
PHYS852 Quantum Mechanics II, Spring 2010
HOMEWORK ASSIGNMENT 8

Topics covered: hydrogen fine structure

1. [10 pts] Let the hamiltonian H depend on the parameter λ, so that H = H(λ). The eigenstates and
eigenvalues of H are then also functions of λ, i.e. En = En(λ) and |n〉 = |n(λ)〉.
Use the property H|n〉 = En|n〉 to prove the Feynman-Hellmann theorem:

∂En(λ)

∂λ
= 〈n(λ)|∂H(λ)

∂λ
|n(λ)〉

2. [15 pts] The effective hamlitonian which governs the radial wave equation is

H = − ~2

2M

∂2

∂r2
+

~2`(`+ 1)

2Mr2
− e2

4πε0r
.

The exact eigenvalues in terms of e and ` are

En = − Me4

32π2ε20~2n(`)2,

where n(`) = nr + `+ 1, with nr being the highest power in the series expansion or Rn`(r).

Apply the Feynman-Hellman theorem with λ = e to derive:

〈n`(0)|R−1|n`(0)〉 =
1

n2a0
.

Then use λ = `, with ` treated as a continuous parameter, to derive:

〈n`(0)|R−2|n`(0)〉 =
1

(`+ 1/2)n3a20
.

3. [20 pts] Deriving Kramer’s relation:

a.) First, show via integration by parts that
∫
dr ursu′ = − s

2

∫
dr urs−1u. Then use this result to

show that
∫
dr u′rsu′ = − 2

s+1

∫
dr u′rs+1u′′.

b.) With Rn`(r) = u(r)/r, the radial eigenvalue equation of the hydrogen atom becomes

u′′ =

[
`(`+ 1)

r2
− 2

a0r
+

1

n2a20

]
u.

Use this to express
∫
dr ursu′′ in terms of 〈n`(0)|Rs|n`(0)〉, 〈n`(0)|Rs−1|n`(0)〉, and 〈n`(0)|Rs−2|n`(0)〉.

c.) Set aside your result from part b.), and now integrate
∫
dr ursu′′ by parts, assuming the bound-

ary terms vanish. Apply the identities derived in part a.) to each of the resulting terms in the
obvious manner, and then again use the eigenvalue equation to eliminate u′′.

d.) You now have two distinct expressions for
∫
dr ursu′′. Equate the them and collect like terms

to derive a relation between 〈n`(0)|Rs|n`(0)〉, 〈n`(0)|Rs−1|n`(0)〉, and 〈n`(0)|Rs−2|n`(0)〉. This is
called Kramer’s relation.
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4. [15 pts] Spin-orbit interaction:

a.) Use Kramer’s relation with s = −1, together with your results from problem 2, to evaluate
〈n`(0)|R−3|n`(0)〉.

b.) Use this expression to show that the first-order spin-orbit interaction shift, given by the Dirac
equation as

E
(1)
n`j =

e2

8πε0M2c2
〈n`j(0)|

~L · ~S
R3
|n`j(0)〉,

can be expressed as

E
(1)
n`j =

[
E

(0)
n

]2
Mc2

n [j(j + 1)− `(`+ 1)− 3/4]

`(`+ 1/2)(`+ 1)
.

5. [15 pts] From the Dirac equation, it is found that the fine-structure of hydrogen is given by three
terms: the relativistic mass correction, the spin-orbit interaction, and the Darwin term. In the atomic
physics lecture notes, the Feynman-Hellman theorem is used to show that the first-order relativistic
mass-correction is

E
(1)
n` = −

[
E

(0)
n

]2
2mec2

(
4n

`+ 1/2
− 3

)
.

Due to symmetry, the spin-orbit interaction term is exactly zero for ` = 0, while the combined
mass-correction and Darwin terms give a net shift of

E
(1)

n0 1
2

= −mec
2α4

4n4

(
2n− 3

2

)
.

For ` 6= 0, on the other hand, the Darwin term vanishes, while the spin-orbit shift is non-zero.

Consider separately the two possible cases j = `+ 1/2 and j = `− 1/2, and show that for ` 6= 0, the
full fine-structure shift is given by

E
(1)
nj = −mec

2α4

4n4

(
2n

j + 1/2
− 3

2

)
.

Using the above expression for E
(1)

n0 1
2

, show that this formula also works for the ` = 0 case.

Based on this formula, make a sketch of the hydrogen energy levels for n = 1, 2, 3, showing the
fine structure splittings. For each n, give the degeneracy of each j sub-level, and compute the level
separations in eV.
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Practice problem:
This problem will not be graded and no points will be awarded. The solution will be included with the
solutions to the required problems.

DC Stark Effect to first-order for the n = 3 level of the hydrogen atoms: The stark shift is
governed by the potential:

VE = −eE0Z.

a.) List all of the degenerate |n`m(0)
` 〉 states in the n = 3 subspace. Then use the selection rules to group

the levels into closed sets of coupled states.

b.) Write the matrix element 〈3`m(0)
` |Z|3`

′m′`
(0)〉 out as an integral over r, θ, φ. Evaluate the integral for

all transitions which obey the selection rules.

c.) For each group in part a.) having more than one element, find the ‘good’ eigenstates, by diagonalizing
VE in the subspace of the states in the group.

d.) Give the number of distinct sublevels that the n = 3 level splits into. State the degeneracy of each
sub-level, and list the ‘good’ basis states which belong to each sub-level. Include a sketch of the
energy levels versus E0.
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