PHYS852 Quantum Mechanics II, Spring 2010 HOMEWORK ASSIGNMENT 5: Solutions

Topics covered: rotation with spin, exchange symmetry

1. The Hamiltonian for the deuteron, a bound-state of a proton and neutron, may be written in the form

$$H = \frac{P_p^2}{2M_p} + \frac{P_n^2}{2M_n} + V_1(R) + V_2(R)\vec{S}_p \cdot \vec{S}_n,$$
(1)

where R is the relative radial coordinate. Both are spin-1/2 particles, but they are not identical.

(a) The total angular momentum operator is $\vec{S} = \vec{S}_p + \vec{S}_n$. The state $|s_p s_n s m\rangle$ is the simultaneous eigenstate of \vec{S}_p , \vec{S}_n , S^2 , and S_z . What are the allowed values of the total spin quantum number s? For each s-value, what are the allowed m quantum numbers.

With $s_p = 1/2$ and $s_n = 1/2$, we find $s_{min} = |s_p - s_n| = 0$, and $s_{max} = s_p + s_n = 1$, so the allowed values of s are 0, 1. For s = 0, only m = 0 is allowed, while for s = 1, we can have m = -1, 0, 1.

(b) Show that $|s_p s_n s m\rangle$ is an eigenstate of $\vec{S_p} \cdot \vec{S_n}$, and give the corresponding eigenvalue. Hint, use the fact that $S^2 = (\vec{S_p} + \vec{S_n}) \cdot (\vec{S_p} + \vec{S_n})$. We have

$$S^{2} = S_{p}^{2} + 2\vec{S}_{p} \cdot \vec{S}_{n} + S_{n}^{2}$$
⁽²⁾

solving for $\vec{S}_p \cdot \vec{S}_n$ gives

$$\vec{S}_{p} \cdot \vec{S}_{n} = \frac{1}{2} \left(S^{2} - S_{p}^{2} - S_{n}^{2} \right)$$
(3)

As $|s_p s_n sm\rangle$ an eigenstate of S^2 , S_p^2 and S_n^2 , then it must also be an eigenstate of $\vec{S}_p \cdot \vec{S}_n$ with eigenvalue $\frac{\hbar^2}{2}(s(s+1)-3)$.

- (c) Give ten distinct quantum numbers that can be assigned to an eigenstates of this H. Note that this includes s_p and s_n , even though they can never change. The ten quantum numbers are the three components of the center-of-mass momentum: p_x , p_y , and p_z ; the orbital quantum numbers of the relative motion:n, ℓ , and m_ℓ ; and the four spin quantum numbers: s_p , s_n , s, and m.
- (d) What one-dimensional wave equation would you have to solve to find the energy eigenvalue associated with one of these states?

The radial wave equation would be:

$$\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2} + \frac{\hbar^2\ell(\ell+1)}{2\mu r^2} + V_1(r) + \frac{\hbar^2}{2}\left[s(s+1) - 3\right]V_2(r) - E_{n\ell s}\right]R_{n\ell s}(r) = 0$$
(4)

2. Consider a particle of spin s = 1, constrained to move on the surface of a sphere. Assume that the Hamiltonian of the particle is

$$H = \frac{L^2}{2I} + \frac{\vec{L} \cdot \vec{S}}{I},\tag{5}$$

where \vec{L} is the orbital angular momentum operator, I is the moment of inertia, and \vec{S} is the spin operator. find the quantized energy levels and the degeneracy of each level.

With $\vec{J} = \vec{L} + \vec{S}$, simultaneous eigenstates of H, L^2 , S^2 , J^2 , and J_z exist. We can label the $|\ell s j m_j \rangle$, as s = 1 never changes, we can drop s. We have then

$$H|\ell j m_{j}\rangle = \left[\frac{\hbar^{2}\ell(\ell+1)}{2I} + \frac{\hbar^{2}}{2I}\left[j(j+1) - \ell(\ell+1) - s(s+1)\right]\right]|\ell j m_{j}\rangle$$

$$= \frac{\hbar^{2}}{2I}\left[j(j+1) - 2\right]|\ell j m_{j}\rangle$$
(6)

so we see that energy depends on j only. This means that states with the same j but different ℓ are degenerate. The degeneracy factor 2j + 1 counts only those states with the same j for fixed ℓ . We therefore need to multiply by the number of ℓ -values that can give a specific j value to get the total degeneracy of the j^{th} energy level. The easiest way to do this is to make a table:

ℓ	j_{min}	j_{max}
0	1	1
1	0	2
2	1	3
3	2	4
:	:	÷

It is easy to see that j = 0 can only occur when $\ell = 1$, j = 1 can occur for $\ell = 0, 1, 2, j = 3$ for $\ell = 2, 3, 4$, etc... So the number of ℓ -values for a given j is 3, except for j = 0 which has only 1. This can be formulated as $d_j = (2j + 1)(3 - 2\delta_{j,0}) = 6j + 3 - 2\delta_{j,0}$

- 3. For Silicon, the ground-state configuration is $(3p)^2$, i.e. there are two valence electrons, each in the 3p state.
 - (a) What are the possible values for the total spin quantum number, s, where $\vec{S} = \vec{S}_1 + \vec{S}_2$? s = 0, 1
 - (b) What are the possible values for the total angular momentum quantum number, ℓ , where $\vec{L} = \vec{L}_1 + \vec{L}_2$?

 $\ell_1 = 1, \ \ell_2 = 1, \ \text{so} \ \ell = 0, 1, 2.$

(c) The exchange symmetry of the two-electron spatial wavefunction matches the parity of the quantum number ℓ . Based on this, determine which combinations of s and ℓ are allowed states for the two-electron system.

s = 0 is odd under exchange, while s = 1 is even. For ℓ , we have the opposite, $\ell = 0$ is even, $\ell = 1$ is odd, and $\ell = 2$ is even.

The totally anti-symmetric combinations are therefore $(s, \ell) = (0, 0), (1, 1), (0, 2)$

(d) For each allowed combination, what are the possible values of the quantum number j, where $\vec{J} = \vec{L} + \vec{S}$?

For $(s, \ell) = (0, 0)$ we can only have j = 0. For $(s, \ell) = (1, 1)$, we can have j = 0, 1, 2, and for $(s, \ell) = (0, 2)$ we can only have j = 2.

- (e) Assuming that the spin-orbit interaction lifts the degeneracy of the states with different j, how many distinct energy levels make up the fine-structure of the $(3p)^2$ state? The allowed j values are j = 0, 1, 2, so there would be 3 fine-structure levels.
- (f) Which j levels would shift if a contact interaction between the two valence electrons were added to the Hamiltonian?

Only states with even orbital exchange symmetry would be affected by a zero-range potential, i.e. $\ell = 0$ or $\ell = 2$. This means only the j = 0 an j = 2 levels would shift.

4. Let $\vec{J} = \vec{L} + \vec{S}$. Using the method described in the lecture, identify and calculate all non-zero Clebsch-Gordan coefficients for the $\ell = 2, s = 1/2$ case. For starters, we need $j_{max} = \ell + s = 2 + \frac{1}{2} = \frac{5}{2}$ and $j_{min} = |2 - \frac{1}{2}| = \frac{3}{2}$ Starting from $|5/2, 5/2\rangle = |2, 1/2\rangle$, we apply $J_{-} = L_{-} + S_{-}$ to get

$$\begin{aligned} J_{-}|5/2,5/2\rangle &= L_{-}|2,1/2\rangle + S_{-}|2,1/2\rangle \\ \sqrt{\frac{5}{2} \cdot \frac{7}{2} - \frac{5}{2} \cdot \frac{3}{2}}|5/2,3/2\rangle &= \sqrt{2 \cdot 3 - 2 \cdot 1}|1,1/2\rangle + |2,-1/2\rangle \\ \sqrt{5}|5/2,3/2\rangle &= 2|1,1/2\rangle + |2,-1/2\rangle \\ |5/2,3/2\rangle &= \frac{2}{\sqrt{5}}|1,1/2\rangle + \frac{1}{\sqrt{5}}|2,-1/2\rangle \end{aligned}$$

Applying J_{-} again gives

$$\begin{split} \sqrt{\frac{5}{2} \cdot \frac{7}{2} - \frac{3}{2} \cdot \frac{1}{2}} |5/2, 1/2\rangle &= \frac{2}{\sqrt{5}} \left(\sqrt{2 \cdot 3 - 1 \cdot 0} |0, 1/2\rangle + |1, -1/2\rangle \right) + \frac{1}{\sqrt{5}} \sqrt{2 \cdot 3 - 2 \cdot 1} |1, -1/2\rangle \\ \sqrt{8} |5/2, 1/2\rangle &= \frac{2\sqrt{6}}{\sqrt{5}} |0, 1/2\rangle + \frac{4}{\sqrt{5}} |1, -1/2\rangle \\ |5/2, 1/2\rangle &= \frac{\sqrt{3}}{\sqrt{5}} |0, 1/2\rangle + \frac{\sqrt{2}}{\sqrt{5}} |1, -1/2\rangle \end{split}$$

After this point, the remaining terms can be found by symmetry, giving:

	m_ℓ, m_s													
j, m_j		2,1/2	2,-1/2	1,1/2	1,-1/2	0,1/2	0,-1/2	-1,1/2	-1, -1/2	-2,1/2	-2,-1/2			
	5/2, 5/2	1	0	0	0	0	0	0	0	0	0			
	5/2, 3/2	0	$1/\sqrt{5}$	$2/\sqrt{5}$	0	0	0	0	0	0	0			
	5/2, 1/2	0	0	0	$\sqrt{2}/\sqrt{5}$	$\sqrt{3}/\sqrt{5}$	0	0	0	0	0			
	5/2, -1/2	0	0	0	0	0	$\sqrt{3}/\sqrt{5}$	$\sqrt{2}/\sqrt{5}$	0	0	0			
	5/2, -3/2	0	0	0	0	0	0	0	$2/\sqrt{5}$	$1/\sqrt{5}$	0			
	5/2, -5/2	0	0	0	0	0	0	0	0	0	1			
	3/2, 3/2	0	$2/\sqrt{5}$	$-1\sqrt{5}$	0	0	0	0	0	0	0			
	3/2, 1/2	0	0	0	$\sqrt{3}\sqrt{5}$	$-\sqrt{2}/\sqrt{5}$	0	0	0	0	0			
	3/2, -1/2	0	0	0	0	0	$\sqrt{2}/\sqrt{5}$	$-\sqrt{3}/\sqrt{5}$	0	0	0			
	3/2, -3/2	0	0	0	0	0	0	0	$1/\sqrt{5}$	$-2/\sqrt{5}$	0			

Table 1: Clebesh Gordan coefficients: $\langle 2, 1/2, m_{\ell}, m_s | j, m_j \rangle$