
PHYS852 Quantum Mechanics II, Spring 2010
HOMEWORK ASSIGNMENT 4: Solutions.

Topics covered: rotation with spin, exchange symmetry

1. A vector pointing in the θ, φ direction, can be formed by starting with a vector pointing along ~ez,
then applying an active rotation by θ about the y-axis, followed by a rotation by φ about the z-axis.

(a) Verify this for an ordinary vector, by starting with the vector (0, 0, 1)T and using

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ; Rz(φ) =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 (1)

The vector (0, 0, 1)T is simply ~ez. Applying first the y rotation, and then the z rotation gives:

Rz(φ)Ry(θ)

 0
0
1

 =

 sin θ cosφ
sin θ sinφ

cos θ

 (2)

we can recognize this as the unit vector ~eθφ that points in the θ, φ direction.

(b) Thus for a spin-1/2 system, the spin-up state with respect to the θ, φ direction can be found in
the basis of Sz eigenstates, by starting with the spin-up state along ~ez, and applying unitary
rotation operators, i.e.

| ↑θφ〉 = e−
i
~φSze−

i
~ θSy | ↑z〉. (3)

In this way, find the states | ↑θφ〉 and | ↓θφ〉.
first we note that

e−
i
~φSz =

(
e−iφ/2 0

0 eiφ/2

)
(4)

and

e−
i
~ θSy = cos(θ/2)I − i sin(θ/2)σy =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
(5)

this gives us

e−
i
~φSze−

i
~ θSy =

(
e−iφ/2 0

0 eiφ/2

)(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
=

(
cos(θ/2)e−iφ/2 − sin(θ/2)e−iφ/2

sin(θ/2)eiφ/2 cos(θ/2)eiφ/2

)
(6)

Thus we have

| ↑θφ〉 =

(
cos(θ/2)e−iφ/2 − sin(θ/2)e−iφ/2

sin(θ/2)eiφ/2 cos(θ/2)eiφ/2

)(
1
0

)
=

(
cos(θ/2)e−iφ/2

sin(θ/2)eiφ/2

)
(7)

and

| ↓θφ〉 =

(
cos(θ/2)e−iφ/2 − sin(θ/2)e−iφ/2

sin(θ/2)eiφ/2 cos(θ/2)eiφ/2

)(
0
1

)
=

(
− sin(θ/2)e−iφ/2

cos(θ/2)eiφ/2

)
(8)
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(c) Compute the operator Sθφ using unitary rotation operators to transform Sz, and compare it to
the result using the 3× 3 rotation matrices.
The operator Sθφ is given by definition as Sθφ = ~eθφ · ~S, which gives

Sθφ = sin θ cosφSx + sin θ sinφSy + cos θSz

=
~
2

(
cos θ e−iφ sin θ
eiφ sin θ − cos θ

)
(9)

Note that we have computed this by rotating the unit vectors. According to the lecture, there
are two additional equivalent transformations. We can apply the inverse transformation to each
component of ~S via unitary operators, or we can apply the inverse transformation collectively
to all three components via the 3× 3 rotation matrix.

From part (b) we have

U =

(
cos(θ/2)e−iφ/2 − sin(θ/2)e−iφ/2

sin(θ/2)eiφ/2 cos(θ/2)eiφ/2

)
(10)

so that

Sθφ =
(
U−1

)†
SzU

−1

= USzU
†

=
~
2

(
cos(θ/2)e−iφ/2 − sin(θ/2)e−iφ/2

sin(θ/2)eiφ/2 cos(θ/2)eiφ/2

)(
1 0
0 −1

)(
cos(θ/2)eiφ/2 sin(θ/2)e−iφ/2

− sin(θ/2)eiφ/2 cos(θ/2)e−iφ/2

)
=

~
2

(
cos(θ/2)e−iφ/2 − sin(θ/2)e−iφ/2

sin(θ/2)eiφ/2 cos(θ/2)eiφ/2

)(
cos(θ/2)eiφ/2 sin(θ/2)e−iφ/2

sin(θ/2)eiφ/2 − cos(θ/2)e−iφ/2

)
=

~
2

(
cos2(θ/2)− sin2(θ/2) 2 cos(θ/2) sin(θ/2)e−iφ

2 cos(θ/2) sin(θ/2)eiφ sin2(θ/2)− cos2(θ/2)

)
=

~
2

(
cos θ e−iφ sin θ
eiφ sin θ − cos θ

)
(11)

which remarkably gives the same result as Eq. (9).

The third approach gives S′x
S′y
S′z

 = (Rz(φ)Ry(θ))
−1

 Sx
Sy
Sz

 (12)

= Ry(−θ)Rz(−φ)

 Sx
Sy
Sz

 (13)

=

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 Sx
Sy
Sz

 (14)

=

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosφSx + sinφSy
− sinφSx + cosφSy

Sz
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=

 cos θ cosφSx + cos θ sinφS)y − sin θSz
− sinφSx + cosφSy

sin θ cosφSx + sin θ sinφSy + cos θSz

 (15)

identifying Sθφ = S′3 gives

Sθφ = sin θ cosφSx + sin θ sinφSy + cos θSz (16)

which again reproduces eq. (9).

(d) Using your results from parts (b) and (c), show explicitly that Sθφ| ↑θφ〉 = ~
2 | ↑θφ〉 and

Sθφ| ↓θφ〉 = −~
2 | ↓θφ〉.

Sθφ| ↑θφ〉 =
~
2

(
cos θ e−iφ sin θ
eiφ sin θ − cos θ

)(
cos(θ/2)e−iφ/2

sin(θ/2)eiφ/2

)
=

~
2

(
cos θ cos(θ/2)e−iφ/2 + sin θ sin(θ/2)e−iφ/2

sin θ cos(θ/2)eiφ/2 − cos θ sin(θ/2)eiφ/2

)
(17)

now we have

cos2(θ) =
1

2
(1 + cos(2θ)) (18)

so that
cos θ = 2 cos2(θ/2)− 1 (19)

likewise

sin θ cos θ =
1

2
sin(2θ) (20)

so that
sin θ = 2 sin(θ/2) cos(θ/2) (21)

this gives

Sθφ| ↑θφ〉 =
~
2

( [
2 cos3(θ/2)− cos(θ/2) + 2 sin2(θ/2) cos(θ/2)

]
e−iφ/2[

2 sin(θ/2) cos2(θ/2)− 2 cos2(θ/2) sin(θ/2) + sin(θ/2)
]
eiφ/2

)
=

~
2

(
cos(θ/2)e−iφ/2

sin(θ/2)eiφ/2

)
=

~
2
| ↑θφ〉 (22)

and

Sθφ| ↓θφ〉 =
~
2

(
cos θ e−iφ sin θ
eiφ sin θ − cos θ

)(
− sin(θ/2)e−iφ/2

cos(θ/2)eiφ/2

)
=

~
2

(
[− cos θ sin(θ/2) + sin θ cos(θ/2)] e−iφ/2

[− sin θ sin(θ/2)− cos θ cos(θ/2)] e−phi/2

)
=

~
2

(
sin(θ/2)e−iφ/2

− cos(θ/2)eiφ/2

)
= −~

2
| ↓θφ〉 (23)
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2. The Bloch Sphere: The most-general spin-1/2 state is

|ψ〉 = c↑| ↑z〉+ c↓| ↓z〉, (24)

where c↑ and c↓ are c-numbers. This state is subject to the constraint |c↑|2 + |c↓|2 = 1, and is defined
only up to a global phase-factor. This means that it only requires two real numbers to specify a
spin-1/2 state. The state | ↑θφ〉 from problem 1 has two free real-valued parameters. This means
that every possible spin-1/2 state must be spin-up with respect to some axis. Determine the axis
angles, (θ, φ), for a state of the form (3).

The dynamical evolution of a spin-1/2 state can therefore be viewed as the motion of a single point
on a sphere of unit radius, known as the Bloch sphere, i.e. the state |ψ(t)〉 = c↑(t)| ↑z〉 + c↓(t)| ↓z〉
maps onto the coordinate (θ(t), φ(t)). Describe the trajectory on the Bloch sphere of an arbitrary
initial state, subject to the Hamiltonian

H = ωSz. (25)

In addition, find the constant of motion, and express it in the form f(θ(t), φ(t)) = f(θ(0), φ(0)).
We have

| ↑θφ〉 = cos(θ/2)e−iφ/2| ↑z〉+ sin(θ/2)eiφ/2| ↓z〉 (26)

which means

c↑ = cos(θ/2)e−iφ/2 (27)

c↓ = sin(θ/2)eiφ/2 (28)

inverting gives

θ = 2 arctan
|c↓|
|c↑|

(29)

φ = arg
[
c2↓ +

(
c∗↑
)2]

(30)

The Hamiltonian generates time evolution via the transformation

|ψ(t)〉 = e−
i
~Ht|ψ(0)〉

= UR(φ(t)~ez)|φ(0)〉 (31)

where
φ(t) = ωt (32)

This means that an initial point on the Bloch sphere orbits around the z-axis, forming a line of
constant latitude. The constant of motion is therefore

θ(t) = θ(0) (33)
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3. Consider two identical spin-1/2 particles in a one-dimensional Harmonic oscillator potential, so that

H = H1 +H2 (34)

with

Hj =
P 2
j

2M
+

1

2
Mω2X2

j (35)

(a) Show that H, H1 and H2 form a set of 3 commuting observables, so that simultaneous eigenstates
of H, H1 and H2 exist. Label these states as |n1, n2〉 where Hj |n1, n2〉 = Enj |n1, n2〉, and
H|n1, n2〉 = (En1 + En2)|n1, n2〉. Does the set {|n1, n2〉} form a complete basis for the two-
particle orbital Hilbert space?
H1 and H2 commute with each other and with H because [Xj , Pk] = i~δj,k gives zero for j 6= k.
The set {|n1, n2〉} does form a complete basis.

(b) Switch to relative and center-of-mass coordinates, by expressing the operators X1, X2, P1,
and P2, in terms of the operators XCM , X, PCM and P . Show that H separates as H =
HCM (XCM , PCM ) +Hr(X,P ). Show that H, HCM and Hr all commute, so that simultaneous
eigenvalues ofH, HCM andHr exist. Label these states as |N,n〉, whereHCM |N,n〉 = EN |N,n〉,
Hr|N,n〉 = En|N,n〉, and H|N,n〉 = (EN + En)|N,n〉. Does the set of states {|N,n〉} form a
compete basis for the two-particle orbital Hilbert space?
The transformation is

X1 = XCM +
1

2
X (36)

X2 = XCM −
1

2
X (37)

P1 =
1

2
PCM + P (38)

P2 =
1

2
PCM − P (39)

The Hamiltonian becomes
H = HCM +Hr (40)

where

HCM =
P 2
CM

4M
+Mω2X2

CM (41)

Hr =
P 2

M
+

1

4
Mω2X2 (42)

Because [X,PCM ] = [XCM , P ] = 0, it follows that HCM , Hr, and H form a set of mutually
commuting observables. Thus the set {|N,n〉} is a complete basis.

(c) Let Xj |x1, x2〉 = xj |x1, x2〉, XCM |xCM , x〉 = xCM |xCM , x〉, and X|xCM , x〉 = x|xCM , x〉. The
exchange operator is defined by P1,2|x1, x2〉 = |x2, x1〉. What is P12|xCM , x〉?
We start from the equivalence

|x1, x2〉(1,2) = |x1+x2
2

, x1−x2〉(CM,r) (43)

so that

P1,2|x1, x2〉(1,2) = |x1, x1〉(1,2) = |x2+x1
2

, x2−x1〉(CM,r) = |xCM ,−x〉(CM,r) (44)
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(d) Show that the states |n1, n2〉 are in general not eigenstates of the exchange operator, but that
the states |N,n〉 are. What is the exchange eigenvalue of the state |N,n〉?
we have

φn1,n2(x1, x2) =
1√

2n1+n2n1!n2!πλ
Hn1(x1/λ)Hn2(x2/λ)e−

1
2
(x21+x

2
2)/λ (45)

with φ′(x1, x2) = φ(x1, x2), we see that unless n1 = n2, |n1, n2〉 is not an eigenstate of P1,2.

In center-of-mass coordinates, we have

φN,n(xCM , x) =
1√

2N+nN !n!πλ
HN (
√

2xCM/λ)Hn(x/(
√

2λ)e−(x
2
CM+x2/4)/λ2 (46)

but with φ′(xCM , x) = φ(xCM ,−x), we see that

φ′N,n(xCM , x) =
1√

2N+nN !n!πλ
HN (
√

2xCM/λ)Hn(−x/(
√

2λ)e−
1
2
(2x2CM+x2/2)/λ2 (47)

The Hermite polynomials have well-defined parity, so that Hn(−x) = (−1)nHn(x).
Thus we have

P1,2|N,n〉 = (−1)n|N,n〉 (48)

(e) If the two particles are in a spin-singlet state, which of the |N,n〉 states are forbidden? Which
are forbidden for the spin-triplet state?
In the singlet state, the spatial wave function must be symmetric under exchange, which means
that odd n states are forbidden. For the triplet state, the even n states are forbidden.

(f) Assume a zero-range interaction of the form V (x1, x2) = gδ(x1 − x2). For the ‘repulsive’ case,
g > 0 will the true ground state be a singlet or triplet state? What about for ‘attractive’
interactions, i.e. g < 0?
For the repulsive case, the n = 0 state will have its energy increased, whereas the n = 1 state’s
energy will remain unchanged. While one might be tempted to say that for large enough g,
the n = 0 state could have higher energy than the n = 1 state (which I will accept as a valid
answer), in fact in the limit of g → ∞, the singlet energy level assymptotically approaches the
triplet level from below, a unique property of the 1D zero-range potential. Thus the singlet
state will always be the ground state. For attractive interactions, the energy of the n = 0 state
will decrease, while that of the n = 1 state remains unchanged, so that also, the singlet state
remains the ground state.
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