PHYS852 Quantum Mechanics II, Spring 2010
HOMEWORK ASSIGNMENT 5: Solutions
Topics covered: rotation with spin, exchange symmmetry

1. The Hamiltonian for the deuteron, a bound-state of a proton and neutron, may be written in the form

$$
\begin{equation*}
H=\frac{P_{p}^{2}}{2 M_{p}}+\frac{P_{n}^{2}}{2 M_{n}}+V_{1}(R)+V_{2}(R) \vec{S}_{p} \cdot \vec{S}_{n}, \tag{1}
\end{equation*}
$$

where R is the relative radial coordinate. Both are spin- $1 / 2$ particles, but they are not identical.
(a) The total angular momentum operator is $\vec{S}=\vec{S}_{p}+\vec{S}_{n}$. The state $\left|s_{p} s_{n} s m\right\rangle$ is the simultaneous eigenstate of $\vec{S}_{p}, \vec{S}_{n}, S^{2}$, and S_{z}. What are the allowed values of the total spin quantum number s ? For each s-value, what are the allowed m quantum numbers.
With $s_{p}=1 / 2$ and $s_{n}=1 / 2$, we find $s_{\min }=\left|s_{p}-s_{n}\right|=0$, and $s_{\max }=s_{p}+s_{n}=1$, so the allowed values of s are 0,1 . For $s=0$, only $m=0$ is allowed, while for $s=1$, we can have $m=-1,0,1$.
(b) Show that $\left|s_{p} s_{n} s m\right\rangle$ is an eigenstate of $\vec{S}_{p} \cdot \vec{S}_{n}$, and give the corresponding eigenvalue. Hint, use the fact that $S^{2}=\left(\vec{S}_{p}+\vec{S}_{n}\right) \cdot\left(\vec{S}_{p}+\vec{S}_{n}\right)$.
We have

$$
\begin{equation*}
S^{2}=S_{p}^{2}+2 \vec{S}_{p} \cdot \vec{S}_{n}+S_{n}^{2} \tag{2}
\end{equation*}
$$

solving for $\vec{S}_{p} \cdot \vec{S}_{n}$ gives

$$
\begin{equation*}
\vec{S}_{p} \cdot \vec{S}_{n}=\frac{1}{2}\left(S^{2}-S_{p}^{2}-S_{n}^{2}\right) \tag{3}
\end{equation*}
$$

As $\left|s_{p} s_{n} s m\right\rangle$ an eigenstate of S^{2}, S_{p}^{2} and S_{n}^{2}, then it must also be an eigenstate of $\vec{S}_{p} \cdot \vec{S}_{n}$ with eigenvalue $\frac{\hbar^{2}}{2}(s(s+1)-3)$.
(c) Give ten distinct quantum numbers that can be assigned to an eigenstates of this H. Note that this includes s_{p} and s_{n}, even though they can never change.
The ten quantum numbers are the three components of the center-of-mass momentum: p_{x}, p_{y}, and p_{z}; the orbital quantum numbers of the relative motion: n, ℓ, and m_{ℓ}; and the four spin quantum numbers: s_{p}, s_{n}, s, and m.
(d) What one-dimensional wave equation would you have to solve to find the energy eigenvalue associated with one of these states?
The radial wave equation would be:

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+\frac{\hbar^{2} \ell(\ell+1)}{2 \mu r^{2}}+V_{1}(r)+\frac{\hbar^{2}}{2}[s(s+1)-3] V_{2}(r)-E_{n \ell s}\right] R_{n \ell s}(r)=0 \tag{4}
\end{equation*}
$$

2. Consider a particle of $\operatorname{spin} s=1$, constrained to move on the surface of a sphere. Assume that the Hamiltonian of the particle is

$$
\begin{equation*}
H=\frac{L^{2}}{2 I}+\frac{\vec{L} \cdot \vec{S}}{I}, \tag{5}
\end{equation*}
$$

where \vec{L} is the orbital angular momentum operator, I is the moment of inertia, and \vec{S} is the spin operator. find the quantized energy levels and the degeneracy of each level.
With $\vec{J}=\vec{L}+\vec{S}$, simultaneous eigenstates of H, L^{2}, S^{2}, J^{2}, and J_{z} exist. We can label the $\left|\ell s j m_{j}\right\rangle$, as $s=1$ never changes, we can drop s. We have then

$$
\begin{align*}
H\left|\ell j m_{j}\right\rangle & =\left[\frac{\hbar^{2} \ell(\ell+1)}{2 I}+\frac{\hbar^{2}}{2 I}[j(j+1)-\ell(\ell+1)-s(s+1)]\right]\left|\ell j m_{j}\right\rangle \\
& =\frac{\hbar^{2}}{2 I}[j(j+1)-2]\left|\ell j m_{j}\right\rangle \tag{6}
\end{align*}
$$

so we see that energy depends on j only. This means that states with the same j but different ℓ are degenerate. The degeneracy factor $2 j+1$ counts only those states with the same j for fixed ℓ. We therefore need to multiply by the number of ℓ-values that can give a specific j value to get the total degeneracy of the $j^{\text {th }}$ energy level. The easiest way to do this is to make a table:

ℓ	$j_{\min }$	$j_{\max }$
0	1	1
1	0	2
2	1	3
3	2	4
\vdots	\vdots	\vdots

It is easy to see that $j=0$ can only occur when $\ell=1, j=1$ can occur for $\ell=0,1,2, j=3$ for $\ell=2,3,4$, etc... So the number of ℓ-values for a given j is 3 , except for $j=0$ which has only 1 . This can be formulated as $d_{j}=(2 j+1)\left(3-2 \delta_{j, 0}\right)=6 j+3-2 \delta_{j, 0}$
3. For Silicon, the ground-state configuration is $(3 p)^{2}$, i.e. there are two valence electrons, each in the $3 p$ state.
(a) What are the possible values for the total spin quantum number, s, where $\vec{S}=\vec{S}_{1}+\vec{S}_{2}$? $s=0,1$
(b) What are the possible values for the total angular momentum quantum number, ℓ, where $\vec{L}=$ $\vec{L}_{1}+\vec{L}_{2}$?
$\ell_{1}=1, \ell_{2}=1$, so $\ell=0,1,2$.
(c) The exchange symmetry of the two-electron spatial wavefunction matches the parity of the quantum number ℓ. Based on this, determine which combinations of s and ℓ are allowed states for the two-electron system.
$s=0$ is odd under exchange, while $s=1$ is even. For ℓ, we have the opposite, $\ell=0$ is even, $\ell=1$ is odd, and $\ell=2$ is even.
The totally anti-symmetric combinations are therefore $(s, \ell)=(0,0),(1,1),(0,2)$
(d) For each allowed combination, what are the possible values of the quantum number j, where $\vec{J}=\vec{L}+\vec{S}$?
For $(s, \ell)=(0,0)$ we can only have $j=0$. For $(s, \ell)=(1,1)$, we can have $j=0,1,2$, and for $(s, \ell)=(0,2)$ we can only have $j=2$.
(e) Assuming that the spin-orbit interaction lifts the degeneracy of the states with different j, how many distinct energy levels make up the fine-structure of the $(3 p)^{2}$ state?
The allowed j values are $j=0,1,2$, so there would be 3 fine-structure levels.
(f) Which j levels would shift if a contact interaction between the two valence electrons were added to the Hamiltonian?
Only states with even orbital exchange symmetry would be affected by a zero-range potential, i.e. $\ell=0$ or $\ell=2$. This means only the $j=0$ an $j=2$ levels would shift.
4. Let $\vec{J}=\vec{L}+\vec{S}$. Using the method described in the lecture, identify and calculate all non-zero Clebsch-Gordan coefficients for the $\ell=2, s=1 / 2$ case.
For starters, we need $j_{\max }=\ell+s=2+\frac{1}{2}=\frac{5}{2}$ and $j_{\text {min }}=\left|2-\frac{1}{2}\right|=\frac{3}{2}$
Starting from $|5 / 2,5 / 2\rangle=|2,1 / 2\rangle$, we apply $J_{-}=L_{-}+S_{-}$to get

$$
\begin{aligned}
J_{-}|5 / 2,5 / 2\rangle & =L_{-}|2,1 / 2\rangle+S_{-}|2,1 / 2\rangle \\
\sqrt{\frac{5}{2} \cdot \frac{7}{2}-\frac{5}{2} \cdot \frac{3}{2}}|5 / 2,3 / 2\rangle & =\sqrt{2 \cdot 3-2 \cdot 1}|1,1 / 2\rangle+|2,-1 / 2\rangle \\
\sqrt{5}|5 / 2,3 / 2\rangle & =2|1,1 / 2\rangle+|2,-1 / 2\rangle \\
|5 / 2,3 / 2\rangle & =\frac{2}{\sqrt{5}}|1,1 / 2\rangle+\frac{1}{\sqrt{5}}|2,-1 / 2\rangle
\end{aligned}
$$

Applying J_{-}again gives

$$
\begin{aligned}
\sqrt{\frac{5}{2} \cdot \frac{7}{2}-\frac{3}{2} \cdot \frac{1}{2}}|5 / 2,1 / 2\rangle & =\frac{2}{\sqrt{5}}(\sqrt{2 \cdot 3-1 \cdot 0}|0,1 / 2\rangle+|1,-1 / 2\rangle)+\frac{1}{\sqrt{5}} \sqrt{2 \cdot 3-2 \cdot 1}|1,-1 / 2\rangle \\
\sqrt{8}|5 / 2,1 / 2\rangle & =\frac{2 \sqrt{6}}{\sqrt{5}}|0,1 / 2\rangle+\frac{4}{\sqrt{5}}|1,-1 / 2\rangle \\
|5 / 2,1 / 2\rangle & =\frac{\sqrt{3}}{\sqrt{5}}|0,1 / 2\rangle+\frac{\sqrt{2}}{\sqrt{5}}|1,-1 / 2\rangle
\end{aligned}
$$

After this point, the remaining terms can be found by symmetry, giving:

Table 1: Clebesh Gordan coefficients: $\left\langle 2,1 / 2, m_{\ell}, m_{s} \mid j, m_{j}\right\rangle$

