
PHYS852 Quantum Mechanics II, Spring 2010
HOMEWORK ASSIGNMENT 8: Solutions

Topics covered: hydrogen fine structure

1. [10 pts] Let the Hamiltonian H depend on the parameter λ, so that H = H(λ). The eigenstates and
eigenvalues of H are then also functions of λ, i.e. En = En(λ) and |n〉 = |n(λ)〉.
Use the property H|n〉 = En|n〉 to prove the Feynman-Hellmann theorem:

∂En(λ)

∂λ
= 〈n(λ)|∂H(λ)

∂λ
|n(λ)〉

Start from the definition
En = 〈n|H|n〉

Differentiation gives

∂

∂λ
En =

(
∂

∂λ
〈n|
)
H|n〉+ 〈n|

(
∂

∂λ
H

)
|n〉+ 〈n|H ∂

∂λ
|n〉

Since H|n〉 = En|n〉 and 〈n|H = 〈n|En, we can rewrite this as

∂

∂λ
En = En

(
∂

∂λ
〈n|
)
|n〉+ 〈n|

(
∂

∂λ
|n〉
)
En + 〈n|∂H

∂λ
|n〉

= En
∂

∂λ
〈n|n〉+ 〈n|∂H

∂λ
|n〉

Since 〈n|n〉 = 1, it follows that

∂En(λ)

∂λ
= 〈n(λ)|∂H(λ)

∂λ
|n(λ)〉
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2. [15 pts] The effective Hamiltonian which governs the radial wave equation is

H = − ~2

2M

∂2

∂r2
+

~2`(`+ 1)

2Mr2
− e2

4πε0r
.

The exact eigenvalues in terms of e and ` are

En = − Me4

32π2ε20~2n(`)2,

where n(`) = nr + `+ 1, with nr being the highest power in the series expansion or Rn`(r).

Apply the Feynman-Hellman theorem with λ = e to derive:

〈n`(0)|R−1|n`(0)〉 =
1

n2a0
.

Then use λ = `, with ` treated as a continuous parameter, to derive:

〈n`(0)|R−2|n`(0)〉 =
1

(`+ 1/2)n3a20
.

According to Feynman-Hellman

〈n`m`|
∂H

∂e
|n`m`〉 =

∂En
∂e

now
∂H

∂e
= − 2e

4πε0

1

R

and we have

En =
−~2

2mea20n
2

with a0 = 4πε0~2
mee2

this works out to

En = − mee
4

(4πε0)22~2n2

so that
∂En
∂e

= − 2mee
3

(4πε0)2~2n2

Thus Feynman-Hellman gives

− 2e

4πε0
〈R−1〉 = − 2mee

3

(4πε0)2~2n2

Solving for 〈R−1〉 thus gives

〈R−1〉 =
mee

2

4πε0~2n2
=

1

n2a0
.
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Now
∂H

∂`
=

∂

∂`

~2`(`+ 1)

2meR2
=

~2(`+ 1/2)

meR2

and
∂En
∂`

= − ∂

∂`

~2

2mea20n
2(`)

=
~2

mea30n
3

where we have used ∂
∂`n(`) = 1. Putting these results into Feynman-Hellman gives

~2(`+ 1/2)

me
〈R−2〉 =

~2

mea20n
3

Solving for 〈R−2〉 gives

〈R−2〉 =
1

(`+ 1/2)n3a20
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3. [20 pts] Deriving Kramer’s relation:

a.) First, show via integration by parts that
∫
dr ursu′ = − s

2

∫
dr urs−1u. Then use this result to

show that
∫
dr u′rsu′ = − 2

s+1

∫
dr u′rs+1u′′.

Let:
f = ur2 dg = u′dr

df = (u′r2 + 2r2−1)dr g = u

Thus we have∫
dr ursu′ =

∫
f dg = fg

∣∣∣− ∫ gdf = ursu
∣∣∣− ∫ dr (u′rs − surs−1)u

Assuming the boundary term vanishes, this gives∫
dr ursu′ = −

∫
dr u′rsu− s

∫
dr urs−1u

Collecting like terms then gives ∫
dr ursu′ = −s

2

∫
dr urs−1u

This allows us to eliminate a first-derivative at the cost of reducing the power of r by one.

This result can be rewritten as ∫
dr urs−1u = −2

s

∫
dr ursu′

with u→ u′ and s→ s+ 1 this becomes∫
dr u′rsu′ = − 2

s+ 1

∫
dr u′rs+1u′′

b.) With Rn`(r) = u(r)/r, the radial eigenvalue equation of the hydrogen atom becomes

u′′ =

[
`(`+ 1)

r2
− 2

a0r
+

1

n2a20

]
u.

Use this to express
∫
dr ursu′′ in terms of 〈n`(0)|Rs|n`(0)〉, 〈n`(0)|Rs−1|n`(0)〉, and 〈n`(0)|Rs−2|n`(0)〉.

From direct substitution we find∫
drur2u′′ =

∫
drurs

[
`(`+ 1)

r2
− 2

a0r
+

1

n2a20

]
u

= `(`+ 1)〈Rs−2〉 − 2

a0
〈Rs−1〉+

1

n2a20
〈Rs〉
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c.) Set aside your result from part b.), and now integrate
∫
dr ursu′′ by parts, assuming the bound-

ary terms vanish. Apply the identities derived in part a.) to each of the resulting terms in the
obvious manner, and then again use the eigenvalue equation to eliminate u′′.

With
f = urs dg = u′′dr

df = (u′rs + surs−1)dr g = u′

we find ∫
dr ursu′′ =

∫
f dg = fg

∣∣∣− ∫ g df = ursu′
∣∣∣− ∫ dr u′rsu′ − s

∫
dr urs−1u′

Assuming the boundary term vanishes and inserting the results from part a.) gives∫
drursu′′ =

2

s+ 1

∫
dr u′rs+1u′′ +

s(s− 1)

2
〈Rs−2〉

inserting the eigenvalue equation on the r.h.s. gives∫
drursu′′ =

2

s+ 1

∫
dr u′rs+1

[
`(`+ 1)

r2
− 2

a0r
+

1

n2a20

]
u+

s(s− 1)

2
〈Rs−2〉

From part a.), we have
∫
dr u′rsu = − s

2

∫
dr urs−1u = 〈Rs−1〉, which gives∫

drursu′′ = −`(`+ 1)(s− 1)

s+ 1
〈Rs−2〉+

2s

(s+ 1)a0
〈Rs−1〉 − 1

n2a20
〈Rs〉+

s(s− 1)

2
〈Rs−2〉

d.) You now have two distinct expressions for
∫
dr ursu′′. Equate them and collect like terms to de-

rive a relation between 〈n`(0)|Rs|n`(0)〉, 〈n`(0)|Rs−1|n`(0)〉, and 〈n`(0)|Rs−2|n`(0)〉. This is called
Kramer’s relation.

Equating the expression from b.) with the expression from c.) and collecting like terms gives
Kramer’s relation:

a20s

4

(
(2`+ 1)2 − s2

)
〈Rs−2〉 − a0(2s+ 1)〈Rs−1〉+

s+ 1

n2
〈Rs〉 = 0,

which allows you to compute the expectation values of successive powers of R−1 via iteration.
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4. [15 pts] Spin-orbit interaction:

a.) Use Kramer’s relation with s = −1, together with your results from problem 2, to evaluate
〈n`(0)|R−3|n`(0)〉.

Kramers relation with s = −1 gives:

−a20`(`+ 1)〈R−3〉+ a0〈R−2〉 = 0

Solving for 〈R−3〉 gives

〈R−3〉 =
1

a0`(`+ 1)
〈R−2〉

With the expression from problem 2, this becomes

〈R−3〉 =
1

`(`+ 1/2)(`+ 1)n3a30

b.) Use this expression to show that the first-order spin-orbit interaction shift, given by the Dirac
equation as

E
(1)
n`j =

e2

8πε0M2
e c

2
〈n`j(0)|

~L · ~S
R3
|n`j(0)〉,

can be expressed as

E
(1)
n`j =

[
E

(0)
n

]2
Mec2

n [j(j + 1)− `(`+ 1)− 3/4]

`(`+ 1/2)(`+ 1)
.

We can separate the eigenstate |n`jm(0)
j 〉 into the tensor product |n`〉(R) ⊗ |`jmj〉(L⊗S), where

the state |n`〉 lives in the radial Hilbert space, and |`jmj〉 lives in the angular-momentum Hilbert
space. Due to symmetry, the result cannot depend on mj , so we will drop it. The state |n`j(0)〉
is then an arbitrary superposition of mj states.
This gives

〈n`j(0)|
~L · ~S
R3
|n`j(0)〉 = 〈n`|R−3|n`〉〈`j|~L · ~S|`j〉

Since J2 = L2 + 2~L · ~S + S2 we get ~L · ~S = 1
2

(
J2 − L2 − S2

)
which gives

〈
~L · ~S
R3
〉 =

~2

2a30n
3

(j(j + 1)− `(`+ 1)− 3/4)

`(`+ 1/2)(`+ 1)

so that

E
(1)
n`j =

[
E(0)
n

]2 1

Mec2
n (j(j + 1)− `(`+ 1)− 3/4)

`(`+ 1/2)(`+ 1)

6



5. [15 pts] From the Dirac equation, it is found that the fine-structure of hydrogen is given by three
terms: the relativistic mass correction, the spin-orbit interaction, and the Darwin term. In the atomic
physics lecture notes, the Feynman-Hellman theorem is used to show that the first-order relativistic
mass-correction is

E
(1)
n` = −

[
E

(0)
n

]2
2Mec2

(
4n

`+ 1/2
− 3

)
.

Due to symmetry, the spin-orbit interaction term is exactly zero for ` = 0, while the combined
mass-correction and Darwin terms give a net shift of

E
(1)

n0 1
2

= −Mec
2α4

4n4

(
2n− 3

2

)
.

For ` 6= 0, on the other hand, the Darwin term vanishes, while the spin-orbit shift is non-zero.

Consider separately the two possible cases j = `+ 1/2 and j = `− 1/2, and show that for ` 6= 0, the
full fine-structure shift is given by

E
(1)
nj = −Mec

2α4

4n4

(
2n

j + 1/2
− 3

2

)
.

Using the above expression for E
(1)

n0 1
2

, show that this formula also works for the ` = 0 case.

Based on this formula, make a sketch of the hydrogen energy levels for n = 1, 2, 3, showing the
fine structure splittings. For each n, give the degeneracy of each j sub-level, and compute the level
separations in eV.

For ` = 0, we must have j = 1/2, so the general formula agrees with the sum of the mass-correction
and Darwin terms. For ` 6= 0, we have two terms: mass-correction, and spin-orbit. Adding them
together gives,

E
(1)
n`j =

Mec
2α4

4n4

[
n [j(j + 1)− `(`+ 1)− 3/4]

`(`+ 1)(`+ 1/2)
− 2n

`+ 1/2
+

3

2

]
= −Mec

2α4

4n4

[
n

3/4 + `2 + `− j2 − j + 2`2 + 2`

`(`+ 1/2)(`+ 1)
− 3

2

]
setting j = `± 1/2 gives,

E
(1)
n`j = −%

[
n

3/4 + 3`2 + 3`− `2 ∓ `− 1/4− `∓ 1/2

`(`+ 1/2)(`+ 1)
− 3

2

]
= −%

[
n

(1∓ 1)1/2 + 2`2 + (2∓ 1)`

`(`+ 1/2)(`+ 1)
− 3

2

]
for the case j = `+ 1/2, this reduces to

E
(1)
n`j = −%

[
n

2`2 + `

`(`+ 1/2))(`+ 1)
− 3

2

]
= −%

[
2n`(`+ 1/2)

`(`+ 1/2)(`+ 1)
− 3

2

]
= −%

[
2n

`+ 1
− 3

2

]
= −Mec

2α4

4n4

[
2n

j + 1/2
− 3

2

]
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while for the case j = `− 1/2, it gives

E
(1)
n`j = −%

[
n

2`2 + 3`+ 1

`(`+ 1/2)(`+ 1)
− 3

2

]
= −%

[
2n
(
`2 + 3

2`+ 1
2

)
`(`+ 1/2)(`+ 1)

− 3

2

]

= −%

[
2n(`+ 1/2)(`+ 1)

`(`+ 1/2)(`+ 1)
− 3

2

]
= −%

[
2n

`
− 3

2

]
= −Mec

2α4

4n4

[
2n

j + 1/2
− 3

2

]
(1)

For n = 1, we have ` = 0, so that j = 1/2. This level is shifted by

E
(1)

1 1
2

= −Mec
2α4

8

and the degeneracy of the level is d1 1
2

= 2j + 1 = 2.

For n = 2, the ` = 0 state corresponds to j = 1/2, while the ` = 1 state splits into j = 1/2
and j = 3/2 levels. Because states with the same j, but different ` are still degenerate, we see that
the n = 2 bare energy level splits into to fine-structure sublevels. The energy shifts are given by

E
(1)

2 1
2

= −5Mec
2α4

128

E
(1)

2 3
2

= −Mec
2α4

128
,

The fine structure splitting (the splitting is easier to measure than the absolute shifts) is therefore

∆E2 = E
(1)

2 3
2

− E(1)

2 1
2

=
Mec

2α4

32

The degeneracies are
d2 1

2
= 2 · (2j + 1) = 4,

where the extra factor 2 is the number of degenerate ` levels, and

d2 3
1

= 2j + 1 = 4

Total number of n = 2 states: 4 + 4 = 8 = 2n2, as expected.
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For n = 3, the ` = 0 state again forms a j = 1/2 level, the ` = 1 state splits into j = 1/2 and j = 3/2
sublevels, and the ` = 2 state splits into j = 3/2 and j = 5/2 sublevels. Thus there are a total of 3
sublevels, corresponding to j = 1/2, 3/2, 5/2.
The fine-structure energy shifts are

E
(1)

3 1
2

= −Mec
2α4

72

E
(1)

3 3
2

= −Mec
2α4

3 · 72

E
(1)

3 5
2

= −Mec
2α4

9 · 72

The two fine-structure splittings are

∆E3,lower = E
(1)

3, 3
2

− E(1)

3 1
2

=
2

3

Mec
2α4

72

and

∆E3,upper = E
(1)

3 5
2

− E(1)

3 3
2

=
2

9

Mec
2α4

72

The degeneracies of the levels are
d3 1

2
= 2 · (2j + 1) = 4

d3 3
2

= 2 · (2j + 1) = 8

d3 5
2

= 2j + 1 = 6

Total number of n = 3 states is 4 + 8 + 6 = 18 = 2n2.
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Practice problem:
This problem will not be graded and no points will be awarded. The solution will be included with the
solutions to the required problems.

DC Stark Effect to first-order for the n = 3 level of the hydrogen atoms: The stark shift is
governed by the potential:

VE = −eE0Z.

a.) List all of the degenerate |n`m(0)
` 〉 states in the n = 3 subspace. Then use the selection rules to group

the levels into closed sets of coupled states.

The n = 3 manifold consists of nine states:
|3, 0, 0〉, |3, 1,−1〉, |3, 1, 0〉, |3, 1, 1〉, |3, 2,−2〉, |3, 2,−1〉, |3, 2, 0〉, |3, 2, 1〉, and |3, 2, 2〉.

From the selection rule m′ = m, we see that the n = 3 subspace can divided into a closed thee-
state manifold, and two closed two-state manifolds. They are:
|3, 0, 0〉 ↔ |3, 1, 0〉 ↔ |3, 2, 0〉
|3, 1, 1〉 ↔ |3, 2, 1〉
|3, 1,−1〉 ↔ |3, 2,−1〉
The remaining two states do not couple with any states in the degenerate subspace:
|2, 1, 2〉
|2, 1,−2〉

b.) Write the matrix element 〈3`m(0)
` |Z|3`

′m′`
(0)〉 out as an integral over r, θ, φ. Evaluate the integral for

all transitions which obey the selection rules.

Inserting the projector I =
∫∞
0 rdr

∫ π
0 sin(θ)dθ

∫ 2π
0 dφ |rθφ〉〈rθφ〉 gives

〈3`m`|Z|3`′m′`〉 =

∫ ∞
0
rdr

∫ π

0
sin(θ)dθ

∫ 2π

0
dφR3`(r)

[
Y m`
` (θ, φ)

]∗
r cos θR3`′(r)Y

m′
`

`′ (θ, φ),

The radial wavefunction (from lecture notes) is:

Rn`(r) =

[(
2

na0

)3 (n− `− 1)!

2n(n+ `)!

]1/2
exp

(
− r

na0

)(
2r

na0

)`
L2`+1
n−`−1

(
2r

na0

)
Letting Mathematica handle the integrals, we find the matrix-elements which satisfy these selection
rules are (labeled as zm`,`,`′):
z001 = 〈3, 0, 0|Z|3, 1, 0〉 = −3

√
6a0

z012 = 〈3, 1, 0|Z|3, 2, 0〉 = −3
√

3a0
z−112 = 〈3, 1,−1|Z|3, 2,−1〉 = −(9/2)a0
z112 = 〈3, 1, 1|Z|3, 2, 1〉 = −(9/2)a0
from Z† = Z we then know that:
z010 = z∗001 = −3

√
6a0

z021 = z∗012 = −3
√

3a0
z−121 = z∗−112 = −(9/2)a0
z121 = z∗112 = −(9/2)a0
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c.) For each group in part a.) having more than one element, find the ‘good’ eigenstates, by diagonalizing
VE in the subspace of the states in the group.

The ‘good’ eigenstates for the m` = 0 manifold are found by diagonalizing the 3 × 3 matrix (in
basis {|3, 0, 0〉, |3, 2, 0〉, |3, 2, 0〉}):

V30 = −eE0

 0 z001 0
z010 0 z012

0 z021 0


The eigenvalues of this matrix are v301 = −9ea0E0, v3,0,2 = 0 and v3,0,3 = 9ea0E0.

The corresponding eigenvectors are:

|3, 0, 1(0)〉 =
1√
6

(√
2|3, 0, 0〉 −

√
3|3, 1, 0〉+ |3, 2, 0〉

)
|3, 0, 2(0)〉 =

1√
3

(
|3, 0, 0〉 −

√
2|3, 1, 0〉

)
|3, 0, 3(0)〉 =

1√
6

(√
2|3, 0, 0〉+

√
3|3, 1, 0〉+ |3, 2, 0〉

)
The ‘good’ eigenstates for the m` = ±1 manifolds are found by diagonalizing the 2× 2 matrices

V3±1 = −eE0

(
0 z±112

z±121 0

)
The eigenvalues of this matrix are v3,±1,1 = −(9/2)ea0E0 and v2,±1,2 = (9/2)ea0E0.
The corresponding eigenvectors are:

|3,±1, 1(0)〉 =
1√
2

(|3, 1,±1〉 − |3, 2,±1〉)

|3,±1, 2(0)〉 =
1√
2

(|3, 1,±1〉+ |3, 2,±1〉)

In this new notation |n,m`,m
(0)〉, where m labels the eigenstates in a given m` manifold, the remain-

ing two ‘good’ eigenstates are:
|3, 2, 1(0)〉 = |3, 2, 2〉

|3,−2, 1(0)〉 = |3,−2,−2〉

Because of the selection rules, the operator Z does not couple these states to either themselves, or
any other states in the n = 3 degenerate subspace. This implies that their first-order energy shifts
are zero.
Thus we have defined all 9 of the ‘good’ bare eigenstates {|n,m`,m

(0)〉}.
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d.) Give the number of distinct sublevels that the n = 3 level splits into. State the degeneracy of each
sub-level, and list the ‘good’ basis states which belong to each sub-level. Include a sketch of the
energy levels versus E0.

From first-order perturbation theory and our previous results, we find that the Stark effect splits
the n = 3 level into 5 sub-levels according to:

level shift degeneracy states

9ea0E0 1 |3, 0, 2(0)〉
(9/2)ea0E0 2 |3,−1, 2(0)〉, |3, 1, 2(0)〉

0 3 |3,−2, 1(0)〉, |3, 0, 2(0)〉,|3, 2, 1(0)〉
−(9/2)a0E0 2 |3,−1, 1(0)〉, |3, 1, 1(0)〉
−9ea0E0 1 |3, 0, 1(0)〉
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