Topics covered: Time-independent perturbation theory.

1. [30] Two-Level System: Consider the system described by $H=\delta S_{z}+\Omega S_{x}$, with $\delta>0$, where S_{x} and S_{z} are components of the spin vector of an $s=1 / 2$ particle. Treat the S_{z} term as the bare Hamiltonian.
(a) [15] Use perturbation theory to compute the eigenvalues and eigenvectors of H. Compute all terms up to fourth-order in Ω.
(b) [5] Expand the exact eigenvalues and eigenvectors around $\Omega=0$ and compare to the perturbation theory results.
(c) [10] Verify that the states computed in (a) are normalized to unity and orthogonal up to fourthorder.
2. [20] Resonance-frequency shifts: Consider a system with a 3-dimensional Hilbert space spanned by states $|a\rangle,|b\rangle$, and $|c\rangle$. In the basis $\{|a\rangle,|b\rangle,|c\rangle\}$, let the bare Hamiltonian of the system be

$$
H_{0}=\hbar \Delta\left(\begin{array}{rrr}
1 & -1 & 1 \tag{1}\\
-1 & 1 & -1 \\
1 & -1 & 3
\end{array}\right) .
$$

For the case where the system is perturbed by the operator

$$
V=\hbar \chi\left(\begin{array}{rrr}
1 & 1 & 0 \tag{2}\\
1 & -3 & 1 \\
0 & 1 & 2
\end{array}\right),
$$

also given in $\{|a\rangle,|b\rangle,|c\rangle\}$ basis. Calculate the shifts in the resonance frequencies of the full system relative to those of the unperturbed system, to second-order in χ.
3. [15] Consider a pair of quantum harmonic oscillators, described by the bare Hamiltonian

$$
H_{0}=\hbar \omega\left(A^{\dagger} A+1 / 2\right)+\hbar \Omega\left(B^{\dagger} B+1 / 2\right) .
$$

Assume that $\omega<\Omega<2 \omega$, and determine the three lowest bare energy eigenvalues and eigenvectors. Consider the perturbation

$$
V=\hbar g\left(A^{\dagger} A^{\dagger} B+B^{\dagger} A A\right)
$$

Show that two of the three lowest levels are exact eigenstates of $H=H_{0}+V$. For the remaining bare level, compute the first non-vanishing corrections to the eigenvalue and eigenvector.
4. [15] Consider a particle of mass M confined to a 1 -dimensional box of length L. Use perturbation theory to caculate the effects of adding a tilt to the box, represented by adding the linear potenital

$$
V_{t i l t}(x)=\hbar \beta\left(\frac{x}{L}-\frac{1}{2}\right)
$$

to the box potential,

$$
V_{b o x}(x)=\left\{\begin{array}{cc}
0 ; & 0<x<L \\
\infty ; & \text { else }
\end{array}\right.
$$

Calculate the three lowest perturbed eigenstates to first-order and their corresponding eigenvalues to second-order.

