Topics covered: rotation with spin, exchange symmmetry

1. The Hamiltonian for the deuteron, a bound-state of a proton and neutron, may be written in the form

$$
\begin{equation*}
H=\frac{P_{p}^{2}}{2 M_{p}}+\frac{P_{n}^{2}}{2 M_{n}}+V_{1}(R)+V_{2}(R) \vec{S}_{p} \cdot \vec{S}_{n} \tag{1}
\end{equation*}
$$

where R is the relative radial coordinate. Both are spin- $1 / 2$ particles, but they are not identical.
(a) The total angular momentum operator is $\vec{S}=\vec{S}_{p}+\vec{S}_{n}$. The state $\left|s_{p} s_{n} s m\right\rangle$ is the simultaneous eigenstate of $\vec{S}_{p}, \vec{S}_{n}, S^{2}$, and S_{z}. What are the allowed values of the total spin quantum number s ? For each s-value, what are the allowed m quantum numbers.
(b) Show that $\left|s_{p} s_{n} s m\right\rangle$ is an eigenstate of $\vec{S}_{p} \cdot \vec{S}_{n}$, and give the corresponding eigenvalue. Hint, use the fact that $S^{2}=\left(\vec{S}_{p}+\vec{S}_{n}\right) \cdot\left(\vec{S}_{p}+\vec{S}_{n}\right)$.
(c) Give ten distinct quantum numbers that can be assigned to an eigenstates of this H. Note that this includes s_{p} and s_{n}, even though they can never change.
(d) What one-dimensional wave equation would you have to solve to find the energy eigenvalue associated with one of these states?
2. Consider a particle of spin $s=1$, constrained to move on the surface of a sphere. Assume that the Hamiltonian of the particle is

$$
\begin{equation*}
H=\frac{L^{2}}{2 I}+\frac{\vec{L} \cdot \vec{S}}{I} \tag{2}
\end{equation*}
$$

where \vec{L} is the orbital angular momentum operator, I is the moment of inertia, and \vec{S} is the spin operator. find the quantized energy levels and the degeneracy of each level.
3. For Silicon, the ground-state configuration is $(3 p)^{2}$, i.e. there are two valence electrons, each in the $3 p$ state.
(a) What are the possible values for the total spin quantum number, s, where $\vec{S}=\vec{S}_{1}+\vec{S}_{2}$?
(b) What are the possible values for the total angular momentum quantum number, ℓ, where $\vec{L}=$ $\vec{L}_{1}+\vec{L}_{2}$?
(c) The exchange symmetry of the two-electron spatial wavefunction matches the parity of the quantum number ℓ. Based on this, determine which combinations of s and ℓ are allowed states for the two-electron system.
(d) For each allowed combination, what are the possible values of the quantum number j, where $\vec{J}=\vec{L}+\vec{S}$?
(e) Assuming that the spin-orbit interaction lifts the degeneracy of the states with different j, how many distinct energy levels make up the fine-structure of the $(3 p)^{2}$ state?
(f) Which j levels would shift if a contact interaction between the two valence electrons were added to the Hamiltonian?
4. Let $\vec{J}=\vec{L}+\vec{S}$. Using the method described in the lecture, identify and calculate all non-zero Clebsch-Gordan coefficients for the $\ell=2, s=1 / 2$ case.

