PHYS852 Quantum Mechanics II, Spring 2010 HOMEWORK ASSIGNMENT 9

Topics covered: hydrogen hyper-fine structure, Wigner-Ekert theorem, Zeeman effect

- 1. Relations between \vec{V} and \vec{J} : For a rotation by ϕ about the z-axis, we have $U^{\dagger}V_zU = V_z$, $U^{\dagger}V_xU = \cos \phi V_x \sin \phi V_y$, and $U^{\dagger}V_yU = \sin \phi V_x + \cos \phi V_y$, where $U = e^{-(i/\hbar)\phi J_z}$.
 - (a) Consider an infinitesimal rotation by $\delta\phi$, and use these expressions to show:

$$[J_z, V_z] = 0, (1)$$

$$[J_z, V_x] = i\hbar V_y,\tag{2}$$

$$[J_z, V_y] = -i\hbar V_x. \tag{3}$$

Write out the six additional commutators generated by cyclic permutation of the indices.

b.) Use the results from (a) to show:

$$[J_z, V_{\pm}] = \pm \hbar V_{\pm} \tag{4}$$

$$[J_{\pm}, V_{\pm}] = 0 \tag{5}$$

$$[J_{\pm}, V_{\mp}] = \pm 2\hbar V_z \tag{6}$$

where $V_{\pm} = V_x \pm i V_y$.

- 2. Derivation of Wigner-Ekert theorem: Verify Eqs. (108)-(127) in the Atomic Physics lecture notes.
- 3. Applying the Wigner-Ekert theorem: Let $\vec{L} = \vec{L}_1 + \vec{L}_2$. Use the Wigner-Eckert theorem to show that

$$\langle \ell_1 \ell_2 \ell m_\ell | L_{1z} | \ell_1 \ell_2 \ell m_\ell \rangle = g m_\ell \tag{7}$$

and calculate the g-factor, $g = g(\ell_1, \ell_2, \ell)$.

Do the same for $\langle \ell_1 \ell_2 \ell m_\ell | L_{2z} | \ell_1 \ell_2 \ell m_\ell \rangle$, and then show that you get the correct result for

$$\langle \ell_1 \ell_2 \ell m_\ell | (L_{1z} + L_{2z}) | \ell_1 \ell_2 \ell m_\ell \rangle \tag{8}$$

4. Strong-field Zeeman Effect: for the case $\hbar\omega_0 \gg |E_1^{(0)}|\alpha^2$, give the energies and Zeeman sub-levels of the n = 3 level in terms of the Larmor frequency, $\omega_0 = \frac{|e|B}{2M_3}$.

Verify for n = 3 that there are $2_n + 1 - \delta_{n,1}$ Zeeman sublevels, each separated by $\hbar\omega_0$, and that the degeneracy of the m^{th} sublevel $(m \in \{-n, -n+1, \ldots, n\}$, with m = 0 excluded for n = 1) is $d_{n,m} = 2(n - |m|) + \delta_{|m|,n} - 2\delta_{m,0}$.

5. Weak-field Zeeman Effect: for the case $\hbar\omega_0 \ll |E_1^{(0)}| \alpha^2 \frac{M_e}{M_p}$, compute the energies and degeneracies of the Zeeman sub-levels for both the n = 3, j = 3/2 and n = 3, j = 5/2 levels.