Topics covered: addition of three angular momenta, degenerate perturbation theory

1. Consider a system of two spin- $1 / 2$ particles, described by \vec{S}_{1} and \vec{S}_{2}, and one spin- 1 particle, described by \vec{S}_{3}. Let $\vec{S}^{\prime}=\vec{S}_{1}+\vec{S}_{2}$. What are the allowed values of s^{\prime} ? For each allowed value, give the allowed m^{\prime} values. Use Clebsch Gordan coefficients to express the $\left|s^{\prime} m^{\prime} m_{3}\right\rangle$ states in terms of the $\left|m_{1} m_{2} m_{3}\right\rangle$ states.
Let $\vec{S}=\vec{S}_{1}+\vec{S}_{2}+\vec{S}_{3}$. What are the allowed values of the quantum number s ? For each s value, list the alllowed m-values. Express the states $\left|s^{\prime}, s, m\right\rangle$ as linear superpositions of the $\left|s^{\prime} m^{\prime} m_{3}\right\rangle$ states, and then as linear superpositions of the $\left|m_{1} m_{2} m_{3}\right\rangle$ states.
2. Derive general expressions for the energy-shifts up to third-order and state vectors up to second-order in degenerate perturbation theory.
3. Consider a system described in the basis $\{|1\rangle,|2\rangle,|3\rangle,|4\rangle\}$ by the bare Hamiltonian

$$
H_{0}=\hbar \omega_{0}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{1}\\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

Let the system be perturbed by the operator

$$
V=\hbar g\left(\begin{array}{llll}
0 & 2 & 1 & 1 \tag{2}\\
2 & 0 & 1 & 1 \\
1 & 1 & 0 & 2 \\
1 & 1 & 2 & 0
\end{array}\right)
$$

First, determine the 'good basis' for degenerate perturbation theory, then compute the eigenvalues and eigenvectors of $H=H_{0}+V$ to second-order in perturbation theory.
4. Prove that in order to predict the resonance-frequency shifts of a perturbaed quantum system to second-order, one needs only to compute the energy levels to second-order, and that this implicitly requires computing the eigenstates only to first-order.
Then show that in order to compute the shift in the expectation-value of an arbitrary operator to second-order, one must compute the eigenstates to second-order.
5. Consider a pair of identical harmonic oscillators, described by the Hamiltonian

$$
\begin{equation*}
H_{0}=\hbar \omega\left(A_{1}^{\dagger} A_{1}+A_{2}^{\dagger} A_{2}+1\right) \tag{3}
\end{equation*}
$$

Determine the energy eigenvalues and degeneracies of the two lowest energy levels of H_{0}.
Let the system be perturbed by the operator

$$
\begin{equation*}
V=\hbar \lambda\left(A_{1}^{\dagger} A_{2}^{\dagger}+A_{1}^{\dagger} A_{2}+A_{2}^{\dagger} A_{1}+A_{1} A_{2}\right) . \tag{4}
\end{equation*}
$$

For the states comprising the two lowest bare energy levels, determine the full energy eigenvalues of $H=H_{0}+V$ to second-order and the eigenstates to first-order in λ.

