
PHYS852 Quantum Mechanics II, Spring 2010
HOMEWORK ASSIGNMENT 5: Solutions

Topics covered: rotation with spin, exchange symmmetry

1. The Hamiltonian for the deuteron, a bound-state of a proton and neutron, may be written in the
form

H =
P 2
p

2Mp
+

P 2
n

2Mn
+ V1(R) + V2(R)~Sp · ~Sn, (1)

where R is the relative radial coordinate. Both are spin-1/2 particles, but they are not identical.

(a) The total angular momentum operator is ~S = ~Sp + ~Sn. The state |spsnsm〉 is the simultaneous

eigenstate of ~Sp, ~Sn, S2, and Sz. What are the allowed values of the total spin quantum number
s? For each s-value, what are the allowed m quantum numbers.
With sp = 1/2 and sn = 1/2, we find smin = |sp − sn| = 0, and smax = sp + sn = 1, so the
allowed values of s are 0, 1. For s = 0, only m = 0 is allowed, while for s = 1, we can have
m = −1, 0, 1.

(b) Show that |spsnsm〉 is an eigenstate of ~Sp · ~Sn, and give the corresponding eigenvalue. Hint, use

the fact that S2 = (~Sp + ~Sn) · (~Sp + ~Sn).
We have

S2 = S2
p + 2~Sp · ~Sn + S2

n (2)

solving for ~Sp · ~Sn gives

~Sp · ~Sn =
1

2

(
S2 − S2

p − S2
n

)
(3)

As |spsnsm〉 an eigenstate of S2, S2
p andS2

n, then it must also be an eigenstate of ~Sp · ~Sn with

eigenvalue ~2
2 (s(s+ 1)− 3).

(c) Give ten distinct quantum numbers that can be assigned to an eigenstates of this H. Note that
this includes sp and sn, even though they can never change.
The ten quantum numbers are the three components of the center-of-mass momentum: px, py,
and pz; the orbital quantum numbers of the relative motion:n, `, and m`; and the four spin
quantum numbers: sp, sn, s, and m.

(d) What one-dimensional wave equation would you have to solve to find the energy eigenvalue
associated with one of these states?
The radial wave equation would be:[

− ~2

2µ

d2

dr2
+

~2`(`+ 1)

2µr2
+ V1(r) +

~2

2
[s(s+ 1)− 3]V2(r)− En`s

]
Rn`s(r) = 0 (4)
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2. Consider a particle of spin s = 1, constrained to move on the surface of a sphere. Assume that the
Hamiltonian of the particle is

H =
L2

2I
+
~L · ~S
I

, (5)

where ~L is the orbital angular momentum operator, I is the moment of inertia, and ~S is the spin
operator. find the quantized energy levels and the degeneracy of each level.
With ~J = ~L+ ~S, simultaneous eigenstates of H, L2, S2, J2, and Jz exist. We can label the |`sjmj〉,
as s = 1 never changes, we can drop s. We have then

H|`jmj〉 =

[
~2`(`+ 1)

2I
+

~2

2I
[j(j + 1)− `(`+ 1)− s(s+ 1)]

]
|`jmj〉

=
~2

2I
[j(j + 1)− 2] |`jmj〉 (6)

so we see that energy depends on j only. This means that states with the same j but different ` are
degenerate. The degeneracy factor 2j + 1 counts only those states with the same j for fixed `. We
therefore need to multiply by the number of `-values that can give a specific j value to get the total
degeneracy of the jth energy level. The easiest way to do this is to make a table:

` jmin jmax

0 1 1
1 0 2
2 1 3
3 2 4
...

...
...

It is easy to see that j = 0 can only occur when ` = 1, j = 1 can occur for ` = 0, 1, 2, j = 3 for
` = 2, 3, 4, etc... So the number of `-values for a given j is 3, except for j = 0 which has only 1. This
can be formulated as dj = (2j + 1)(3− 2δj,0) = 6j + 3− 2δj,0
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3. For Silicon, the ground-state configuration is (3p)2, i.e. there are two valence electrons, each in the
3p state.

(a) What are the possible values for the total spin quantum number, s, where ~S = ~S1 + ~S2?
s = 0, 1

(b) What are the possible values for the total angular momentum quantum number, `, where ~L =
~L1 + ~L2?
`1 = 1, `2 = 1, so ` = 0, 1, 2.

(c) The exchange symmetry of the two-electron spatial wavefunction matches the parity of the
quantum number `. Based on this, determine which combinations of s and ` are allowed states
for the two-electron system.
s = 0 is odd under exchange, while s = 1 is even. For `, we have the opposite, ` = 0 is even,
` = 1 is odd, and ` = 2 is even.
The totally anti-symmetric combinations are therefore (s, `) = (0, 0), (1, 1), (0, 2)

(d) For each allowed combination, what are the possible values of the quantum number j, where
~J = ~L+ ~S?
For (s, `) = (0, 0) we can only have j = 0. For (s, `) = (1, 1), we can have j = 0, 1, 2, and for
(s, `) = (0, 2) we can only have j = 2.

(e) Assuming that the spin-orbit interaction lifts the degeneracy of the states with different j, how
many distinct energy levels make up the fine-structure of the (3p)2 state?
The allowed j values are j = 0, 1, 2, so there would be 3 fine-structure levels.

(f) Which j levels would shift if a contact interaction between the two valence electrons were added
to the Hamiltonian?
Only states with even orbital exchange symmetry would be affected by a zero-range potential,
i.e. ` = 0 or ` = 2. This means only the j = 0 an j = 2 levels would shift.
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4. Let ~J = ~L + ~S. Using the method described in the lecture, identify and calculate all non-zero
Clebsch-Gordan coefficients for the ` = 2, s = 1/2 case.
For starters, we need jmax = `+ s = 2 + 1

2 = 5
2 and jmin = |2− 1

2 | =
3
2

Starting from |5/2, 5/2〉 = |2, 1/2〉, we apply J− = L− + S− to get

J−|5/2, 5/2〉 = L−|2, 1/2〉+ S−|2, 1/2〉√
5

2
· 7

2
− 5

2
· 3

2
|5/2, 3/2〉 =

√
2 · 3− 2 · 1|1, 1/2〉+ |2,−1/2〉

√
5|5/2, 3/2〉 = 2|1, 1/2〉+ |2,−1/2〉

|5/2, 3/2〉 =
2√
5
|1, 1/2〉+

1√
5
|2,−1/2〉

Applying J− again gives√
5

2
· 7

2
− 3

2
· 1

2
|5/2, 1/2〉 =

2√
5

(√
2 · 3− 1 · 0|0, 1/2〉+ |1,−1/2〉

)
+

1√
5

√
2 · 3− 2 · 1|1,−1/2〉

√
8|5/2, 1/2〉 =

2
√

6√
5
|0, 1/2〉+

4√
5
|1,−1/2〉

|5/2, 1/2〉 =

√
3√
5
|0, 1/2〉+

√
2√
5
|1,−1/2〉

After this point, the remaining terms can be found by symmetry, giving:

Table 1: Clebesh Gordan coefficients: 〈2, 1/2,m`,ms|j,mj〉
m`, ms

2,1/2 2,-1/2 1,1/2 1,-1/2 0,1/2 0,-1/2 -1,1/2 -1,-1/2 -2,1/2 -2,-1/2
5/2,5/2 1 0 0 0 0 0 0 0 0 0

5/2,3/2 0 1/
√

5 2/
√

5 0 0 0 0 0 0 0

5/2,1/2 0 0 0
√

2/
√

5
√

3/
√

5 0 0 0 0 0

5/2,-1/2 0 0 0 0 0
√

3/
√

5
√

2/
√

5 0 0 0

j, mj 5/2,-3/2 0 0 0 0 0 0 0 2/
√

5 1/
√

5 0
5/2,-5/2 0 0 0 0 0 0 0 0 0 1

3/2,3/2 0 2/
√

5 −1
√

5 0 0 0 0 0 0 0

3/2,1/2 0 0 0
√

3
√

5 −
√

2/
√

5 0 0 0 0 0

3/2,-1/2 0 0 0 0 0
√

2/
√

5 −
√

3/
√

5 0 0 0

3/2,-3/2 0 0 0 0 0 0 0 1/
√

5 −2/
√

5 0
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