\theta(0) \tag{33}
\end{equation*}
$$

3. Consider two identical spin- $1 / 2$ particles in a one-dimensional Harmonic oscillator potential, so that

$$
\begin{equation*}
H=H_{1}+H_{2} \tag{34}
\end{equation*}
$$

with

$$
\begin{equation*}
H_{j}=\frac{P_{j}^{2}}{2 M}+\frac{1}{2} M \omega^{2} X_{j}^{2} \tag{35}
\end{equation*}
$$

(a) Show that H, H_{1} and H_{2} form a set of 3 commuting observables, so that simultaneous eigenstates of H, H_{1} and H_{2} exist. Label these states as $\left|n_{1}, n_{2}\right\rangle$ where $H_{j}\left|n_{1}, n_{2}\right\rangle=E_{n_{j}}\left|n_{1}, n_{2}\right\rangle$, and $H\left|n_{1}, n_{2}\right\rangle=\left(E_{n_{1}}+E_{n_{2}}\right)\left|n_{1}, n_{2}\right\rangle$. Does the set $\left\{\left|n_{1}, n_{2}\right\rangle\right\}$ form a complete basis for the twoparticle orbital Hilbert space?
H_{1} and H_{2} commute with each other and with H because $\left[X_{j}, P_{k}\right]=i \hbar \delta_{j, k}$ gives zero for $j \neq k$. The set $\left\{\left|n_{1}, n_{2}\right\rangle\right\}$ does form a complete basis.
(b) Switch to relative and center-of-mass coordinates, by expressing the operators X_{1}, X_{2}, P_{1}, and P_{2}, in terms of the operators $X_{C M}, X, P_{C M}$ and P. Show that H separates as $H=$ $H_{C M}\left(X_{C M}, P_{C M}\right)+H_{r}(X, P)$. Show that $H, H_{C M}$ and H_{r} all commute, so that simultaneous eigenvalues of $H, H_{C M}$ and H_{r} exist. Label these states as $|N, n\rangle$, where $H_{C M}|N, n\rangle=E_{N}|N, n\rangle$, $H_{r}|N, n\rangle=E_{n}|N, n\rangle$, and $H|N, n\rangle=\left(E_{N}+E_{n}\right)|N, n\rangle$. Does the set of states $\{|N, n\rangle\}$ form a compete basis for the two-particle orbital Hilbert space?
The transformation is

$$
\begin{align*}
X_{1} & =X_{C M}+\frac{1}{2} X \tag{36}\\
X_{2} & =X_{C M}-\frac{1}{2} X \tag{37}\\
P_{1} & =\frac{1}{2} P_{C M}+P \tag{38}\\
P_{2} & =\frac{1}{2} P_{C M}-P \tag{39}
\end{align*}
$$

The Hamiltonian becomes

$$
\begin{equation*}
H=H_{C M}+H_{r} \tag{40}
\end{equation*}
$$

where

$$
\begin{align*}
H_{C M} & =\frac{P_{C M}^{2}}{4 M}+M \omega^{2} X_{C M}^{2} \tag{41}\\
H_{r} & =\frac{P^{2}}{M}+\frac{1}{4} M \omega^{2} X^{2} \tag{42}
\end{align*}
$$

Because $\left[X, P_{C M}\right]=\left[X_{C M}, P\right]=0$, it follows that $H_{C M}, H_{r}$, and H form a set of mutually commuting observables. Thus the set $\{|N, n\rangle\}$ is a complete basis.
(c) Let $X_{j}\left|x_{1}, x_{2}\right\rangle=x_{j}\left|x_{1}, x_{2}\right\rangle, X_{C M}\left|x_{C M}, x\right\rangle=x_{C M}\left|x_{C M}, x\right\rangle$, and $X\left|x_{C M}, x\right\rangle=x\left|x_{C M}, x\right\rangle$. The exchange operator is defined by $P_{1,2}\left|x_{1}, x_{2}\right\rangle=\left|x_{2}, x_{1}\right\rangle$. What is $P_{12}\left|x_{C M}, x\right\rangle$?
We start from the equivalence

$$
\begin{equation*}
\left|x_{1}, x_{2}\right\rangle^{(1,2)}=\left|\frac{x_{1}+x_{2}}{2}, x_{1}-x_{2}\right\rangle^{(C M, r)} \tag{43}
\end{equation*}
$$

so that

$$
\begin{equation*}
P_{1,2}\left|x_{1}, x_{2}\right\rangle^{(1,2)}=\left|x_{1}, x_{1}\right\rangle^{(1,2)}=\left|\frac{x_{2}+x_{1}}{2}, x_{2}-x_{1}\right\rangle^{(C M, r)}=\left|x_{C M},-x\right\rangle^{(C M, r)} \tag{44}
\end{equation*}
$$

(d) Show that the states $\left|n_{1}, n_{2}\right\rangle$ are in general not eigenstates of the exchange operator, but that the states $|N, n\rangle$ are. What is the exchange eigenvalue of the state $|N, n\rangle$?
we have

$$
\begin{equation*}
\phi_{n_{1}, n_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2^{n_{1}+n_{2}} n_{1}!n_{2}!\pi \lambda}} H_{n_{1}}\left(x_{1} / \lambda\right) H_{n_{2}}\left(x_{2} / \lambda\right) e^{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) / \lambda} \tag{45}
\end{equation*}
$$

with $\phi^{\prime}\left(x_{1}, x_{2}\right)=\phi\left(x_{1}, x_{2}\right)$, we see that unless $n_{1}=n_{2},\left|n_{1}, n_{2}\right\rangle$ is not an eigenstate of $P_{1,2}$.
In center-of-mass coordinates, we have

$$
\begin{equation*}
\phi_{N, n}\left(x_{C M}, x\right)=\frac{1}{\sqrt{2^{N+n} N!n!\pi \lambda}} H_{N}\left(\sqrt{2} x_{C M} / \lambda\right) H_{n}\left(x /(\sqrt{2} \lambda) e^{-\left(x_{C M}^{2}+x^{2} / 4\right) / \lambda^{2}}\right. \tag{46}
\end{equation*}
$$

but with $\phi^{\prime}\left(x_{C M}, x\right)=\phi\left(x_{C M},-x\right)$, we see that

$$
\begin{equation*}
\phi_{N, n}^{\prime}\left(x_{C M}, x\right)=\frac{1}{\sqrt{2^{N+n} N!n!\pi \lambda}} H_{N}\left(\sqrt{2} x_{C M} / \lambda\right) H_{n}\left(-x /(\sqrt{2} \lambda) e^{-\frac{1}{2}\left(2 x_{C M}^{2}+x^{2} / 2\right) / \lambda^{2}}\right. \tag{47}
\end{equation*}
$$

The Hermite polynomials have well-defined parity, so that $H_{n}(-x)=(-1)^{n} H_{n}(x)$.
Thus we have

$$
\begin{equation*}
P_{1,2}|N, n\rangle=(-1)^{n}|N, n\rangle \tag{48}
\end{equation*}
$$

(e) If the two particles are in a spin-singlet state, which of the $|N, n\rangle$ states are forbidden? Which are forbidden for the spin-triplet state?
In the singlet state, the spatial wave function must be symmetric under exchange, which means that odd n states are forbidden. For the triplet state, the even n states are forbidden.
(f) Assume a zero-range interaction of the form $V\left(x_{1}, x_{2}\right)=g \delta\left(x_{1}-x_{2}\right)$. For the 'repulsive' case, $g>0$ will the true ground state be a singlet or triplet state? What about for 'attractive' interactions, i.e. $g<0$?
For the repulsive case, the $n=0$ state will have its energy increased, whereas the $n=1$ state's energy will remain unchanged. While one might be tempted to say that for large enough g, the $n=0$ state could have higher energy than the $n=1$ state (which I will accept as a valid answer), in fact in the limit of $g \rightarrow \infty$, the singlet energy level assymptotically approaches the triplet level from below, a unique property of the 1D zero-range potential. Thus the singlet state will always be the ground state. For attractive interactions, the energy of the $n=0$ state will decrease, while that of the $n=1$ state remains unchanged, so that also, the singlet state remains the ground state.

