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Abstract. - We propose a mechanism to trap electrons in a semiconductor using counter-
propagating laser beams. The trapping comes from Pauli blocking between electron and virtual
exciton coupled to unabsorbed photons. Electron exchange allows for the possibility of momentum
transfer between photon and electron. This leads to a sinusoidal trap for electron with a period
determined by the laser beam modulation. The depth of the trap is proportional to the laser
intensity and inversely proportional to the exciton-photon detuning.

Introduction. – One of the most interesting aspects
of atomic optical traps [1, 2] is the possibility of a direct
probing of many-body physics in a framework in which
the particle position can be precisely controlled [3]. Op-
tical traps have been used to explore the rich physics of
fermionic and bosonic gases of cold atoms, in particular
the superfluid to Mott insulator phase transition [4]. In
these systems, particle trapping occurs in regular lattices,
and is obtained by interfering counter-propagating laser
beams. Recently, a similar idea for trapping electrons in
a semiconductor system has been proposed [5]. In that
scheme, the electron trapping takes advantage of the trion
resonance related to the existence of a bound state for two
electrons (in a singlet state) and one hole [6]. Even if the
electron is difficult to trap because its mass is much lighter
than the atomic mass, the large optical dipole moment of
the semiconductor trionic transition can make up for the
particle kinetic energy by producing a deep trapping po-
tential. Indeed, it was shown in Ref. [5] that the ratio
of the trapping potential depth over the particle charac-
teristic kinetic energy, i.e., the recoil energy following the
scattering by a photon, is comparable in atomic and semi-
conductor systems.

In this letter, we focus on a different configuration for
the electron spin and laser polarization that does not use
the bound trion state as a virtual intermediate state in
the trapping. The spin configuration considered here -
which leads to a triplet instead of a singlet state for the
two electrons - produces a trapping only due to the Pauli
exclusion principle, in the absence of Coulomb process.

The effect can be understood as follows: In a quantum
well, a laser beam with σ+ circular polarization tends to
add virtual excitons made of (−1/2) electrons. This pos-
sibility is blocked at a particular position of the sample if
an electron with same (-1/2) spin is already there. This
leads to a spatial modulation of the electron that can be
described through an effective trapping potential. A sim-
ilar mechanism for trapping a photo-excited electron-hole
plasma has been discussed by Lindberg and Binder [8, 9].
More recently, experimental methods for realizing traps
for excitons and polaritons in semiconductors have fol-
lowed different strategies based on local strain field [10],
local metallic gates [11], repulsive exciton-exciton [12] and
polariton-polariton [13, 14] interaction, and even acoustic
waves [16] following an original proposal by Ivanov and
Littlewood [15]. The present scheme focuses on a different
situation, the semiconductor being here doped with elec-
trons at very low density. Unlike electron-hole plasma,
excitons or polaritons, these electrons do not recombine
but remain in the system for a time long enough to al-
low for applications similar to the ones of atomic systems.
The optical traps for electrons we here discuss, will pro-
duce ”dynamic quantum dots”, similar to the ones realized
in semiconductors using surface acoustic waves [17,18].

The usual approach to optical trapping in atomic
physics relies on the adiabatic theorem [19] through an
effective Hamiltonian in which the light-matter coupling
enters via second order perturbation theory. Here, we pro-
pose a different formulation that directly calculates the
time evolution of an electron with a given momentum k
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after turning on two unabsorbed counter-propagating laser
beams. The explicit form of this time evolution is calcu-
lated to lowest (second) order in the light-matter coupling.
Using it, we can derive the effective trapping potential
felt by the electron. This approach is a priori equivalent
to the standard one. It however provides a neat view of
the physical requirements to possibly define such a poten-
tial. Moreover, the theoretical formulation proposed here
will allow an easy extension to trapping of more complex
structures than single electrons.

This letter is organized as follows: We first explain the
physical idea behind the mixing of electron plane waves in-
duced by interaction with two counter-propagating laser
beams. We then provide a detailed calculation of the
electron time evolution after the laser field is turned on.
We derive a closed analytical expression of the transition
rate leading to the electron trapping. This section also
discusses the two regimes corresponding to times much
shorter and much longer than the inverse of the photon
detuning. Finally, we show how to derive an effective trap-
ping potential from the scattering rate of the electron wave
mixing.

Physical idea. – Excitons are single electron-hole
pairs, eigenstate of the semiconductor Hamiltonian. Let
us denote as B†

I their creation operators. The index I
has an orbital part i = (νi,Ki) for exciton with center of
mass momentum Ki and relative motion index νi which
includes both, discrete and continuum states. The index
I also has a spin part (si,mi) for the electron and the hole
making the exciton. si = (±1/2) for conduction electrons
while mi = (±3/2,±1/2) for holes in bulk samples. For
narrow quantum wells however, we can restrict to heavy
holes with mi = (±3/2), light holes being far below in
energy.

Coupling between semiconductor and electromagnetic
field with frequency ωP can be handled in the rotating
wave approximation, which leads to a time-independent
formulation of the problem, the energy of the conduction-
band electron energy then reading as

εe
k = Egap +

k2

2me
− ωP , (1)

where Egap is the band-gap energy, and me the electron
effective mass. Since the light-matter coupling conserves
momentum and spin, coupling to a standing-wave made of
circular polarized photons σ with momenta (Q,−Q) reads
as Wσ = U†

σ + Uσ, with

U†
σ =

1√
2

(
U†

Qσ + U†
−Qσ

)
, (2)

where U†
Qσ =

∑
ν ΩνB†

νQσ, creates a semiconductor exci-
tation similar to the laser field mode. The Rabi energy,
Ων , is related to sample size, L, and dimensionality, D,
via Ων = ΩLD/2〈ν|r = 0〉, where Ω, proportional to the
laser amplitude, is the energy of the interband transition

while 〈ν|r〉 is the exciton relative motion wavefunction. In
quantum well, σ± excitons are made of ∓1/2 electrons and
±3/2 holes. In bulk, they are also made of ±1/2 electrons
and ±1/2 light holes. However, since photon coupling to
light-hole excitons is three times weaker than coupling to
heavy-hole excitons, we will focus here on the heavy-hole
contributions.

Let us consider a semiconductor having one excess
conduction-band electron with momentum k and spin s.
At time t = 0, we irradiate the sample with a standing-
wave laser field having a circular polarization σ+, mo-
menta (+Q,−Q), and frequency ωP tuned far away from
the exciton resonances. This makes the material nearly
transparent, so that we can ignore photon absorption. Off-
resonant photons interact with the material via the cre-
ation and annihilation of delocalized virtual excitons. The
Lorentz force on the conduction electron results in a pon-
deromotive potential [21], too weak to be of interest. An
indirect coupling between the electron and the laser field
also exists due to interactions between the conduction elec-
tron and the virtual excitons coupled to the unabsorbed
photons via both, the Coulomb potential and the Pauli
exclusion principle. When the electron has a spin 1/2, it
interacts with the σ+ virtual excitons via Coulomb forces
only. When the electron has a spin −1/2, it also feels
the electron of the virtual excitons through the Pauli ex-
clusion principle. This appears via the possibility of an
electron exchange between the real electron and the vir-
tual exciton [23]. The fact that the scattering associated
to electron exchange is dimensionless, makes the interac-
tion of an electron with an unabsorbed laser beam domi-
nantly controlled by this electron exchange in the absence
of Coulomb process: Indeed, due to a simple dimensional
argument, scatterings in which Coulomb interaction en-
ters, have to appear with an energy denominator which
can only be a photon detuning, this detuning being large
in the case of unabsorbed photons.

Figure 1 shows the two distinct exchange channels with
excitons formed out of a standing wave made of (Q,−Q)
photons. While in Fig.1(a), the electron momentum re-
mains unchanged, in Fig.1(b), it changes from k to either
k + 2Q or k − 2Q. As a result, the electron distribution
is modulated on a scale 1/Q with a rate proportionnal to
the laser intensity. Indeed, according to the exchange pro-
cesses shown in Fig.1, an electron with momentum k and
spin s, must evolves in an unabsorbed standing wave with
momenta (Q,−Q) and circular polarization σ, according
to

|k, s〉t = |k, s〉+
∑

q=0,±2Q

γt(ks,q;σ)|k + q, s〉 , (3)

the prefactor γt(ks,q;σ) being proportional to Ω2 and dif-
ferent from zero for s = −σ/2 only. Eq. 3 corresponds to
a sinusoidal modulation of the electron density as easy to
see from the electron probability distribution calculated
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Fig. 1: Exchange-assisted electron-photon scattering in the
presence of a standing wave. (a) Diagonal terms. (b) Off-
diagonal terms giving rise to the optical trap. Electrons are
represented by solid lines, holes by dashed lines.

through

|〈r|k, s〉t|2

t〈k, s|k, s〉t
' 1

LD
{1 + 2|A| cos (2Q · r + ϕ)} (4)

where we have set

γt(ks, 2Q;σ) + γ∗t (ks,−2Q;σ) = |A|eiϕ . (5)

Two counter-propagating photon beams with σ+ circu-
lar polarization thus tend to localize s = −1/2 electrons
on planes in 3D and stripes in 2D, with a periodicity π/Q
where Q is the photon momentum in 3D and its projection
over the quantum well plane in 2D.

Time evolution of electron states. – The dynam-
ics of the electron modulation can be calculated by looking
at the time evolution of the electron state |k, s〉 when a
laser beam is turned on at t = 0. Since the coupling W
to unabsorbed photons creates or destroys one virtual ex-
citon, the resulting state e−i(HSC+W )t|k, s〉 where HSC is
the semiconductor Hamiltonian in the rotating frame, is
made of a superposition of states having one real electron
plus n virtual excitons. The projection of this state on the
one-electron subspace can be written, within an irrelevant
phase factor, as

|k, s〉t = |k, s〉+
∑
k′,s′

ck′s′,ks(t)|k′, s′〉 , (6)

where

ck′s′,k,s(t) = 〈k′s′|e−i(HSC+W−εe
k)t − 1|k, s〉.

(7)
In order to calculate ck′s′,ks(t), we use the integral rep-

resentation of the exponential and we expand (a−HSC −
W )−1 in terms of W . The zero and first order terms cancel

while the W 2 term gives, since U |k, s〉 = 0,

ck′s′,ks(t) '
∫ ∞

−∞

dx

−2iπ
e−i(x+i0+−εe

k)t〈k′, s′| 1
x + i0+ −HSC

×U
1

x + i0+ −HSC
U† 1

x + i0+ −HSC
|k, s〉 , (8)

where 0+ is an arbitrary positive constant. HSC acting
on the right gives the free electron k energy εe

k while on
the left, it gives εe

k′ . Integration using the residue theorem
then gives

ck′s′,ks(t) = 〈k′, s′|UGt (εe
k′ − εe

k,HSC − εe
k) U†|k, s〉 (9)

where Gt(E,E′) = Gt(E′, E), defined as

Gt(E,E′) =
1

EE′ +
e−iEt

E(E − E′)
+

e−iE′t

E′(E′ − E)
.

=
Ft(E)− Ft(E′)

E − E′ (10)

is the standard function for second order time evolution
[22] while Ft(E), defined as

Ft(E) =
e−iEt − 1

E
= −2iπe−iEt/2δt(E) (11)

is the characteristic function at first order, δt(E) =
(πE)−1 sinEt/2 ensuring energy conservation at the 1/t
scale. The function Ft(E) tends to −it for |Et| small and
to zero for |Et| large.

Since HSC conserves spin and momentum, the matrix
element in Eq. 9 differs from zero for s′ = s and k′+η′Q =
k + ηQ with η, η′ = ±1 only. This leads to k′ = k + q
with q = (0,±2Q). The diagonal term k = k′ comes
from (U,U†) replaced by (UQ, U†

Q) or (U−Q, U†
−Q), while

the term k′ = k + 2ηQ comes from (U,U†) replaced by
(U−ηQ, U†

ηQ). This shows that for standing wave having a
circular polarization σ, Eq.6 reduces to Eq.3 for

γt(ks, 2ηQ;σ) =
1
2
〈k + 2ηQ, s|U−ηQσ

×Gt

(
εe
k+2ηQ − εe

k,HSC − εe
k

)
U†

ηQσ|k, s〉. (12)

Since Ft=0(E) = 0, the above quantity cancels for t = 0
as expected. To calculate it for finite t, we first note that,
in Eq. 12, HSC acts on two electrons plus one hole. The
exact calculation of γt(ks, 2ηQ;σ) thus requires the knowl-
edge of the whole trion eigenstate spectrum. In its absence,
it is yet possible to calculate it through an expansion in the
Coulomb interaction between electron and exciton, this
interaction being small since excitons are neutral. Due
to dimensional arguments, this expansion actually corre-
sponds to an expansion in the inverse of the photon de-
tuning. The operator HSC acting on an electron-exciton
pair then gives, to leading order in the inverse detuning,
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the sum of the free electron and free exciton energies; so
that

Gt(εe
k′ − εe

k,HSC − εe
k)U†

ηQσ|k, s〉

'
∑

ν

ΩνGt(εe
k′ − εe

k, EX
νQ)B†

ν,ηQσ|k, s〉 (13)

where the exciton energy in the rotating frame reads as

EX
νQ = EGap + εν + Q2/2(me + mh)− ωP . (14)

This allows us to rewrite Eq.12 as

γt(ks, 2ηQ;σ)

=
1
2

∑
ν

ΩνΛνσ(ks, 2ηQ)
Ft(εe

k+2ηQ − εe
k)− Ft(EX

νQ)
(εe

k+2ηQ − εe
k)− EX

νQ

(15)

where the electron-photon momentum transfer is con-
trolled by

Λνσ(ks, 2ηQ) = 〈k + 2ηQ, s|U−ηQσB†
ν,ηQσ|k, s〉 . (16)

This transfer physically comes from electron exchange
between the real electron (k, s) and the virtual exciton
(ν, ηQ, σ), as can be seen by using our recently developed
many-body formalism for composite boson excitons [23]
extended to electron-exciton systems.

In this formalism, carrier exchange follows from two
commutators[

Bj′σ′ , B†
jσ

]
= δj′jδσ′σ −Dj′σ′,jσ[

Dj′σ′,jσ, a†ks

]
=

∑
k′s′

λ
(

j′σ′

k′s′
jσ
ks

)
a†k′s′ (17)

The dimensionless Pauli scattering λ
(

j′σ′

k′s′
jσ
ks

)
between

one exciton and one electron in the absence of Coulomb
process, is readily obtained from the diagrams of Fig.1:
The spin part imposes σ′ = σ and s = s′ = −σ/2. To get
the orbital part λ

(
j′

k′
j
k

)
, we write the wave functions of

the ”in” states (k, j) and the complex conjugates of the
wave functions of the ”out” states (k′, j′), and we integrate
over all carrier positions [23]. This leads to

λ
(

j′

k′
j
k

)
=

∫
dredr′e, drh

×〈νj′ |r′e − rh〉〈Qj′ |αer′e + αhrh〉〈k′|re〉
×〈re − rh|νj〉〈αere + αhrh|Qj〉〈r′e|k〉 (18)

where αe = 1− αh = me/(me + mh). By writing 〈r|ν〉 as∑
p〈r|p〉〈p|ν〉, it can be shown that this Pauli scattering

reduces to

λ
(

j′

k′
j
k

)
= δk′+Q′,k+Q〈νj′ |k− αeQj′〉〈k′ − αeQj |νj〉 .

(19)
This formalism allows us to rewrite Eq.16 as

Λνσ(ks, 2ηQ) =

−δs,−σ/2

∑
ν′

Ω∗
ν′〈ν′|k + αeηQ〉〈k + (1 + αh)ηQ|ν〉 (20)

which, after summing over ν′ through closure relation, fur-
ther simplifies into

Λνσ(ks, 2ηQ) = −δs,−σ/2Ω∗〈k + (1 + αh)ηQ|ν〉 . (21)

Let us now turn to the time dependence of
γt(ks, 2ηQ;σ) given in Eq.15. We first note that, since
the photon momentum Q is very small on the electronic
scale, the relevant exciton energies EX

νQ, of the order of
the photon detuning, are large compared to (εe

k+2ηQ−εe
k).

Three time regimes then have to be considered:
(i) The first one corresponds to t small enough to have

(εe
k+2ηQ − εe

k)t � EX
νQt � 1. The ratio in Eq.15 then

tends to −t2/2; so that, using Ων = ΩLD/2〈ν|r = 0〉, we
get

γt(ks, 2ηQ;σ) '

δs,−σ/2
t2|Ω|2

4

∑
ν

LD/2〈k + (1 + αh)ηQ|ν〉〈ν|r = 0〉 (22)

the sum over ν, performed through closure relation, re-
ducing to 1 since 〈p|r = 0〉 = L−D/2.

(ii) Under increasing t, we reach times such that
(εe

k+2ηQ − εe
k)t � 1 � EX

νQt. The second Ft in Eq. 15
then goes to zero, while the first Ft tends to −it; so that

γt(ks, 2ηQ;σ) ' −itδs,−σ/2V(k, 2ηQ) (23)

where the modulation rate is given by

V(k, 2ηQ) =
|Ω|2

2

∑
ν

LD/2 〈k + (1 + αh)ηQ|ν〉〈ν|r = 0〉
EX

νQ

.

(24)
Since the exciton ground state ν0 is rather far from the
other exciton levels, the EX

νQ denominator for photons
tuned close to the exciton ground state level, makes the
above sum controlled by ν = ν0. To calculate this modu-
lation rate, we then use, for aX being the 3D Bohr radius,
〈ν0|r = 0〉 = xD/a

D/2
X with xD = 1/

√
π in 3D and

√
8/π

in 2D while 〈k = 0|ν0〉 = (aX/L)D/2yD with yD = 8
√

π in
3D and

√
2π in 2D. By noting that the photon momenta

is much smaller than the characteristic electron momenta,
we end with

γt(ks, 2ηQ;σ) ' −itδs,−σ/2
|Ω|2

EX
ν,Q=0

〈k|ν0〉
〈k = 0|ν0〉

ζD (25)

where ζD = xDyD/2 is equal to 4 in 3D and 2 in 2D.
(iii) The third regime, with t large enough to have

1 � (εe
k+2ηQ − εe

k)t, is physically irrelevant because it
would correspond to times larger than the coherence time,
difference in electron energies scaling as the coherence time
inverse.

The above discussion shows that γt(ks, 2ηQ;σ) starts
by rising as ∼ |Ω|2t2, while for t larger that the inverse
of the optical detuning, it saturates to ∼ |Ω|2t/EX

ν0Q=0,
leading to a space dependent transition rate controlled by
∼ |Ω|2/EX

ν0Q=0: This just is what we expect from simple
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dimensional arguments, for an energy-like quantity with
quadratic coupling to unabsorbed photons.

We wish to mention that the time evolution of the |ks〉
state also has contributions on states with one electron
plus one or more virtual electron-hole pairs. Contribu-
tions from two electrons plus one hole even are of the first
order in the light-matter coupling W . However, a similar
calculation shows that the time dependence of this con-
tribution is in Ft(EX

ν,Q); so that it tends to zero for time
larger than the inverse detuning.

A standing wave (Q,−Q) with circular polarization
σ = +1 thus tends to trap s = −1/2 electrons, according
to Eq.3 for times larger than the inverse of the exciton-
photon detuning. To equally trap s = 1/2 electrons, we
can use linear polarization. Indeed, the operator U in
Eq.8 then reads as (1/2)

∑
η=±1,σ=±1 UηQ,σ. Due to spin

conservation for hole, matrix elements with Uη′Q,σ′U†
ηQ,σ

differ from zero for σ = σ′ only. Calculation of the mod-
ulation rate then follows from the one done for circular
polarization. This readily shows that the σ = +1 part of
the light traps the −1/2 component of the electron spin
while the σ = −1 part equally traps the s = 1/2 compo-
nent.

Effective trapping potential. – It is possible to
describe the time evolution of the electron state |k, s〉
given in Eqs.(3,25) through an effective trapping potential
Veff . Indeed, the integral representation of the exponen-
tial gives, to the lowest order in this potential,

|k, s〉t = e−i(HSC+Veff−εe
k)t|k, s〉

' |ks〉+ Ft(HSC − εe
k)Veff |k, s〉 (26)

with Ft(E) defined in Eq.(11). It is then easy to check that
the above equation reproduces the relevant time regime
(εe

k+2ηQ− εe
k)t � 1 � EX

νQt associated to Eq.25, provided
that the effective trapping potential reads for q = ±2Q
transitions as

Veff ' ζD
|Ω|2

EX
ν0,0

×
∑

p,η=±1

〈p|ν0〉
〈p = 0|ν0〉

|p + ηQ,−σ/2〉〈p− ηQ,−σ/2| , (27)

the Q dependence in the prefactor being possibly neglected
as consistent with QaX � 1. This effective potential tends
to spatially trap the electron as readily seen by writing it
in real space using |p〉 =

∫
dr|r〉〈r|p〉. We then find the

following non-local potential

Veff =
|Ω|2

EX
ν0,0

∫
dr′dr|r′,−σ/2〉〈r,−σ/2|

×KD(r′ − r) cos[Q · (r′ + r)] , (28)

where KD(r) = 〈r|ν0〉〈ν0|r = 0〉 reduces for 2D and 3D to
(x2

D/aD
X)e−(4−D)r. We note that the prefactor in Veff is

positive for photon energy below the exciton resonance but

turns negative above resonance. In the case of a sinusoidal
trap, the potential always has negative regions so that the
electron is trapped whatever the sign of the Veff prefactor.
By contrast, this sign is important if we want to construct
a single trap by using waves with properly adjusted Q
distributions: photons will then have to be tuned above
the exciton resonance.

We have shown in Ref. [5] that for electron trapping me-
diated by the bound trion resonance, the optimal experi-
mental conditions correspond to tuning the laser slightly
below the exciton resonance and above the trion reso-
nance. In this configuration, trapping potentials with
depths of 1 to 2 meV can be achieved with a relatively
low laser intensity (a few kW/cm2 in typical III-V or II-VI
materials), in order to avoid sizeable laser heating. The
Pauli-mediated trapping calculated in this letter has an
overall reduction factor (aX/aT )D compared to the trion
mediated trapping, aT being the characteristic trion size.
It however has a more favorable detuning dependence: for
large detunings, the Pauli-mediated optical trapping scales
as ∼ Ω2/EX , while the bound trion mediated trapping
scales as ∼ Ω2∆T /(EX)2, where ∆T is the trion bind-
ing energy. Pauli-mediated trapping depths comparable
to the bound trion case can in fact be obtained by using
stronger laser intensity but larger detuning so as to avoid
heating effects. Such a regime of strong field and large de-
tuning precisely is the one typically used for atomic optical
lattices.

Conclusion. – We have shown that counter-
propagating laser beams used in a semiconductor system
can trap electrons in optical lattices similar to the ones of
atomic systems. In contrast to other theoretical schemes
existing in the literature [5,8], we here demonstrated that
Pauli blocking is sufficient to confine carriers if the laser
polarization and electron spin allow for the excitation of a
virtual electron pair in a triplet state. This configuration
which does not take advantage of the trionic enhancement
effects discussed in Ref. [5], shows that optical trapping of
electrons in semicondutors can be realized using quite dif-
ferent spin channels. Moreover, the Pauli-assisted optical
potential scales, like for atoms, as the inverse detuning in
the limit of lasers well below the excitonic resonances, in
contrast to the inverse detuning square dependence of the
trion-assisted optical potential. We also show that exci-
tonic effects can lead to both an attractive and repulsive
Pauli-assisted potential, depending if the laser frequency is
tuned above or below the ground state exciton resonance.
The scheme discussed here opens to many possibilities for
integrating optical and electronic control in semiconduc-
tor systems, with potential applications to research areas
such as Bose-Einstein condensation of excitons, quantum
information and spintronics.
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