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Introduction to Scattering Theory

Statement of the problem:

Scattering theory is essentially time-independent perturbation theory applied to the case of a continuous
spectrum. That means that we know there is an eigenstate of the full Hamiltonian for every possible energy,
E. Thus the job of finding the full eigenvalues, which was a major part of TIPR, is not necessary here.
In scattering theory, we just pick any E, and then try to find the ‘perturbed’ eigenstate, |ψ(E)〉. On the
other hand, remember that there are usually multiple degenerate eigenstates for any given energy. So
the question becomes; which of the presumably infinitely many degenerate full-eigenstates are we trying
to compute? The answer comes from causality; we want to be able to completely specify the probability
current amplitude coming in from ~r = ∞, and then we want the theory to give us the corresponding
outgoing current amplitude. The way we do this is to pick an ‘unperturbed’ eigenstate which has the
desired incoming current amplitude (we don’t need to worry what the outgoing current amplitude of
the unperturbed state is). The second step is to make sure that our perturbation theory generates no
additional incoming currents, which we accomplish by putting this condition in by hand, under the mantra
of ‘causality’. As we will see, this means that the resulting ‘full eigenstate’ will have the desired incoming
current amplitude. Now if you go back to what you know, you will recall that ‘solving’ a partial differential
equation requires first specifying the desired boundary conditions, which is exactly what the standard
scattering theory formalism is designed to do.

Typically, the scattering formalism is described in the following way: an incident particle in state |ψ0〉
is scattered by the potential V , resulting in a scattered state |ψs〉. The incident state |ψ0〉 is assumed to be
an eigenstate of the ‘background’ hamiltonian H0, with eigenvalue E. This is expressed mathematically as

(E −H0)|ψ0〉 = 0. (1)

Unless otherwise specified, the background Hamiltonian should be taken as that of a free-particle,

H0 =
P 2

2M
, (2)

and the incident state taken as a plane wave

〈~r|ψ0〉 = ψ0(~r) = ei
~k·~r. (3)

As with one-dimensional scattering, we do not need to worry about the normalization of the incident state.
Furthermore, the potential V (~R) is assumed to be ‘localized’, so that

lim
r→∞

V (~r) = 0. (4)

The goal of scattering theory is then to solve the full energy-eigenstate problem

(E −H0 − V )|ψ〉 = 0, (5)

where E > 0 (unless otherwise specified), and |ψ〉 is the eigenstate of the full Hamiltonian H = H0 + V
with energy E. It should be clear that there is a different |ψ0〉 and correspondingly, a different |ψ〉 for each
energy E, even though our notation does not indicate this explicitly.
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1 Green’s function method

1.1 The Lippman-Schwinger Eq.

We start by defining the scattered state, |ψs〉 via

|ψs〉 = |ψ〉 − |ψ0〉. (6)

The full Scrödinger equation (5) can be written as

(E −H0)|ψ〉 = V |ψ〉, (7)

which after substituting |ψ〉 = |ψ0〉 + |ψs〉, and making use of (1) gives

(E −H0)|ψs〉 = V |ψ〉. (8)

Operating on both sides with (E −H0)
−1 leads to

|ψs〉 = (E −H0)
−1V |ψ〉, (9)

which, by adding |ψ0〉 to both sides, becomes

|ψ〉 = |ψ0〉 + (E −H0)
−1V |ψ〉. (10)

This is known as the Lippman-Schwinger equation.

1.2 The Green’s function

It is often expressed in a slightly more compact notation by introducing the concept of a ‘Green’s function’,
defined as

GH(E) = lim
ǫ→0

(E −H0 + iǫ)−1. (11)

The iǫ term is is added ‘by hand’ to enforce ‘causality’ by making sure that |ψs〉 has no incoming probability
current associated with it. It makes sense that scattered waves propagate away from the source, and not
the other way around. For simplicity, we can use the symbol G0 for the unperturbed Green’s function,
defined as

G0 = GH0
(E) = lim

ǫ→0
(E −H0 + iǫ)−1. (12)

Using this definition, the Lippman-Schwinger equation assumes its standard form:

|ψ〉 = |ψ0〉 +G0V |ψ〉. (13)

Solving the Lippman-Schwinger equation for |ψ〉 is formally very simple, giving

|ψ〉 = (1 −G0V )−1 |ψ0〉. (14)

We will look at the meaning of this solution in the next section.
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1.3 The Born Series

Another way to solve the Lippman-Schwinger equation is by the iteration method. To solve (13) by
iteration, we first rewrite the equation as

|ψnew〉 = |ψ0〉 +G0V |ψold〉. (15)

We then start with the zeroth order approximation, |ψold〉 = |ψ0〉, and use (15) to generate a better
approximation, |ψnew〉 = (1+G0V )|ψ0〉. Using this as |ψold〉 then leads to a better approximation, |ψnew〉 =
(1 +G0V +G0V G0V )|ψ0〉. After an infinite number of iterations, this procedure leads to

|ψ〉 = (1 +G0V +G0V GV +G0V G0V G0V + . . .) |ψ0〉, (16)

which is known as the Born series. Written as an integral equation, the Born-series for the wavefunction,
ψ(~r) = 〈~r|ψ〉, looks like

ψ(~r) = ψ0(~r)+

∫

dV ′G0(~r,~r
′)V (~r ′)ψ0(~r

′)+

∫

dV ′ dV ′′G0(~r,~r
′)V (~r ′)G0(~r

′, ~r ′′)V (~r ′′)ψ0(~r
′′)+ . . . , (17)

where we have defined ψ0(~r) = 〈~r|ψ0〉 and G0(~r,~r
′) = 〈~r|G0|~r′〉. We can interpret this result by ‘reading’

each term from right-to-left, as follows: If we put a detector at position ~r, then the probability that the
detector would fire after the collision is over is proportional to |ψ(~r)|2. The first term on the r.h.s. is thus
the probability amplitude that the particle made it to the detector without scattering (what it would be
if V = 0). The second terms describes the particle scattering once, at a point ~r ′, where its amplitude is
increased/decreased by a factor V (~r′), and then propagating as a free-spherical wave centered at ~r ′ to the
detector. The integral over all ~r ′ then sums over all possible collision locations. The next terms describes
the particle scattering twice, summing over both collision locations. The third term would include all
possible paths with three collisions, and so-on. Thus we see that the total amplitude is the sum over
all possible trajectories by which the particle could have made it to the detector, assuming straight-line
propagation between point-contact collisions. From this interpretation, we can guess that the Green’s
function would have the form:

G0(~r,~r
′) =

eik|~r−~r′|

|~r − ~r|′ , (18)

as the eik|~r−~r′| factor just adjusts the phase of the state to reflect propagation with wavelength λ = 2π/k,
over a distance d = |~r−~r′|, while the 1/|~r−~r′| factor lead to a probability density which decreases as 1/d2,
consistent with conservation of probability on an expanding spherical phase front. As we will see, aside
from an overall constant, this is the correct three-dimensional Green’s function.

The quantum picture of scattering, as suggested by the Born series, is of free propagation (described by
G0) punctuated by instantaneous ”collisions”, described by V . This picture is at odds with the classical
picture of a smooth continuous motion on the ‘potential surface’. Indeed, in high-energy physics, we
learn that all interactions are due to the exchange of ‘virtual’ (non-energy conserving) gauge bosons, e.g.
photons or gluons. The notion of an inter-particle “potential” is therefore an approximation that neglects
the retardation effect due to the finite propagation velocity of the mediating particle. This the quantum
picture suggested by the Born series is more accurate than the classical view, as we can think of each
“collision” as the exchange of a virtual particle, which is indeed a discrete event.

1.3.1 Does the Born-series always converge?

The iteration method we used to derive the Born-series is just a more compact equivalent formulation of
standard perturbation theory. In other words, you would get the same result if you let V → λV , and
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expanded |ψ〉 = |ψ0〉 + λ|ψ1〉 + λ2|ψ2〉 + . . ., and so on. Historically, the scattering problem was solved
perturbatively, where it was soon found that the series did not always converge. Instead the sum would
diverge towards infinity as more and more terms were included. This was the famous ‘renormalization’
problem. It was then proposed that a particular infinity could be subtracted, leading to the correct physical
result.

To goal of the renormalization program is to add a small correction to each term in the Born series,
so that when summing the whole series, the sum of the corrections gives an infinity that exactly cancels
the infinity in the pure Born series. To see how this works, we can start by defining the eigenstates of
(1 −G0V )−1 according to

G0V |zn〉 = zn|zn〉, (19)

where zn is the nth complex eigenvalue. We assume a discrete spectrum for convenience, as the argument
will also hold for a continuous spectrum. In this basis, we can express the operator G0V as

G0V =
∑

n

|zn〉〈zn|
1 − zn

. (20)

Note that the series expansion (1 − z)−1 only converges for |z| < 1. This is because a series expansion
converges only as far from the expansion point as the nearest singularity in the function being expanded.
Here the expansion point is z = 0 and the singularity is at z = 1. We can perform a valid series expansion
of (1 −G0V )−1 via

(1 −G0V )−1 =
∑

n

u(1 − |zn|) |zn〉〈zn|
(

1 + zn + z2
n + . . .

)

+
∑

n

u(|zn| − 1)
|zn〉〈zn|
1 − zn

, (21)

where u(x) is the unit step function. For the case |zn| > 1, we can expand in powers of 1/zn, as

1

1 − zn
= − 1

zn

1

1 − 1
zn

= − 1

zn

(

1 + z−1
n + z−2

n + . . .
)

. (22)

These two series can be combined to give

(1 −G0V )−1 =
∑

n

|zn〉〈zn|
∞
∑

m=0

(

zm
n + u(|zn| − 1)

[

−zm
n +

(

−z−m−1
n

)])

=
∞
∑

m=0

∑

n

|zn〉〈zn|
[

zm
n − u(|zn| − 1)

(

zm
n + z−m−1

n

)]

=

∞
∑

m=0

[(G0V )m −Rm] (23)

where the mth renormalization term is

Rm =
∑

n

u(|zn| − 1) |zn〉〈zn|
(

zm
n + z−m−1

n

)

. (24)

The idea is then that the renormalized series will converge normally, so you can take only as many terms
as required for precision. Of course this renormalization is difficult in practice because the eigenvalues and
eigenvectors of G0V are not usually known, but it establishes the proof-of-principle of the ‘renormalized’
Born series.

4



1.4 The T-Matrix

From the Born-series, we see that the scattered wave |ψs〉 = |ψ〉 − |ψ0〉 is given by

|ψs〉 = (G0V +G0V G0 +G0V G0V G0V + . . .)|ψ0〉. (25)

Based on our path-integral interpretation, we see that each term contains at least one ‘scattering event’.
For each term, the scattered wave then propagated freely from the last scattering point to the detector.
This final free-propagation can be factored out giving

|ψs〉 = G0(V + V G0V + V G0V G0V + . . .)|ψ0〉. (26)

Then the sum inside parentheses is just the story of all the possible ways the particle could have made it to
the location of the final scattering event. If we put all of this story in a ‘black box’, and call it a T-matrix,
we get

|ψs〉 = G0T |ψ0〉, (27)

which defines the T-matrix. Comparison with (9) and (14) shows that

|ψs〉 = G0V (1 −G0V )−1|ψ0〉 (28)

from which we see immediately that
T = V (1 −G0V )−1, (29)

or equivalently
T = (1 − V G0)

−1 V. (30)

This equivalence can be proven by hitting both equations from the left with (1− V G0) and from the right
with (1 −G0V ), which gives V + V G0V = V + V G0V .

Ignoring the issue of convergence for a moment, the series expansion (1−A)−1 = 1+A+A2 + . . ., gives

T = V + V G0V + V G0V G0V + V G0V G0V G0V + . . . . (31)

Projecting this onto position eigenstates results in the position-space matrix elements of the T-matrix:

T (~r,~r ′) = V (~r)δ(~r − ~r ′) + V (~r )G(~r ,~r ′)V (~r ′) +

∫

dV ′′ V (~r )G(~r ,~r ′′)V (~r ′′)G(~r ′′, ~r ′)V (~r ′) + . . . , (32)

where T (~r ,~r ′) = 〈~r |T |~r ′〉 and G0(~r ,~r
′) = 〈~r |G0|~r ′〉.

1.5 Computing the Green’s Function via the Calculus of Residues

Because G0 = (E − H0 + iǫ), it follows that the eigenstates of G0 are the eigenstates of H0. Thus, the
Green’s function can be expressed in the basis of eigenstates of H0, giving

G0 =
∑

m

∫ ∞

Ec

dE′ |E′,m〉〈E′,m|
E − E′ + iǫ

+
∑

n,m

|n,m〉〈n,m|
E − En + iǫ

, (33)

where Ec is the continuum threshold energy, the summation over m accounts for any degeneracies, and
the summation over n includes any bound-states which lie below the continuum threshold, i.e. En < Ec.
Simplifying to the case with no degeneracies, no bound-states, and Ec = 0 gives

G0 =

∫ ∞

0
dE′ |E′〉〈E′|

(E − E′ + iǫ)
. (34)
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We can project onto position eigenstates to give

〈~r|G0|~r ′〉 =

∫ ∞

0
dE′ 〈~r|E′〉〈R′|~r ′〉

E − E′ + iǫ
, (35)

or equivalently

G(~r,~r ′)

∫ ∞

0
dE′ ψ

∗
E′(~r)ψE′(~r ′)

E − E′ + iǫ
, (36)

which, if the energy eigenstate wavefunctions are known, can often be solved by changing integration
variables from energy to wave-vector, and then using contour integration to obtain an analytic expression.

1.5.1 Free particle in 1-dimension

For a free particle in one-dimension we have E = ~2k2

2M , and 〈x|E〉 = (2π)−1/2eikx. With these substitutions,
equation (36) becomes

G(x, x′) =
1

2π

∫ ∞

−∞
dk′

eik
′(x−x′)

E − ~2k′2

2M + iǫ

= − 2M

2π~2

∫ ∞

−∞
dk′

eik
′(x−x′)

k′2 − k2 − iǫ
. (37)

With k′2 − k2 − iǫ = (k′ +
√
k2 + iǫ)(k′ −

√
k2 + iǫ) and

√
k2 + iǫ = k + iǫ

2k = k + iǫ, this becomes1

G(x, x′) = − 2M

2π~2

∫ ∞

−∞
dk′

eik
′(x−x′)

(k′ + k + iǫ)(k′ − k − iǫ)
. (38)

This can be solved by the method of contour integration, which means we extend k′ onto the complex plane
via k → kR + ikI , which leads to eik(x−x′) → eik

′

R
(x−x′)−k′

I
(x−x′). Because we want the function to vanish

at |k| → ∞, we see that for x > x′ we must close on the upper half-plane, so that the contour includes
only the pole at k′ = k+ iǫ. For x < x′, we must instead close the contour on the lower half-plane, so only
the pole at k′ = −k − iǫ is enclosed. Using the residue theorem,

∮

dz f(z)
z−z0

= ±2πif(z0), where the ‘+’ is
used for counter-clockwise path integration, and the ‘−’ for clockwise, leads directly to

G(x, x′) =















− 2M

2π~2
2πi

eik(x−x′)

2k
; x > x′

− 2M

2π~2
(−2πi)

e−ik(x−x′)

−2k
; x < x′

. (39)

These results can be combined into a single expression:

〈x|G0|x′〉 = − iM

~2k
eik|x−x′|. (40)

This clearly shows that the current is flowing in the direction from x′ to x. This shows that the choice
−iǫ has led to a purely outgoing current with respect to the point x′. With −iǫ → +iǫ, we would have
obtained a purely incoming current.

1Since ǫ is real-positive and infinitesimal, it satisfies c ǫ = arg(c)ǫ for any constant c.
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1.5.2 Free particle in 3-dimensions

This result can also be derived via contour integration, starting from

G0 =

∫

d3k
|~k〉〈~k|

E − ~2k2

2M + iǫ
. (41)

Projecting onto position eigenstates, and factorizing the denominator gives

〈~r|G0|~r ′〉 = − 2M

(2π)3~2

∫

d3k′
ei

~k′·(~r−~r ′)

(k′ + k + iǫ)(k′ − k − iǫ)
, (42)

where k =
√

2ME/~. Choosing the z-axis along ~r − ~r ′ gives

〈~r|G0|~r ′〉 = − 2M

(2π)2~2

∫ 1

−1
du

∫ ∞

0
k′2dk′

eik
′|~r−~r ′|u

(k′ + k + iǫ)(k′ − k − iǫ)
(43)

Performing the u-integration gives

〈~r|G0|~r ′〉 = − 2M

(2π)2~2

∫ ∞

0
k′2dk′

eik
′|~r−~r′| − e−ik′|~r−~r′|

(k′ + k + iǫ)(k′ − k − iǫ)ik′|~r − ~r′| (44)

The two-terms in the integrand can then be combined to extend the integral to −∞, so that

〈~r|G0|~r ′〉 = − 2M

(2π)2~2

∫ ∞

−∞
k′2dk′

eik
′|~r−~r′|

(k′ + k + iǫ)(k′ − k − iǫ)ik′|~r − ~r′| (45)

Since |~r − ~r ′| > 0, we can close on the upper half-plane, so that the Residue theorem gives

〈~r|G0|~r ′〉 = − 2M

(2π)2~2
(2πi)k2 eik|~r−~r ′|

2ik2|~r − ~r ′| . (46)

Thus the final expression for the 3-d Green’s function becomes

G(|~r − ~r ′|) = − M

2π~2

eik|~r−~r ′|

|~r − ~r ′| , (47)

which agrees with our previous guess (18).

1.6 Example: 1-d delta-function scattering

1.6.1 The T-matrix of a 1-d delta-function

Consider a free particle in one dimension incident on a delta-function potential V (x) = gδ(x). We want
to solve the scattering problem and find the reflection and transmission probabilities T and R. We first
compute the T-matrix via Eqs. (32) and (40), giving

T (x, x′) = gδ(x)δ(x′) + gδ(x)

(

− iM

~2k

)

eik|x−x′|gδ(x′)

+ gδ(x)

∫

dx′′
(

− iM

~2k

)

eik|x−x′′|gδ(x′′)

(

− iM

~2k

)

eik|x
′′−x′|gδ(x′) + . . .

= gδ(x)δ(x′)

[

1 +

(

−igM
~2k

)

+

(

− igM
~2k

)2

+ . . .

]

=
gδ(x)δ(x′)

1 + igM
~2k

(48)
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We can now compute the scattered wave via Eq. (27). Taking ψ0(x) = eikx then gives

ψs(x) =

∫

dx′ dx′′G(x, x′)T (x′, x′′)ψ0(x
′′)

=

∫

dx′ dx′′
(

− iM

~2k

)

eik|x−x′| gδ(
′x)δ(x′′)

1 + igM
~2k

eikx′′

= − eik|x|

1 − i~2k
Mg

. (49)

Introducing the scattering length

a =
~

2

Mg
, (50)

we arrive at the full solution

ψ(x) = eikx − eik|x|

1 − ika
. (51)

For x < 0 this gives

ψ(x) = eikx − e−ikx

1 − ika
, (52)

from which we can identify the reflection amplitude

r = − 1

1 − ika
. (53)

The reflection probability, R = |r|2 is therefore

R = |r|2 =
1

1 + (ka)2
. (54)

Turning off the potential requires g → 0, corresponding to a → ∞, in which case we have R = 0 as
expected. For x > 0 we find

ψ(x) = eikx − eikx

1 − ika

=
ika

1 − ika
eikx, (55)

from which we can identify the transmission amplitude as

t =
ika

1 − ika
. (56)

This leads to a transmission probability of

T = |t|2 =
(ka)2

1 + (ka)2
, (57)

which goes to 1 as g → 0, as required. We note also that R+T = 1, satisfying conservation of probability.

1.6.2 Direct solution of the Lippman-Schwinger equation

The previous example was to illustrate the T-matrix formalism. For 1-d scatters made up entirely of
delta-functions, by far the easiest approach is to solve the Lippman-Schwinger equation (LSE) directly.
Hitting the LSE from the left with 〈x| gives

〈x|ψ〉 = 〈x|ψ0〉 + 〈xG0V |ψ〉. (58)
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Inserting the projector between the G0 and the V , and making use of the diagonality of V leads to

ψ(x) = ψ0(x) +

∫

dx′G0(x, x
′)V (x′)ψ(x′), (59)

which is an integral equation for ψ(x). For the case where V (x) = gδ(x−x0), we can perform the integral,
giving

ψ(x) = ψ0(x) + gG0(x, x0)ψ(x0). (60)

The unknown quantity, ψ(x0) can be found by setting x = x0,

ψ(x0) = ψ0(x0) + gG0(x0, x0)ψ(x0), (61)

which has the solution

ψ(x0) =
ψ0(x0)

1 − gG0(x0, x0)
, (62)

which gives the solution to the LSE as

ψ(x) = ψ0(x) +
gG0(x, x0)ψ0(x0)

1 − gG(x0, x0)
. (63)

With ψ0(x) = eikx and G0(x, x
′) = −i M

~2k
eik|x−x′|, this becomes

ψ(x) = eikx − i
Mg

~2k

eik|x|

1 + iMg
~2k

= eikx − eik|x|

1 − ika
, (64)

where we have again introduced a = ~2

Mg .

9



2 Scattering probabiilities

2.1 The scattering amplitude

In general, we want to find the probability to detect the particle at position ~r after it has left the scattering
region. If we choose the center of the scattering potential as the origin, and if the detector is sufficiently
far from the scatterer, then we can compute the probability amplitude at the detector from the large-r
limit of the full wavefunction,

lim
r→∞

ψ(~r) = ψ0(~r) + lim
r→∞

∫

d3r′ d3r′′G(~r,~r ′)T (~r ′, ~r ′′)ψ0(~r
′′). (65)

Taking a plane wave for the incident state,

ψ0(~r) = ei
~k·~r, (66)

and putting in the 3-d Greens function (47), we find

lim
r→∞

ψ(~r) = ei
~k·~r − M

2π~2
lim

r→∞

∫

d3r′ d3r′′
eik|~r−~r ′|

|~r − ~r ′| T (~r ′, ~r ′′)ei
~k·~r ′′

. (67)

Now with ~r = r ~er(θ, φ) = r(cos θ~ezz + sin θ cosφ~ex + sin θ sinφ~ey) we find

lim
r→∞

|~r − ~r ′| =
√

(~r − ~r ′)2

=
√

r2 − 2r~er · ~r ′ + r ′2

≈ r

√

1 − 2
~er · ~r ′

r
+
r ′2

r2

≈ r

(

1 − ~er · ~r
r

)

≈ r − ~er · ~r ′, (68)

For convenience we choose ~ez along ~k, so that θ = 0 corresponds to the forward-scattering direction.
Similarly we find

lim
r→∞

1

|~r − ~r ′| ≈
1

r
. (69)

This gives

lim
r→∞

G(~r,~r ′) = − M

2π~2

eikr

r
e−ik~er(θ,φ)·~r ′

, (70)

which leads to

lim
r→∞

ψ(~r) = eikz − M

2π~2

eikr

r

∫

d3r′ d3r′′ e−ik~er(θ,φ)·~r ′

T (~r ′, ~r ′′)eikz′′ . (71)

It is conventional to define the scattering amplitude, f(θ, φ|k〉, via

lim
r→∞

ψ(~r) = eikz + f(θ, φ|k)e
ikr

r
, (72)

so we see immediately that

f(θ, φ|k) = − M

2π~2

∫

d3r′ d3r′′ e−ik~er(θ,φ)·~r ′

T (~r ′, ~r ′′) eik~ez ·~r ′′

. (73)
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With the substitutions
k ~er(θ, φ) → ~k′, (74)

and
k~ez → ~k, (75)

the scattering amplitude generalizes to

f(~k′, ~k) = − M

2π~2

∫

d3r′ d3r e−i~k′·~r ′

T (~r ′, ~r)ei
~k·~r

= −(2π)2M

~2

∫

d3r′d3r 〈~k′|~r ′〉〈~r′|T |~r〉〈~r|~k〉

= −(2π)2M

~2
〈~k′|T |~k〉, (76)

which should be interpreted as the probability amplitude to scatter in the direction ~k′, given an incident
wave-vector ~k. The function f(θ, φ|k) is valid only for the case of elastic scattering, |~k′| = |~k|, whereas the
function f(~k′, ~k) is completely general (however we won’t be considering inelastic scattering at present).

Eq. 76 shows that the scattering amplitude is the Fourier transform of the T-matrix. In optics it is
well known that the image in the far-field is the Fourier transform of the near-field image. This is because
propagation over a large distance allows the Fourier components of the field to spatially separate. This is
exactly what we are seeing here. The T-matrix describes the exact scattered field over all space, including
inside the interaction region. The Fourier transform of the T-matrix therefore describes the same scattered
field in momentum space. The scattering amplitude, on the other hand, describes the scattered field only
in the far-field region (r → ∞), hence it follows that the different momentum components would spatially
separate, with the result that the scattering amplitude should reflect the Fourier transform of the scattered
field. In other words, only the component of total amplitude corresponding to a particular ~k-value will
make it to a detector located in the ~k direction.

2.2 The Scattering Cross-Section

Up to now we have taken the incident wave to be a plane-wave |ψ0〉 = |~k〉, where

〈~r|~k〉 = ei
~k·~r. (77)

This state is delta-normalized so that 〈~k|~k′〉 = (2π)3δ3(~k − ~k′). We note that this choice of normalization
has the drawback that that |ψ0(~r)|2 does not have the right units to be a probability density. The units of
a probability density are 1/[volume], while Eq. (77) shows that |ψ0(r)|2 = |〈~r|~k〉|2 is clearly dimensionless.
One possible way to give a probabilistic interpretation to |ψ0(~r)|2 would be to assume a finite quantization
volume V , so that the probability density would be defined as ρ(~r) = |ψ0(~r)|2 1

V , so that
∫

V d
3rρ(~r) = 1.

A plane wave corresponds to a uniform probability flow at speed v = ~k/M , so that the current
density is ~j(~r) = ρ(~r)~v(~r), so that for a plane wave, |j| = v/V . The probability current through a surface
(perpendicular to ~k) of area A0 is then given by

J = jA0 =
A0

V

~k

M
≡ Jin. (78)

In defining this as the incident current, we should interpret A0 as the cross-sectional area of the incident
particle ‘beam’. The infinitesimal scattered current through an infinitesimal area element dA at distance

11



r0 in the θ, φ direction is then given by

dJ(r0, θ, φ) =
|ψs(r, θ, φ)|2

V
v dA =

|f(θ, φ|k)|2
r20

1

V

~k

m
dA. (79)

With the surface area element begin given by dA = r20dΩ = r2 sin θdθdφ, this simplifies to

dJS(θ, φ) =
|f(θ, φ|k)|2

V

~k

M
dΩ (80)

The scattered probability current into the solid angle region Ω0 would then be given by

JS(Ω0) =

∫

Ω0

dJ(θ, φ) =
~k

MV

∫

Ω0

dΩ |f(θ, φ|k)|2, (81)

which shows that the scattering probabilities are independent of the choice of quantization volume, V . In
analogy with the way we defined reflection and transmission probabilities in 1-d, the probability to scatter
into solid angle Ω0 would be the ratio JS(Ω0)/Jin, giving

PS(Ω0) =
1

A0

∫

Ω0

dΩ|f(θ, φ|k)|2. (82)

That the scattering probability would decrease as the incident ‘beam’ area increases has the ‘classical’
interpretation that with a wider beam, one would be more likely to miss a target with a fixed cross-
sectional area σ, assuming A0 ≫ σ. This leads to the total scattering probability

PS =
1

A0

∮

dΩ |f(θ, φ|k)|2, (83)

where the integration is over the entire 4π solid angle. We note that only |ψs〉 contributes to the scatter.
This is done deliberately to account for the finite cross-sectional area of the incident beam. For pure plane
wave, there would be an interference between |ψ0〉 and |ψs〉 at every point in space, but in reality, this
interference only occurs inside the beam volume, whereas PS calculated above applies only to a detector
located outside of the beam volume.

We can define the effective cross-sectional area of the scatterer based on an analogy with classical
scattering of particles from a simple solid-object. Consider a target of cross-sectional area σ, which we are
trying to hit with particles that travel in a straight line along ~ez, but whose transverse position is random
within the cross-sectional area A0. The probability to hit the target is therefore the ratio of the two areas
Phit = σ/A0. This leads us to define the effective cross-section of a generalized scatterer via

σtot = PS ·A0. (84)

For quantum-mechanical scattering, this leads to

σtot =

∮

dΩ |f(θ, φ|k)|2. (85)

Likewise we can define the fraction of the effective cross-section due to scattering into a solid angle Ω0 as

σ(Ω0) = PS(Ω0) · A0 =

∫

Ω0

dΩ|f(θ, φ|k)|2. (86)

Hence the infinitesimal element of the cross-sectional area due to scattering in the direction indicated by
θ, φ must be

dσ(θ, φ) = dΩ |f(θ, φ|k)|2. (87)
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Based on this it is common to define the ‘differential cross-section’, denoted by ∂σ
∂Ω , according to

∂σ

∂Ω
≡ dσ(θ, φ)

dΩ
= |f(θ, φ|k)|2. (88)

Thus the differential cross-section is the square modulus of the scattering amplitude. It may be helpful to
think of “ dσ

dΩ” as simply a symbol, rather than as some sort of derivative.

A given detector located at angular position θd, φd, can be characterized by its solid-angle of acceptance
Ωd, as well as its detection efficiency E (i.e. the fraction of particles entering the detector which are actually
detected), and its dark-count rate D (i.e. the probability that the detector fired but no particle actually
entered the detector). If a particle is incident on the scatterer with momentum ~~k and beam area A0, the
probability that the detector will fire is given by

Pdetect = EPS(Ωd) + D(1 − PS(Ωd))

= E − Dσtot

A0
+ D

=
E − D
A0

∫

Ω0

dΩ
dσ(θ, φ)

dΩ
+ D, (89)

. If the solid angle subtended by the detector is sufficiently small, than we can pull the differential cross-
section outside of the integral, and evaluate it at the angular location of the detector, giving

Pdetect = (E − D)Ωd
|f(θd, φd|k)|2

A0
+ D. (90)

2.3 Example: The Yukawa potential in the first Born-Approximation

The Yukawa potential is given by

V (r) =
V0

r

e−µr

µ
. (91)

It is essentially a Coulomb potential with an exponential drop-off as r → ∞. In the limit µ → 0 and
V0 → 0 with V0/µ held fixed, we recover the Coulomb potential. Consider a metallic conductor, on a
coarse scale it is electrically neutral, since there are an equal number of electrons and protons. At short
ranges the conduction electrons would see each other, as well as neighboring crystal ions, but at long range
it really sees nothing, due to the overall neutrality. Thus if this range were known, the the electron-electron
and electron-ion interactions could be replaced by Yukawa potentials, with the effective ‘screening length’,
without changing the physics. The Yukawa potential has the advantage, relative to the Coulomb potential,
that certain important classes of integrals then converge to finite numbers. It is often assumed that the
pure Coulomb physics can be then obtained simply by taking the µ→ 0 limit only at the very end of the
calculation, i.e. after the integrals have converged to finite values.

In this example we will solve the problem of scattering from the Yukawa potential approximately, by
keeping only the first-order term in the Born series. This means we replace T = V + V GV + V GV GV +
V GV GV GV + . . . with T ≈ V . This leads to

T (~r ′, ~r ′′) ≈ V (~r ′)δ3(~r ′ − ~r ′′). (92)

From Eq. (76) we see that this leads to

f(~k′|~k) = − M

2π~2

∫

d3r′ ei(
~k−~k′)·~r ′

V (~r ′). (93)
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If we choose ~e′z to lie along the ~k − ~k′ direction, then expanding ~r ′ in spherical coordinates gives

f(~k′|~k) = − MV0

2π~2µ

∫ 2π

0
dφ′
∫ π

0
dθ′ sin θ′

∫ ∞

0
dr′r2ei|

~k−~k′|r′ cos θ′ e
−µr′

r′

= −MV0

~2µ

∫ 1

−1
du

∫ ∞

0
dr′ r′ei|

~k−~k′|ur′−µr′

(94)

Using
∫ 1

−1
du eiau =

2 sin a

a
(95)

gives

f(~k′|~k) = − 2MV0

~2|~k − ~k′|

∫ ∞

0
dr′ r′

sin(|~k − ~k′|r′)
r′

e−µr′

= −2MV0

~2µ

1

µ2 + |~k − ~k′|2
. (96)

Since |~k′| = |~k| = k, we can write

|~k − ~k′|2 = 2k2 − 2k2 cos θ

= 2k2(1 − cos θ), (97)

which gives

f(θ, φ|k) = −2MV0

~2µ

1

µ2 + 2k2(1 − cos θ)
. (98)

This leads to the differential cross-section

dσ

dΩ
=

(

2MV0

~2µ

)2 1

|µ2 + 2k2(1 − cos θ)|2
, (99)

which describes the angular distribution of the scattered probability.

If we let µ→ 0 and V0 → 0, with
V0

µ
=
ZZ ′e2

4πǫ0
(100)

we recover the Coulomb potential. This leads to the partial scattering amplitude

dσ

dΩ
=

(

2MZZ ′e2

4πǫ0~2

)2
1

4k4(1 − cos θ)2
, (101)

which famously recovers the classical Rutherford scattering. That the first-Born approximation would give
the classical result is not surprising, since the first-Born result is valid in the high-energy limit, for which
classical and quantum results typically agree.

Returning the the Yukawa potential, we can compute the total cross-section via

σtot = 2π

(

2MV0

~2µ

)2 ∫ 1

−1
du

1

(µ2 + 2k2 − 2k2u)2
. (102)
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With y = µ2 + 2k2 − 2k2u, this becomes

σtot = 2π

(

2MV0

~2µ

)2 ∫ µ2+4k2

µ2

dy
1

y2

=

(

2MV0

~2µ

)2 4π

µ2(µ2 + 4k2)
. (103)

For Coulomb scattering this gives σtot = ∞. This means all incident probability current will be scattered,
no matter how large A0 is. For this reason we say that the Coulomb interaction is an infinite range
interaction. For finite µ, on the other hand, the Yukawa potential is effectively a finite range interaction.
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3 Conservation of angular momentum

3.1 Scattering from spherically symmetric potentials

We now focus on the case where the scattering potential V (~r) is spherically symmetric. This is typical of
two-body collisions in the absence of external fields. As we know, the main consequence of this symmetry
is that angular momentum will be conserved. Quantum mechanically, this means that L2 and Lz will be
constants of motion. It is most convenient to chose the z-axis along along the incident wave propagation
direction, so that ~k = k~ez With this choice, the incident wave is azimuthally symmetric, and thus contains
only m = 0 components. Due to the spherical symmetry, no m 6= 0 states can be created by the scatter,
so that the complete scattering problem can be treated in the m = 0 subspace, which will simplify our
calculations somewhat.

Up to now we have considered only the case where the incident (unperturbed) state is a plane wave,
which is a state with well-defined kinetic energy. Because we are going to expand this state onto angular
momentum eigenstates, it is interesting to consider first the angular momentum of a classical particle
moving with constant velocity along the z-direction. The classical angular momentum is ~L = ~r× ~p, for the
case ~p = ~k~ez , we find

~L = det

∣

∣

∣

∣

∣

∣

~ex ~ey ~ez
x y z
0 0 ~k

∣

∣

∣

∣

∣

∣

= ~k(y~ex − x~ey). (104)

Thus we see that classical the classical angular momentum vanishes only if x = y = 0, and otherwise, it
can have arbitrarily large |~L|, depending on its x and y coordinates.

Quantum mechanically, x and y are delocalized, so based on the classical free-particle, we should expect
to find that the incident plane wave will have a non-zero projection onto each ℓ state. Since the scatterer
conserves ℓ and m, this means that the incoming and outgoing probability currents associated with each
ℓ-value will be independently conserved. In this section, we will break the incident plane wave into its
ℓ-components, and then solve the scattering problem separately within each ℓ-manifold. This will lead to
the definition of the ‘partial-wave’ scattering amplitude, fℓ(k), associated with each angular momentum
quantum number, ℓ.
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3.2 Partial waves

Scattering Theory requires that |ψ0〉 be an eigenstate of the free-space Hamiltonian:

H0 =
P 2

2M
=

p2
r

2M
+

L2

2MR2
. (105)

The plane wave states , |~k〉, defined by ~P |~k〉 = ~k|~k〉, are simultaneous eigenstates of H0, Px, Py and
Pz, and are not eigenstates of L2 or Lz. However, since [H0, L

2] = 0 and [H0, Lz] = 0 it follows that
simultaneous eigenstates of H0, L

2 and Lz must exist. We can label these states |k, ℓ,m(0)〉, and define
them via

H0|k, ℓ,m(0)〉 =
~

2k2

2M
|k, ℓ,m(0)〉 (106)

L2|k, ℓ,m(0)〉 = ~
2ℓ(ℓ+ 1)|k, ℓ,m(0)〉 (107)

Lz|k, ℓ,m(0)〉 = ~m|k, ℓ,m(0)〉. (108)

If we like, we can separate these states into a tensor-product of a radial state times an angular state,

according to |k, ℓ,m(0)〉 = |k, ℓ(0)〉 ⊗ |ℓ,m〉, where 〈r|k, ℓ(0)〉 = R
(0)
ℓ (r|k) and 〈θ, φ|ℓ,m〉 = Y m

ℓ (θ, φ). Here
the Y m

ℓ (θ, φ) are the usual spherical harmonics. From the theory of central potentials, we know that the

radial eigenfunctions, R
(0)
ℓ (r|k), satisfy the radial wave equation
[

~
2k2

2M
+

~
2

2M

1

r2
∂

∂r
r2
∂

∂r
− ~

2ℓ(ℓ+ 1)

2Mr2

]

R
(0)
ℓ (r|k) = 0. (109)

The solutions to this equation are well-known special functions called spherical Bessel functions of the first

kind, denoted by jℓ(kr). Thus the free-particle angular momentum eigenstates, called ‘partial waves’ are
given by

〈r, θ, φ|k, ℓ,m(0)〉 =

√

2k2

π
jℓ(kr)Y

m
ℓ (θ, φ), (110)

which are normalized as
∫

d3r
[

〈k, ℓ,m(0)|r, θ, φ〉〈r, θ, φ|k′, ℓ′,m′(0)〉
]

= δ(k − k′)δℓ,ℓ′δm,m′ . (111)

The projector onto the basis of partial waves is then

I =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

∫ ∞

0
dk |k, ℓ,m(0)〉〈k, ℓ,m(0)|. (112)

3.2.1 Threshold behavior

It is interesting to examine the behavior of these functions near the origin, i.e. inside the (finite) scattering
region. Their behavior as r → 0 is given by

lim
r→0

jℓ(kr) =
(kr)ℓ

(2ℓ+ 1)!
. (113)

This means that as k → 0, all the partial waves go rapidly to zero except for the ℓ = 0 wave. For each ℓ,
there is an energy scale below which the ℓth partial wave is effectively zero inside the scattering region. This
means that the ℓth component of the incident wave no longer ‘sees’ the scatterer, and so its contrubution
to the scattering cross-section is effectively zero. This effect is known as ‘Threshold behavior’. This leads
to the well known result that for most potentials, there will be a critical k-value, below which only S-wave
scattering makes a significant contribution to the scattering amplitude, known as the S-wave regime.
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3.3 The scattering phase-shift

The spherical Bessel functions, jℓ(kr), in addition to being solutions of the free particle radial wave equation,
also satisfy the free-particle boundary condition at r = 0, which is derivable from the requirement that
ψ(~r) should be everywhere continuous and smooth. If this boundary condition is relaxed, then there is
a second linearly independent solutions, called the spherical Bessel function of the second kind, denoted
as yℓ(kr), that are singular at r = 0. These spherical Bessel functions can be defined by the Rayleigh
formulas,

jℓ(ρ) = ρℓ

(

−1

ρ

d

dρ

)ℓ sin ρ

ρ
, (114)

yℓ(ρ) = −ρℓ

(

−1

ρ

d

dρ

)ℓ cos ρ

ρ
. (115)

If we wish, instead, to find solutions with a well-defined direction of probability flow (inwards or outwards),
we can use spherical Bessel functions of the third kind. The first of these two spherical Bessel functions is
defined by

hℓ(ρ) = jℓ(ρ) + iyℓ(ρ), (116)

while the second linearly independent solutions is simply h∗ℓ (ρ) = jℓ(ρ) − iyℓ(ρ). Rayleigh’s formula for
hℓ(kr) is

hℓ(ρ) = −iρℓ

(

−1

ρ

d

dρ

)ℓ eiρ

ρ
. (117)

From the sign of the exponent, we see that hℓ(ρ) has a purely outgoing probability current, so that h∗ℓ (ρ)
has a purely incoming current. Thus hℓ(kr) and h∗ℓ (kr) are the spherical ‘running waves’ whereas jℓ(kr)
and yℓ(kr) are spherical ‘standing waves’. The inverse relationships are

jℓ(kr) =
1

2
[hℓ(kr) + h∗ℓ (kr)] , (118)

and

yℓ(kr) =
1

2i
[hℓ(kr) − h∗ℓ(kr)] . (119)

In the limit r → ∞, the spherical Bessel functions have the asymptotic forms,

lim
r→∞

jℓ(kr) =
sin(kr − πℓ/2)

kr
, (120)

lim
r→∞

yℓ(kr) = −cos(kr − πℓ/2)

kr
, (121)

lim
r→∞

hℓ(kr) = −iei(kr−πℓ/2). (122)

If we like we can consider the case where, instead of a plane wave for |ψ0〉, we have a pure incoming

partial wave, having well defined energy, E = ~
2k2

2M , and angular momentum, so that ψ0(~r) = h∗ℓ (kr)Yℓ(θ). If
we then let the ket |k, ℓ〉 represent the full scattering solution, conservation of angular momentum requires
it to have the limiting form

lim
r→∞

〈r, θ|k, ℓ〉 = aℓh
∗
ℓ (kr) + bℓ(k)hℓ(kr), (123)

which says that the incoming and outgoing currents have the same angular momentum, ℓ. The incoming
probability current will be proportional to |aℓ|2. Conservation of probability then requires that the incoming
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and outgoing current be equal, i.e. |bℓ| = |aℓ|. Thus aℓ and bℓ can differ only by a pure phase-factor. We
can therefore choose the following form for the limiting behavior

lim
r→∞

〈r, θ|k, ℓ〉 =
aℓ

i

(

h∗ℓ (kr) + ei2δℓ(k)hℓ(kr)
)

. (124)

where we have introduced the ‘partial-wave scattering phase-shift’, δℓ(k). If there is no scatterer, then we
must recover the free-space result, jℓ(kr), so that δℓ(k) = 0. The effect of a scatter is then limited

only to introducing a non-zero scattering phase-shift.

By inserting the r → ∞ limit for hℓ(r), via (122), we find that the limiting form of the full eigenfunction,
including the effects of the scatterer, must then be

lim
r→∞

ψ(r, θ) = aℓ

[

e−i(kr−πℓ/2)

kr
− ei2δℓ(k) e

i(kr−πℓ/2)

kr

]

Yℓ(θ), (125)

or equivalently,

lim
r→∞

ψ(r, θ) = −2iaℓe
iδℓ(k) sin(kr − πℓ/2 + δℓ(k))

kr
, (126)

The complete information about a scatterer, at least to the extent that can be obtained

by measurements at r → ∞, is therefore contained in the set of partial-wave phase-shifts,

{δ0(k), δ1(k), δ2(k), . . .}.

19



3.4 Relationship between the scattering amplitude and the scattering phase-shifts

We now return to our initial assumption of an incident plane-wave, ψ0(~r) = eikz, rather than an incoming
partial wave. The incident plane wave is given in spherical coordinates by

〈r, θ, φ|ψ0〉 = eikr cos θ. (127)

Because there is no φ-dependence, its expansion onto partial waves can contain only azimuthally-symmetric
m = 0 states. It must still, however, be a superposition of different ℓ states, and due to angular momentum
conservation, we know that a spherically symmetrjic scatterer will not mix states with different ℓ. It is not
necessary to work through the details of how to compute the expansion coefficients, rather we just need
the result

ψ0(~r) = eikr cos θ

=
∑

ℓ

〈r, θ, φ|k, ℓ, 0(0)〉 〈k, ℓ, 0|ψ0〉

=
∞
∑

ℓ=0

iℓ
√

4π(2ℓ + 1)jℓ(kr)Y
0
ℓ (θ)

=
∞
∑

ℓ=0

iℓ

2

√

4π(2ℓ + 1) (h∗ℓ (kr) + hℓ(kr)) , (128)

which we see consists of equal contributions from incoming, h∗ℓ (kr), and outgoing, hℓ(kr), waves. This is
good, because probability conservation still applies if there is no scatterer, V (r) = 0, even for an incident
plane-wave

We now turn to the eigenstates of the full-problem, |ψ〉, which must satisfy

[H0 + V ] |ψ〉 =
~

2k2

2M
|ψ〉. (129)

As long as V (~R) = V (R), the solutions still have eigenvalues k, and ℓ, hence we will again assign them
the ket |kℓ〉. These eigenstates decompose into radial and angular parts, with the angular part given by a
spherical harmonic, 〈r, θ, φ|k, ℓ,m〉 = Rℓ(r|k)Y m

ℓ (θ, φ). The radial wave equation is now given by

[

~
2k2

2M
+

~
2

2M

1

r2
∂

∂r
r2
∂

∂r
− ~

2ℓ(ℓ+ 1)

2Mr2
+ V (r)

]

Rℓ(r|k) = 0. (130)

From equation (124), we know already that, as a result of conservation laws, the solution must take the
limiting form

lim
r→∞

Rℓ(r|k) =
aℓ(k)

i

(

h∗ℓ (kr) + ei2δℓ(k)hℓ(kr)
)

= aℓ

(

e−i(kr−πℓ/2)

kr
− ei2δℓ(k) e

i(kr−πℓ/2)

kr

)

In the spherically-symmetric case, the scattering amplitude, f(θ, φ|k), depends only on θ and k, and
was defined via

lim
r→∞

ψ(~r) = ei
~k·~r + f(θ|k)e

ikr

r
. (131)
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We can expand the incident plane-wave onto partial waves, giving

lim
r→∞

ψ(r) =

∞
∑

ℓ=0

eiπℓ/2

2

√

4π(2ℓ+ 1) (h∗ℓ(kr) + hℓ(kr))Y
0
ℓ (θ) + f(θ|k)e

ikr

r
. (132)

We can also expand the scattering amplitude onto spherical harmonics as

f(θ|k) =

∞
∑

ℓ=0

cℓ(k)Y
0
ℓ (θ) =

∞
∑

ℓ=0

√

4π(2ℓ+ 1)fℓ(k)Yℓ(θ), (133)

where fℓ(k) is the ‘partial wave scattering amplitude’. In terms of f(θ|k), the partial amplitudes are given
by

fℓ(k) =
1

√

4π(2ℓ+ 1)

∫

dΩY ∗
ℓ (θ)f(θ|k). (134)

This definition leads to the result

lim
r→∞

ψ(r, θ) =
∞
∑

ℓ=0

√

4π(2ℓ+ 1)

[

eiπℓ/2

2
(h∗ℓ (kr) + hℓ(kr)) + fℓ(k)

eikr

r

]

Yℓ(θ) (135)

Replacing hℓ(kr) with its limiting form (122), then gives

lim
r→∞

ψ(r) =

∞
∑

ℓ=0

√

4π(2ℓ+ 1)
iℓ+1

2

[

e−i(kr−πℓ/2)

kr
− ei(kr−πℓ/2)

kr
− 2ikfℓ(k)

ei(kr−πℓ/2)

r

]

Y 0
ℓ (θ)

= −
∞
∑

ℓ=0

√

4π(2ℓ+ 1)
(i)ℓ

2

[

e−i(kr−πℓ/2)

kr
− (1 + 2ikfℓ(k))

ei(kr−πℓ/2)

r

]

Y 0
ℓ (θ). (136)

By comparison with (125) we then see that the relationship between the partial amplitude and the partial
phase-shift is

1 + 2ikfℓ(k) = ei2δℓ(k). (137)

Inverting this formula gives

fℓ(k) =
eiδℓ(k) sin(δℓ(k))

k
. (138)

Plugging this into (133) then gives the scattering amplitude in terms of the partial phase-shifts,

f(θ|k) =
∞
∑

ℓ=0

√

4π(2ℓ+ 1)
eiδℓ(k) sin(δℓ(k))

k
Yℓ(θ). (139)

21



3.5 The partial-wave scattering cross-section

For spherically symmetric potentials, the total scattering cross-section (85) becomes

σtot = 2π

∫ π

0
dθ sin θ |f(θ|k)|2. (140)

Based on the result (139), this can be written in terms of the partial phase-shifts as

σtot =
4π

k2

∞
∑

ℓ=0

ℓ′=0

√

(2ℓ+ 1)(2ℓ′ + 1) sin(δℓ(k)) sin(δℓ′(k))e
i(δℓ−δℓ′)

∫

dΩ sin θ Y ∗
ℓ (θ)Yℓ′(θ),

=
4π

k2

∞
∑

ℓ=0

(2ℓ+ 1) sin2(δℓ(k)),

where we have made use of the orthogonality relation for the spherical harmonics. From this expression,
we can identify the ℓth partial cross-section as

σℓ = 4π(2ℓ + 1)
sin2(δℓ(k))

k2

= 4π(2ℓ + 1)|fℓ(k)|2.

The partial cross-section, σℓ, gives the probability that that a plane wave with energy ~
2k2/(2M), will

scatter into a state with total angular momentum ℓ.
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3.6 The Optical Theorem

The optical theorem states

σtot =
4π

k
Im{f(θ = 0|k)}. (141)

This is useful because it allows us to calculate the total cross-section, which contains contributions from
scattering into all possible angles, by only evaluating the scattering amplitude at θ = 0, which indicates
the forward-scattering direction. Using the results we have derived so far, the proof of the optical theorem
is straightforward. From Eq. (139) we find

f(θ = 0|k) =
∞
∑

ℓ=0

√
4π

√
2ℓ+ 1 (cos δℓ(k) + i sin δℓ(k))

sin δℓ(k)

k
Y 0

ℓ (0). (142)

Since

Y 0
ℓ (0) =

√
2ℓ+ 1√

4π
, (143)

we see that

f(θ = 0|k) =
∑

ℓ

(2ℓ+ 1) (cos δℓ(k) + i sin δℓ(k))
sin δℓ(k)

k
, (144)

so that

Im{f(θ = 0|k)} =
1

k

∑

ℓ

(2ℓ+ 1) sin2 δℓ(k). (145)

Comparing this with (141) we see that

σtot =
4π

k
Im{f(θ = 0|k)}. (146)

The reason this works, is because the probability to scatter is just the incident probability current minus
the forward-scattering probability current, divided by the incident current. Since the incident current is
presumably known, it is no surprise that the total cross section is directly related to the forward-scattering
amplitude.
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3.7 The s-wave scattering length

The s-wave scattering length iand effective range are defined by the equation

k cot(δ0(k)) = −1

a
+

1

2
rek

2 + . . . . (147)

If we assume that δ0(k) is a small angle, then this can be approximated by

δ0(k) = −ak
(

1 +
1

2
arek

2 + . . .

)

. (148)

In the case where rek ≪ 1/(ak) we can make the approximation δ0(k) ≈ −ak, which leads to f0(k) ≈ e−i2ka

for the case ak ≪ 1 this can be approximated to second order by

(1 + 2ikf0(k)) = ei2δ0(k) =
eiδ0(k)

e−iδ0(k)
≈ 1 − iak

1 + iak
+O((ak)3). (149)

For the zero-range pseudo-potential we found in HW7.5, that T (~r,~r ′) = gδ3(~r)δ3(~r ′)

1+i Mg

2π~2
k

∂
∂rr. Applying Eq. (76)

and taking g = 2π~
2a/M gives for the pseudo-potential,

(1 + 2ikf0(k)) =
1 − iak

1 + iak
. (150)

Thus, under the condition that k is small enough to satisfy ak ≪ 1 and rek ≪ 1/(ak), we can replace the
true potential with the pseudo-potential

V (~r) =
2π~

2a

M
δ3(~r)

∂

∂r
r, (151)

and compute the scattering physics correctly to second order in k. In many cases, particularly with cold-
atoms, this allows us to find analytic solutions to many-body problems which agree quantitatively with
experiment. This shows that a is the parameter which governs low energy scattering, while re is the
parameter which tells when the energy is low enough to be governed only by a.
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3.8 Identical particles and scattering

If the spin-state of a pair of identical particles is known, then the symmetry of the wavefunction is fully
determined by the requirement that Bosons have totally symmetric states and Fermions have totally
antisymmetric states under exchange of particle labels. For a pair of Fermions with a symmetric (triplet
for spin-1/2) spin state require an antisymmetric wavefunction ψ(−r) = −ψ(r) where r = r1 − r2 is the
relative coordinate. For a a pair of Fermions an in anti-symmetric (singlet for spin-1/2) state, a symmetric
wavefunction is required. The situation is reversed for Bosons. The primary result from partial wave
analysis is that the exchange transformation is θ → π− θ and φ→ φ− π., so that the exchange properties
of the partial waves are governed strictly by the properties of the spherical harmonics Y 0

ℓ (θ). For even ℓ,
these spherical harmonics are symmetric, while for odd ℓ, they are antisymmetric under θ → π − θ. This
means that a totally symmetric wavefunction can be expanded onto ℓ = even partial waves only, while
anti-symmmetric wavefunctions contain only odd ℓ components.

This means, e.g. that spin-polarized fermions are non-interacting as k → 0. This is because each particle
has the same spin direction, so the pair-wise spin-states must be symmetric. This requires anti-symmetric
wavefunctions, which contain only ℓ = 1, 3, 5, . . .. Since at low enough k all waves other than ℓ = 0 are
‘frozen out’ by the threshold behavior, and the S-wave amplitude is identically zero by symmetry, than
there will be no scattering at all. As the energy is increased, the interaction will then initially consist only
of P-wave scattering, which can be approximated using a P-wave pseudopotential if desired. Spin-polarized
bosons, on the other hand, do interact at low k, but for small enough k, the interaction is governed only by
the S-wave scattering length a. This approximation will break down only when the energy is high-enough
to excite D-waves, since the P-wave amplitude is exactly zero due to exchange symmetry. This means that
replacing the scattering potential by the S-wave pseudopotential can lead to highly accurate results at low
energy.
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3.9 Example: soft-sphere s-wave scattering

Now let us try to compute the s-wave phase-shift for a soft sphere scatterer, defined by

V (r) = V0u(R − r), (152)

where u(r) is the unit step function. The hard-sphere scatterer is recovered in the limit V0 → ∞. For
s-waves, there can be no θ-dependence, so that the problem reduces to a one-dimensional problem. The
easiest wave to proceed is then via the method of boundary conditions. This method is closely analogous
to the methods used in 1-d scattering, and is likewise well suited for potentials made from combinations
of spherical step-potentials, and spherical delta-shell potentials.

3.9.1 Ansatz for outermost region

The boundary condition at r → ∞ is given by (124). Using the Rayleigh (117) formula to obtain the exact
form of h0(k), gives

lim
r→∞

ψ0(r) =
e−ikr

kr
− ei2δ0(k) e

ikr

kr
. (153)

Since this is an exact eigenstate of H0, we should take it as the state for all r > R. Using the usual
definition Rℓ(r|k) = u(r)

r , and dropping any overall constant factors, we let

uI(r) = e−ikr − ei2δ0(k)eikr, (154)

for r > R, which we can call region I.

3.10 Anzatz for innermost region

For region II, r < R, we also need a free-space s-wave state, but with k → K =
√

k2 − 2MV0/~2. Thus
we start with two arbitrary constants, by taking

uII(r) = ae−ikr − beikr. (155)

The point r = 0 needs to be handled carefully. The primary requirement is the ψ(~r) must be smooth and
continuous at r = 0. If we expand u in this region as

u(r) = u0 + u1r + u2r
2 + . . . , (156)

then the requirement that ψ(r) = u(r)
r be continuous is simply u0 = 0, so that there is no 1/r singularity.

The condition of smoothness is that ∂
∂rψ(r) = 0, which gives

∂

∂r

u(r)

r

∣

∣

∣

r=0
=

(

u′(r)

r
− u(r)

r2

)

∣

∣

∣

r=0
= 0. (157)

Plugging in the series expansion gives

(u1r
−1 + 2u2 + 3u3r + . . .)

∣

∣

∣

r=0
− (u0r

−2 + u1r
−1 + u2 + u3r + . . .)

∣

∣

∣

r=0
= 0. (158)

With u0 = 0 from continuity, and by eliminating terms which vanish for r = 0, this becomes

u1r
−1 + 2u2 − u1r

−1 − u2 = u2 = 0. (159)

In fact these conditions are always satisfied if a and b are chosen so that

uII(r) = A sin(Kr). (160)
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3.10.1 Boundary condition at interface

At the point r = R we again require continuity and smoothness for ψ(r). The continuity condition
ψI(R) = ψII(R) requires

uI(R) = uII(R), (161)

or
A sin(KR) = e−ikR − ei2δ0(k)eikR (162)

Smoothness at r = R requires ∂
∂RψI(R) = ∂

∂RψII(R) leads to

u′I(R)

R
− uI(R)

R2
=
u′II(R)

R
− uII(R)

R2
. (163)

Since we already have uI(R) = uII(R), this just requires

u′I(R) = u′II(R), (164)

which gives
AK cos(KR) = −ik(e−ikR + ei2δ0(k)eikR). (165)

We can clearly eliminate A just by dividing (162) by (165), giving

k tan(KR) = iK
e−ikR − ei2δ0(k)eikR

e−ikR + ei2δ0(k)eikR
. (166)

Multiplying through by e−ikR + ei2δ0(k)eikR then gives

k tan(KR)(e−ikR + ei2δ0(k)eikR) = iK(e−ikR − ei2δ0(k)eikR). (167)

Solving for ei2δ0(k) gives

ei2δ0(k) =
K + ik tan(KR)

K − ik tan(KR)
e−i2kR. (168)

Note that in general
z

z∗
=

reiθ

re−iθ
= ei2θ, (169)

where
θ = tan−1

(y

x

)

. (170)

this gives us

δ0(k) = −kR+ tan−1

(

k tan(KR)

K

)

. (171)

If we wish to, we can use Eq. (147), which states

k cot(δ0(k)) = −1

a
+

1

2
rek

2 + . . . , (172)

to determine the s-wave scattering length. Expanding k cot(δ0(k)) in powers of k, with K =
√
k2 − v2, so

that v =
√

2MV0/~, gives

k cot(δ0(k)) = − v

Rv − tanh(Rv)
+

1

6

(

3R − R3v2

(Rv − tanh(Rv))2
+

3

v(Rv − tanh(Rv))

)

k2 + . . . . (173)
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From this we can see immediately that the scattering length is given by

a = R− 1

v
tanh(Rv), (174)

and the effective range is

re =
1

3

(

3R − R3v2

(Rv − tanh(Rv))2
+

3

v(Rv − tanh(Rv))

)

. (175)

It is good to see that we recover the hard sphere scattering length a → R and effective range re → 2R/3
in the limit v → ∞.
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