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The problem of on-demand generation of entanglement between single-atom qubits via a common photonic
channel is examined within the framework of optical interferometry. As expected, for a Mach-Zehnder inter-
ferometer with coherent laser beam as input, a high-finesse optical cavity is required to overcome sensitivity to
spontaneous emission. We show, however, that with a twin-Fock input, useful entanglement can in principle be
created without cavity enhancement. Both approaches require single-photon resolving detectors, and best
results would be obtained by combining both cavity feedback and twin-Fock inputs. Such an approach may
allow a fidelity of 0.99 using a two-photon input and currently available mirror and detector technology. In
addition, we study interferometers based on NOON states, i.e., maximally entangled N-particle states, and
show that they perform similarly to the twin-Fock states, yet without the need for high-precision photodetec-
tors. The present interferometrical approach can serve as a universal, scalable circuit element for quantum
information processing, from which fast quantum gates, deterministic teleportation, entanglement swapping,
etc., can be realized with the aid of single-qubit operations.
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I. INTRODUCTION

Practical quantum information processing will rely on de-
terministic computational gates and high-fidelity communi-
cation protocols that operate successfully on-demand �1–3�.
This requires real-time generation of entanglement among
arbitrary qubits performed at near-unit success probability
and fidelity. For atom-type qubits, this entanglement can be
generated either via a photonic channel, utilizing entangled
photon pairs �3,4� or cavity-decay photons �5–8�, or an
atomic channel as in recent trapped-ion experiments �9,10�.
For high-speed quantum computation and/or long-distance
communication, a photonic quantum channel is clearly ideal,
as photons are robust carriers of quantum information that
travel at the speed of light. Since isolated trapped-atomic
qubits have long coherence times and are easily manipulated
with electromagnetic fields, it is of general interest to con-
sider the problem of creating entanglement between two iso-
lated atomic qubits via their mutual interaction with a single
photonic channel. The primary obstacle to such a protocol
lies in the problem of eliminating spontaneous emission
while obtaining a sufficiently strong atom-photon interaction.
Recent attempts to overcome this difficulty have primarily
relied on the use of collective-state qubits in atomic en-
sembles to enhance the dipole moment of the qubit �11–13�.
This enhancement effect has allowed Duan, Cirac, Zoller,
and Polzik to implement a quantum teleportation scheme be-
tween two atomic samples, where a coherent beam is passed
successively through and the entanglement is generated by
measuring its final Faraday-rotation angle �11�. Very re-
cently, a probabilistic scheme to entangle two distant quan-
tum dots using cavity enhancement has been proposed using
bright coherent light via homodyne detection and postselec-
tion �14�.

In this paper, we investigate an approach in which single-
atom qubits are deterministically entangled by use of an op-
tical interferometer, thus avoiding collisional decoherence
mechanisms inherent in atomic ensembles. It is well known

that the backaction of a single atom onto a focused laser
pulse is very weak, so that generating useful atom-photon
entanglement in this manner will generally fail due to spon-
taneous emission �15�. Our goal, however, is to overcome
this difficulty by using the extreme sensitivity of sub-shot-
noise interferometers �16–24� to detect the weak phase im-
printed on the forward scattered light in the regime where
spontaneous emission is negligible. In addition, we also con-
sider the more generic approach of using high-finesse optical
resonators �25,26� to enhance the atom-photon interaction.
Our interferometry apparatus follows the Faraday-rotation
scheme of Duan, Cirac, Zoller, and Polzik �11�, with the
collective atomic ensembles replaced by single trapped at-
oms, and with the coherent light replaced by a highly non-
classical many-photon state. We first show that for a Mach-
Zehnder �MZ� interferometer with coherent input, a high-
finesse Q-switch cavity is always necessary, and to achieve a
fidelity of f =0.99 requires an optical cavity which cycles the
photon for M =105–106 times. If the coherent state input is
replaced with a twin-Fock �TF� input state, however, we find
that a cavity is in principle no longer required. Cavity feed-
back may still provide additional improvement in perfor-
mance. For example, f =0.99 can be achieved if we use the
TF state with 4�104 photons and no cavity, or only two
photons and cavities with M =2�104. The latter requires a
single photon-on-demand �27� injected into each interferom-
eter input, with an accurate measurement of the two-photon
output state, which appears within the realm of experimental
feasibility. Both MZ-interferometer-based approaches require
detectors with single-photon resolution �28�. This require-
ment, however, can be overcome by employing a non-MZ
interferometer based on NOON states, i.e., maximally en-
tangled N-particle states, and nonlinear beamsplitters. Such
an interferometer yields a sensitivity close to the TF state in
detecting phase imbalance, and thus can achieve similar per-
formance without counting single photons. While the TF and
NOON states have recently been shown as unable to measure
any phase below shot noise in a single measurement
�18,29,30�, our present work shows that single measurements
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with these states can still be highly useful as “quantum
switches” with Heisenberg-limited sensitivity.

Our proposed interferometry approach to entangle atomic
qubits can be performed on-demand and is scalable. We en-
vision generalizing such a device to a complete set of quan-
tum information processing protocols whereby stationary
single-atom qubits are held in isolated traps, with arbitrary
single-atom and multiatom operations achieved via se-
quences of light pulses guided among the atoms and into
detectors by fast optical switching. The goal of this paper is
to perform a theoretical analysis of interferometrical genera-
tion of entanglement between two arbitrary qubits, and to
determine the fundamental limitations imposed by quantum
mechanics.

The paper is organized as follows. In Sec. II, we present a
basic model of the interferometrical generation of entangle-
ment between two atomic qubits. In Sec. III, we study two
MZ-interferometrical approaches using the coherent and the
TF input light fields, respectively. Then in Sec. IV, we inves-
tigate an alternative approach employing NOON states and
nonlinear beamsplitters. In Sec. V, as examples, we briefly
show how the present scheme can be applied to realize de-
terministic teleportation, multisite entanglement, and en-
tanglement swapping. This is followed by a short discussion
and conclusion in Sec. VI.

II. MODEL

In our scheme, a single pulse of light is passed through an
optical interferometer, with the different “arms” of the inter-
ferometer corresponding to different photon polarization
states. The beam passes through two atomic qubits, i.e.,
trapped ions, neutral atoms, and/or quantum dots, such that
each polarization state interacts with a different internal
atomic state. This can be achieved using an “X”-type
scheme, as described in �11�, in which the Zeeman sublevels
of an F=1 /2 ground state form the qubit, or in a �-type
level scheme, with the m= �1 states of an F=1 ground state
forming the qubits. In both cases, the arms of the interferom-
eter would correspond to orthogonal circular polarization
states. The interferometer output is determined by a state-
dependent phase shift acquired via the atom-photon interac-
tion. This requires a large detuning from the atomic reso-
nance, as there is no phase acquired on resonance.
Measurement of a phase imbalance at the interferometer out-
put cannot determine which qubit contributed the phase shift,
resulting in entanglement between them.

We consider atomic qubits based on two degenerate hy-
perfine states, arbitrarily labeled as �0� and �1�. For a general
consideration, our goal is to entangle two uncorrelated qu-
bits, labeled x and y, which are initially in states of ��x�, ��y�,
where

���� = �0
��0�� + �1

��1��, �1�

and �� �x ,y�. The qubits are placed inside an optical inter-
ferometer with the setup depicted in Fig. 1, where the states
�0�x and �0�y interact with photons in the upper arm of the
interferometer, while �1�x and �1�y interact with the lower.
Such interaction is represented by the qubit-photon interac-
tion propagator,

Û� = exp�− i��â0
†â0ĉ�0

† ĉ�0 + â1
†â1ĉ�1

† ĉ�1�� , �2�

where ĉ�m is the annihilation operator for an atom at location
�� �x ,y� in internal state m� �0,1�. This interaction opera-
tor is valid in the far-off-resonance regime, where the elec-
tronically excited state can be adiabatically eliminated. The
interaction is governed by the phase shift

� =
�dE����2	


2�
, �3�

where 	 is the atom-photon interaction time, � is the detun-
ing between the laser and atomic resonance frequencies, d is
the electric dipole moment, and E���=	
� / �2�0V� is the
“electric field per photon” for laser frequency � and mode-
volume V. Introducing the spontaneous emission rate 
=d2�3 / �3��0
c3�, taking the photon mode as having length
L and width W �at the location of the atom�, and taking the
interaction time as 	=L /c, we arrive at the single-atom phase
shift

� =
3

8�

 �

W
�2 

�
, �4�

where � is the laser wavelength. This is the phase shift ac-
quired by an off-resonant photon forward-scattered by a
single atom, and is independent of the pulse length.

The interferometer output is then determined by the phase
shift acquired via the atom-photon interaction. Introducing
the qubit-pair basis �ij���i�x � �j�y with i , j=0,1, the states
�01� and �10� both correspond to a balanced interferometer
with zero net phase shift, and thus constitute a “balanced”
qubit-pair subspace. In contrast, the states �00� and �11� have
equal and opposite nonzero phase shifts, and thus constitute
an “imbalanced” subspace. Measuring the photon number
distribution at the interferometer output distinguishes be-

FIG. 1. �Color online� Schematic setup of entanglement genera-
tion with optical interferometers. �a� shows the setup with the MZ
interferometer which consists of two linear 50/50 beamsplitters
�BS�. �b� shows the setup with the NOON-state interferometer con-
sisting of only one nonlinear beamsplitter �NBS�.
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tween zero and nonzero magnitudes of the phase shifts, and
thus collapses the qubits onto the balanced or imbalanced
subspaces, based on which entanglement between the two is
established.

III. MZ INTERFEROMETER

The basic setup for entanglement generation using the MZ
interferometer is shown in Fig. 1�a�. The MZ interferometer
consists of two 50/50 linear beamsplitters. The input light
field is bifurcated at the first beamsplitter, guided to interact
sequentially with the qubits, and then recombined at the sec-
ond beamsplitter. Passage of photons through the MZ inter-
ferometer can be described by the propagator,

Û = ÛBSÛyÛxÛBS, �5�

where ÛBS is the 50/50 beamsplitter propagator,

ÛBS = exp�− i�â0
†â1 + â1

†â0��/4� . �6�

Without specifying the input light field, the initial states of
the system can be written in a general form

��i� = ��â0
†, â1

†��0� � ��x� � ��y� , �7�

where �0� is the electromagnetic vacuum state and ��â0
† , â1

†�
defines the light field. The state of the system at the interfer-
ometer output is then given by

�� f� = Û��i� = ��Ûâ0
†Û†,Ûâ1

†Û†��0� � ��x� � ��y� . �8�

Introducing dual-qubit spin operator

�z =
1

2 
�=S,T

�ĉ�0
† ĉ�0 − ĉ�1

† ĉ�1� , �9�

we find that

Ûâ0
†Û† = iei��sin���z�â0

† + cos���z�â1
†� , �10�

Ûâ1
†Û† = iei��cos���z�â0

† − sin���z�â1
†� . �11�

The final state can now be rewritten as

�� f� = 
i,j=0,1

�i
x� j

y����ij�� � �ij� , �12�

where ����ij�� is the output light field in the presence of
qubits-dependent interferometer phase �ij =�� �1− i− j�. It is
now evident that the interferometer output is determined by
the joint states of the qubits. The states �01� and �10� result in
zero phase shifts with �01=�10=0, while �00� and �11� result
in equation and opposite phases with �00=−�11=�. If the
interferometer is incapable of distinguishing positive and
negative phases, a measurement of the output light field will
therefore collapse the qubits onto either balanced or imbal-
anced subspaces, and in this way generate entanglement be-
tween them.

We note that our MZ interferometer scheme is closely
related to the Faraday-rotation scheme of Duan et al. �11�,
which effectively replaces the first beamsplitter with a linear-

polarized initial coherent state. In fact, for the special case of
a circularly polarized coherent state at one input port and
vacuum at the other, the present MZ interferometry scheme
maps directly to the Faraday-rotation scheme. As we will
show next, an interferometer of this class is limited to shot-
noise sensitivity, and will thus not work when the ensembles
are replaced by single atoms without the introduction of ex-
tremely high-finesse optical resonators. Viewing the
Faraday-rotation scheme instead as a MZ interferometer
clearly highlights the possibility to incorporate nonclassical
input states to achieve sub-shot-noise sensitivity, which is the
focus of the present manuscript.

A. Coherent-state input

For the coherent-state input, the upper channel, described
by creation operator â0

†, is initially in a coherent state, while
the lower channel â1

† is in the vacuum state. A detector is
used to count the photons coming from the upper output
channel, while output in the lower channel is unmeasured. A
null result, meaning zero photons detected, results in the qu-
bits collapsing onto the balanced subspace,

�0
x�1

y�01� + �1
x�0

y�10� + ��� , �13�

where ��� is the intrinsic state error due to the possibility of
a false null result. This error, which adds imbalanced states
to the desired balanced subspace, sets the upper limit of the
obtainable teleportation fidelity. If n�0 photons are de-
tected, the qubits will collapse onto imbalanced subspace,

�0
x�0

y�00� + �1
x�1

y�− 1�n�11� , �14�

without intrinsic error. We note that the possibility of a dark
count will introduce an analogous error, but this error rate is
governed by technical aspects of the photodetector, and is
presumably not an intrinsic quantum error.

To derive these results for coherent input state, the initial
state of the complete system is given by Eq. �7�, with

�i�â0
†, â1

†� = e−�â0
†+��â0. �15�

Following Eq. �16�, the state of the system at the interferom-
eter output is obtained as

�� f� = 
i,j=0,1

�i
x� j

y�ij� � ��̄ sin �ij�0 � ��̄ cos �ij�1, �16�

where �̄=−i�ei� and the states ���0,1 indicate optical coher-
ent states for the upper and lower interferometer outputs,
respectively. Expanding the upper channel onto photon
number-eigenstates and making the small-angle approxima-
tion gives

�� f� = 
n=0

�

�n�0 � ��̄�1 � ��n�xy , �17�

where �n�0 indicates a state with n photons in the upper out-
put, and

��0�xy = �0
x�1

y�01� + �1
x�0

y�10� + ��� , �18�
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��n�0�xy = fn��0
x�0

y�00� + �− 1�n�1
x�1

y�11�� , �19�

where

��� = e−���2�2/2��0
x�0

y�00� + �1
x�1

y�11�� �20�

and

fn =
�̄n

	n!
e−���2�2/2. �21�

The photon number in the upper channel is then measured
with single-photon resolution, while the output from the
lower channel is left unmeasured. From Eq. �17�, the prob-
ability of detecting n photons P�n� is given by

P�n� = ��n,0 + �1 − ��e−N�2 �N�2�n

n!
, �22�

where �= ��0
x�1

y�2+ ��1
x�0

y�2 is the weight of balanced-space
states in the initial qubits’ state. The probability of detecting
zero photons is thus

P�0� = ��1 − �� + � , �23�

where �=e−N�2
indicates the probability of a false null result.

On detecting the null result, the qubits’ state will collapse
onto

��B� =
1

	��1 − �� + �
��0

x�1
y�01� + �1

x�0
y�10� + 	���0

x�0
y�00�

+ �1
x�1

y�11��� . �24�

The fidelity upon this null result fnul, which measures the
weight of balanced states in ��B�, is thus

fnul =
�

� + �1 − ���
, �25�

which is nonunity due to the nonzero probability of a false
null result. The condition for faithful teleportation is then
��1, or N�2�1, characteristic of a standard-quantum-limit
interferometer.

The remaining time, a photon number n�0 is detected,
with the qubit state collapsing onto the imbalanced space
with unit fidelity,

��U� =
1

	1 − �
��0

x�0
y�00� + �− 1�n�1

x�1
y�11�� . �26�

The �−1�n term comes from the phase difference between
number states for the coherent states ��� and �−��, i.e., while
measuring the photon number cannot distinguish the states
�00� and �11�, it can introduce the relative phase between
them. If the photon number is definitely nonzero, yet not
measured exactly, then tracing over the photon number cre-
ates a statistical mixture of �00� and �11�. In this case, the
protocol would create an entangled state with nonunity suc-
cess probability �, but success would be heralded by the
verification of zero photons in the upper output. Most likely,
the initial state �m

� =1 /	2 would be prepared so that �
=50%. For entanglement on-demand, however, it is neces-
sary to determine the photon number exactly. This difficulty

is somewhat mitigated by the fact that the average photon
number is n̄0=−log2 �, i.e., only five photons must be
counted for �=0.01 and 7 for �=0.001.

Leaving the lower output unmeasured means that comput-
ing the output state requires tracing over the lower mode. In
the proceeding derivation we have taken this trace to be
unity. In reality, it is less than unity due to the nonorthogo-
nality of the balanced and imbalanced lower output states,
governed by the overlap

�1��̄ cos �ii��̄ cos �ij�1�2 � 1 − �1 − �ij��4N/8 = 1 − O�1/N� .

�27�

Here, N= ���2 is the mean input photon number and the last
equality is because our scheme requires N�2�1. The result-
ing error is then �1 /N, which can be neglected for large N.
This result validates the small-angle approximation made for
the final state as in Eq. �17�, where the lower-channel light
field is assumed �-independent and factorized from the re-
maining system.

The overall fidelity due to state error in this interfero-
metrical entanglement generation is obtained by averaging
over the null and not-null results, giving

favg = P�0�fnul +  P�n � 0�1 = 1 − �1 − ��� . �28�

Since ��0, it is always favg�1−�, regardless of the quan-
tum states of the two qubits.

Aside from the technical challenge of single-photon
counting, the fundamental quantum-mechanical barrier to
successful teleportation lies in finding a balance between
phase-shift detection and spontaneous-emission avoidance,
as a single spontaneously scattered photon can destroy the
coherence of a qubit. The spontaneous emission probability
for a single qubit is �N /�, which becomes negligible when
�N /��1. This condition must be satisfied without violat-
ing the shot-noise-sensitivity condition N�2�1. From Eq.
�4� it follows that compatibility requires 16�W /��2�1,
which clearly violates the standard optical diffraction limit.
That such a scheme can therefore not work is in agreement
with common understanding �15�.

B. Coherent state input with cavity feedback

To overcome the effects of spontaneous emission, we can
place the two qubits in separate high-finesse optical cavities,
with mechanical Q switching employed to restrict the photon
to M passes through each qubit. This will increase the phase
shift � and the spontaneous emission probability Psp by a
factor of M. This relaxes the compatibility condition to
8�W /��2�M, which can be satisfied without subwavelength
focusing.

The failure probabilities due to interferometry sensitivity
and spontaneous emission are then �=e−NM�2

and

PSP = 2NM�/� , �29�

respectively. Setting Psp=�=0.01, corresponding to a fidelity
of 0.99, and taking W /�=3 gives
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M = − 144 log2 �/� = 6.6 � 105, �30�

which is large but not necessarily outside the range of current
experimental techniques. For these parameters, the mean
number of photons in the upper output is n̄0=4, and the input
photon number is restricted only by the condition N� /��2

=144� /M =4.4�10−6, together with the off-resonant condi-
tion ��.

A main difficulty in long-distance quantum communica-
tion is photon loss during qubit-to-qubit transmission, where
the loss probability increases exponentially with the transport
distance. In schemes based on cavity QED �5–8�, atomic
qubits’ states are encoded in the internal �polarization� states
of photons, and thus a lost photon will immediately reveal
the atomic states and destroy the qubits via decoherence. In
contrast, during an interferometrical communication, the qu-
bits’ state information is encoded in a form of relative phase
shifts of photons propagating in the upper and lower arms.
Such a shift is not a measurable quantity until the two chan-
nels are recombined at a second beamsplitter. Thus the lost
photon cannot reveal the state of the qubit, and one might
suspect that the qubit coherence would be preserved. On the
other hand, due to the photon-atom interaction, a lost photon
will introduce a small relative phase shift to the qubits. The
magnitude of the relative phase is �, but the sign depends on
which interferometer arm lost the photon. Tracing over
which arm thus results in effective decoherence and thus a
reduction in the fidelity of entanglement.

To see this, we first consider one photon lost during
propagating between the first and the second qubits. This will
alter the final state into

�� f�� =	 2

N
ÛBSÛyâqÛxÛBS��i� , �31�

with q=0,1 corresponding to the loss in upper and lower
arms, respectively. The identity

ÛBSÛyâqÛy
†ÛBS

† = ei�ĉyq
† ĉyq�âq − iâ1−q�/	2 �32�

enables us to write

�� f�� =	 1

N
ei�ĉyq

† ĉyq�âq − iâ1−q�Û��i� �33�

=�− i�qei�ĉyq
† ĉyq�� f� , �34�

where in the last step we have used the fact that for the
present input state �15�, âq��i�=��q,0��i�. It is now clear
that the net effect of one lost photon is equivalent to intro-
ducing a relative phase �� to the qubit, where ��1. In the
case of random photon losses, such phase disturbances will
lead to the unknown drift of the qubit’s state and thus a
reduction in the overall fidelity of the entanglement genera-
tion. To estimate this fidelity reduction, we introduce the lost
photon number distribution f�k�. Because each photon is lost
independently, f�k� will exhibit a Poisson distribution, where

for a mean loss number k̄, the variance is 	k̄. For simplicity,
we approximate f�k� with a Gaussian,

f�k� =
e−�k − k̄�2/2k̄

	2k̄�
. �35�

The system’s density �loss after the loss is then a mixture of

�loss = 
k,k�

�− i�k�f�k�f�k���P̂0�k�P̂1�k��� f��� f��P̂1
†�k��P̂0

†�k,

�36�

where we have introduced the y-qubit projector

P̂q = ei�ĉyq
† ĉyq = ei��q�y�q� + �1 − q�y�1 − q� . �37�

Defining the reduced fidelity due to the photon loss,

f loss = tr���loss� , �38�

it is found

k̄ =
N log2�2f loss − 1�

log2 �
. �39�

Taking f loss=1−�=0.99 gives k̄=0.004N, meaning about one
photon can be lost in every 250 photons.

In conclusion, in this section we showed that the MZ-
interferometrical generation of entanglement using coherent
state is quantum-mechanically allowed only with the aid of
optical resonators. We found that a fidelity of 0.99 can be
achieved using ring cavities which cycle photons for 6.6
�105 times, with about four photons needing to be measured
accurately at one output. Furthermore, we found that unlike
most cavity-QED schemes, the present approach can be tol-
erant of a small photon loss rate.

C. Twin-Fock state input

To achieve a higher fidelity, and/or to eliminate the need
for a high-finesse resonator, we now consider using sub-shot-
noise interferometers to overcome the spontaneous emission
to phase sensitivity. In this section, we investigate the funda-
mental limits when a twin-Fock �TF� photon input state is
used to increase the phase sensitivity of the MZ interferom-
eter. The TF input setup differs in that the photon number
difference between the outputs must be measured. In this
case, a result of zero number difference constitutes a null
result.

The input state is now �N ,N�, with the dual-Fock basis
defined as

�k,l� = �â0
†�k�â1

†�l�0�/	k ! l!. �40�

The TF input state is then �N�0�N�1 with 0, 1 corresponding to
upper and lower inputs as before. Following Eq. �16�, the
output state is now

�� f� = 
ij

�i
x� j

y�ij� � 
m=−N

N

�m��ij��N + m,N − m� , �41�

where
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�m��ij� = 
l=max�0,−m�

min�N,N−m�

�− 1�m+l�m + l

N
�� l

N
�

�
	�N + m� ! �N − m�!

N!
�sin �ij�m+2l�cos �ij�2N−m−2l.

The desired two-qubit entangled state is then created by mea-
suring the photon number difference between the upper and
lower outputs. It is seen from Eq. �41� that the probability of
detecting a difference of 2m is given by

P�2m� = ��n,0 + �1 − ���m
2 ��� , �42�

where again �= ��0
x�1

y�2+ ��1
x�0

y�2. The probability to detect
zero photon number difference �or a null result� is thus

P�0� = ��1 − �� + � , �43�

where �=�0
2��� is the probability of a false null result. On

detecting the null result, the qubit state will collapse onto

��B� =
1

	��1 − �� + �
��0

x�1
y�01� + �1

x�0
y�10� + 	���0

x�0
y�00�

+ �1
x�1

y�11��� , �44�

with the corresponding fidelity

fnul =
�

� + �1 − ���
. �45�

The remaining time, a photon number difference m�0 is
detected, with the qubits collapsed to

��U� = �0
x�0

y�00� + �− 1�m�1
x�1

y�11� . �46�

Here, similar to the coherent state, the exact photon number
difference must be measured in order to successfully disen-
tangle the qubits. The overall fidelity in this entanglement
generation is then

favg = 1 − �1 − ��� � 1 − � . �47�

The TF input thus yields results similar to the coherent-
state input, but with the intrinsic error due to interferometer
sensitivity given by � instead of �. A comparison plot of �
and � is shown in Fig. 2, where it is seen that � decreases
with N much faster than �. In fact, for N��1, ��e−N2�2

,
which is characteristic of a Heisenberg-limited phase sensi-
tivity. This means that significantly fewer photons are re-
quired to obtain equal fidelity, with a corresponding reduc-
tion in spontaneous emission. In Fig. 2, we see that the false-
null probability � is exactly zero for a periodic set of values
of N�. The first such zero occurs at N�=1.196�x1. Thus if
one can precisely control N�, it is possible to achieve tele-
portation without intrinsic error due to false-null results. In
this case, the success of teleportation is governed only by
spontaneous emission probability Psp=2N� /�=2x1 /�.
The condition N�=x1, together with Eq. �4�, means that
 /�= �8x1 /N��W /��2, so that

Psp = �16x1
2/N��W/��2. �48�

For the case of a tightly focused beam, we can take W /�
�3; this gives Psp=206 /N. The theoretical limit to fidelity

therefore scales as �1–200 /N thus a fidelity of f =0.99
would require N=2�104 �or a total of 4�104 photons�,
while a fidelity of f =0.999 could be achieved with N=2
�105. An extremely high fidelity of f =0.999 999 would
therefore require N=2�108. The addition of a Q-switched
cavity with M cycles replaces N with the effective photon
number MN resulting in the spontaneous emission probabil-
ity Psp=206 / �NM�, which for M =2�104, would reduce the
photon numbers to N=1 for f =0.99, N=10 for f =0.999, and
N=104 for f =0.999 999.

The exact elimination of false-null-induced reduction in
fidelity requires the precise control of single-particle phase
shift �, as well as the particle number N. Imprecise controls
of either will lead to ��0, and thus a reduction in overall
fidelity. To estimate this effect, we let N�=x1+�, with �
resulted from the displacement of � and/or N. Expanding
��x1+�� near ��x1�=0 gives

��x1 + �� � 1.3�2. �49�

For a fidelity of f =1–200 /N �with �=200 /N�, it requires
��12.4 /	N. This then requires �1−9.5�1

1.5����1+9.5�1
1.5,

where �1=x1 /N is the desired per-atom phase shift. This al-
lows a relatively flexible control of �.

Last, we note that for the TF input and the present param-
eter choice of N�=x1, a single photon loss will immediately
reduce the fidelity, with a worst-case result of f =0.73 and
thus disrupt the on-demand entanglement generation scheme.
This is because a lost photon will lead to a rapid degradation
of the interferometer sensitivity. To see this, for the TF input
state, one photon lost from the qth path during qubit-to-qubit
propagation will result in the final state,

�� f�� =	 1

N
ÛBSÛyâqÛxÛBS��i� . �50�

Using the identity �32�, we find

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Nθ

ε,
η,

κ

η
κ
ε

FIG. 2. �Color online� An example of intrinsic error due to in-
terferometer sensitivity. Errors for MZ interferometer with coherent
� �solid�, FT input � �dashed�, and NOON-state interferometer �
�dashed-dotted� are plotted as functions of N� �with N=103�, re-
spectively. Note that while � is dependent on N�2, both � and � are
dependent on N�.
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�� f�� =	 1

2N
�ei�ĉyq

† ĉyq�âq − iâ1−q��Û��i� , �51�

=	 1

2N

ij

�i
x� j

yP̂q�ij� � 
m=−N

N

�m��ij�

���− i�q	N + m�N + m − 1,N − m�

+ �− i�1−q	N − m�N + m,N − m − 1�� ,

with the projector P̂q defined in Eq. �37�. A lost photon will
therefore result in odd number differences of photons mea-
sured in the two output ports. Since without photon loss, a
TF state will always result in even number differences, it is
in this way possible to determine the loss of a single photon
�without knowing which path it is lost from�. Seemingly, this
makes it possible to detect the phase imbalance if we accord-
ingly redefine a null result as the measured photon number
difference being 1. The false-null rate, as given by

�loss = ��0��� + i�1���	1 + 1/N�2, �52�

is, however, no long a small quantity. A comparison of �loss

and � is plotted in Fig. 3, where it is shown that �loss be-
haves as the envelope of � without the zero-value points. In
particular, with the present choice of N�=x1, it is found
�loss�0.27, in contrast to the corresponding rate �=0 with-
out the loss. Depending on the qubits’ states, a photon loss
will thus immediately degrade the fidelity to f �0.73.

On the other hand, �loss is yet much smaller than the
corresponding false-null rate � for the coherent state. Hence
if we presume one photon will be lost and set the value of N�
accordingly, we may still generate entanglement without the
cavity enhancement. In fact, as shown in Fig. 3, a least-
square fit finds

�loss =
0.33

N�
. �53�

Letting �loss= Psp and using Eq. �4� gives

Psp =
2.6

N1/3 , �54�

for W /�=3. The limit to fidelity thus scales as 1–2.6 /N1/3,
and a fidelity of f =0.99 will require N=1.8�107, compared
to N=2�104 without photon loss. Entanglement can in this
sense still be generated without the need of cavities, while
the single-photon loss can be compensated by using more
photons. Last, we note that f �1–2.6 /N1/3 is also the lower
limit on the fidelity achievable when the phase shift cannot
be tuned such that ��N��=0. This is simply because �loss is
the envelope of �, and for any N and �, ���loss.

In conclusion, in this section we have shown that for a
MZ interferometer with the TF input, atom-atom entangle-
ment can be generated with much higher fidelity, and the
need for high-finesse optical resonators can in principle be
eliminated. Particularly, we found that a fidelity of 0.99 is
quantum-mechanically allowed with 20 000 photons, or
more intriguingly with only two photons, provided ring cavi-
ties which cycle photons 2�104 times are additionally in-
corporated. The two-photon TF state could be generated with
a pair of single-photon-on-demand sources �one for each in-
put� and a precise photon detector to measure the two-photon
output state, technologies that are rapidly advancing at
present. Finally, we have shown that the present scheme is
relatively insensitive to deviations in the per-atom phase
shift, yet is highly sensitive to loss of a single photon. This is
somewhat mitigated by the fact that for the two-photon state,
the loss of a photon could be readily detected, so that success
is heralded by the detection of both photons.

IV. NOON-STATE INTERFEROMETER

In above sections, we have discussed generating entangle-
ment between atomic qubits using an optical MZ interferom-
eter with coherent and TF input states. While both are shown
to be able to achieve a close-to-unit fidelity in the presence
of intrinsic quantum errors, they require precise measure-
ment of output light field at the single-photon level. In this
section, we show that this requirement can be overcome by
using a non-MZ interferometer based on NOON states and
nonlinear beamsplitters �31�.

A NOON state is a macroscopic quantum superposition
�Schrödinger cat� state that corresponds to an equally
weighted superposition of all-upper-channel and all-lower-
channel states �21,32–35�,

�NOON� =
1
	2

��N,0� + ei��0,N�� , �55�

where � is the relative phase which we take for zero for
simplicity. The nonlinear beamsplitter can either be a four-
wave mixer �22,36� or a quantum circuit constructed from
controlled NOT �CNOT� gates �1�. Without further explaining
its operational mechanism or examining the practical feasi-
bility, for the present we simply treat the action of such

beamsplitters with a projecting operator ÛNBS of the general
form

0 5 10 15 20
0

0.05

0.1

0.15

0.2

Nθ

η,
ηlo

ss
ηloss

η
0.33/Nθ

FIG. 3. �Color online� Comparison of �loss and �. Note that both
depend only on the product N�.
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ÛNBS =
1
	2


s

�ei��s,0� + �s,0���0,s�

+ ei��ei��s,0� − �0,s���0,s� ,

where for simplicity we let the relative phases �=�=0. Note
that for the four-wave mixer, this projector is valid only for
even-number s. Using this nonlinear beamsplitter, a NOON
state can be generated from a single Fock state �N ,0�, i.e., by
injecting N photons in its upper input channel.

The setup of the NOON-state interferometer differs from
a MZ interferometer in that now the first beamsplitter is
dropped �or more precisely, it is formally replaced by the
assumption of a NOON input state� while the second one is
replaced by the nonlinear beamsplitter, as shown in Fig. 1�b�.
For measurement, a photon detector is placed in the lower
�or equivalently, the upper� output port to detect the presence
of outcoming photons, without counting them. Because the
output light field consists of �N ,0� and �0,N� states, corre-
sponding to all photons coming out from the upper or lower
port, a photon detector with a resolution of �N /2 would be
sufficient to distinguish them. This exhibits an essential im-
provement from the previous MZ interferometry schemes,
where the detector resolution must be less than 1. A null
result, meaning no photon is detected at the lower channel,
will collapse the qubits onto

�0
x�1

y�01� + �1
x�0

y�10� + ��� , �56�

with ��� the intrinsic state error due to a false-null result. In
contrast, if a photon is detected, the qubits will collapse into
the imbalanced subspace,

�0
x�0

y�00� + �1
x�1

y�11� . �57�

Here, we emphasize that this state is independent on the
exact number difference n between the upper and lower out-
puts. This is essentially different from the corresponding
ones in Eq. �26� with the coherent state and in Eq. �46� with
the TF state, both of which are dependent on n.

To derive these results, we follow the previous approach
and find the final state of system as

�� f� = ÛNBSÛyÛx
 1
	2

��N,0� + �0,N�� � ��x� � ��y��
= 

i,j=0,1
�i

x� j
y�ij� � �cos N�ij�N,0� − i sin N�ij��0,N� ,

where we have dropped an irrelevant global-phase term in
the last step. The probability of a null result is thus

Pnull = ��1 − �� + � , �58�

with �=cos2 N� the intrinsic error rate. On detecting this
null result, the qubits will collapse onto

��B� =
1

	��1 − �� + �
��0

x�1
y�01� + �1

x�0
y�10� + 	���0

x�0
y�00�

+ �1
x�1

y�11��� , �59�

where �=cos2 N� is the false null rate. The corresponding
fidelity is then

fnul =
�

� + �1 − ���
. �60�

The remaining time, a non-null result is detected, projecting
the qubits onto the imbalanced subspace,

��U� =
1

	1 − �
��0

x�0
y�00� + �1

x�1
y�11�� . �61�

The overall fidelity averaging over the null and non-null re-
sults is given by

favg = 1 − �1 − ��� . �62�

The fidelity in this entanglement generation is thus similar to
the MZ interferometry cases but with the intrinsic error rate
given by �. A comparison of � ,� ,� is shown in Fig. 2,
where it is shown that for N��1, � is close to �, exhibiting
a Heisenberg-limited phase sensitivity. Furthermore, � is ex-
actly zero at N�=� /2, compared to 1.196 for �. This means
the NOON-state interferometer can achieve similar perfor-
mances with the TF state. The fidelity after taking into ac-
count the possibility of spontaneous emission therefore
scales as f �1–350 /N. A fidelity of f =0.99 and f =0.999
will then require N=3.5�104 and N=3.5�105 photons, re-
spectively. Since there is no requirement on exactly counting
output photons, N can in principle be made large, allowing
an arbitrary close-to-unit fidelity, at least quantum mechani-
cally. Finally, similar to the TF state, in order to suppress a
false-null rate, for a fidelity of �1–350 /N, � must be tuned
within an interval of ��1−8.1�1

1.5 ,�1+8.1�1
1.5� with �1

=� /2N.
The present entanglement generation using NOON states

will be completely disrupted by a single-photon loss. This is
due to the fact that a randomly lost photon will immediately
collapse the NOON state to a statistical mixture of all-upper-
channel and all-lower-channel states, whose reduced density
is given by

�loss =
1

2
��N − 1,0��N − 1,0� + �N − 1,0��N − 1,0�� . �63�

This mixture state is apparently incapable of detecting phase
imbalances. This problem, however, might be overcome by
using a class of less-extreme catlike states �37,38�. Such a
states corresponds to a symmetric superposition of two well-
separated wave packets in number-difference space. In the
case of small photon losses, instead of being completely de-
stroyed, they will decay into a mixture of smaller-sized cat-
like states, which are still suitable for the purpose of detect-
ing phase imbalance. Hence aside from a reduction in fidelity
due to phase randomization, faithful entanglement might be
generated despite photon loss. A further study of generating
entanglement using less-extreme catlike states will be pre-
sented in future work.

Finally, we note that the present NOON-state interferom-
eter relies on a highly nonclassical light source with a defi-
nite photon number. This requirement is, however, not nec-
essary. For example, our scheme can be directly extended to
use more “classical” cat input states that correspond to the
superposition of coherent states,
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���0 � �0�1 + �0�0 � ���1. �64�

Such a state can be rewritten as


m

f�m���m,0� + �0,m�� , �65�

where f�m� is the coefficient of the coherent state and can be
approximated by

f�m� =
1

	N
e−�m − N�2/4N, �66�

where N is the normalization factor. A probabilistic scheme
to generate this state but containing only even m’s has been
proposed, with a success probability of 0.5, where a single
coherent light and a four-wave mixer are employed �22�.
With this input, the final state of the system becomes

�� f� = 
i,j=0,1

�i
x� j

y�ij� � 
m

f�m��cos m�ij�m,0� − i sin m�ij�

��0,m� . �67�

By choosing N�=� /2, similar to the single NOON state,
upon detecting photons from the lower port, the qubit will
collapse to imbalanced subspace �61�. Otherwise, if no pho-
ton is detected from the lower port, the qubits will collapse
to the state �59� but with the false null rate given by

�� =
1

2N
m

e−�m − N�2/2N�1 + cos m�� =
1

2
�1 − e−�2N/2� .

�68�

Since N�=� /2, we have ����2 /16N, which is negligible
compared to the fidelity reduction ��350 /N� due to the
probability of spontaneous emission.

To conclude, in this section we have shown that a NOON-
state interferometer can achieve similar performance with the
TF state, yet without the requirement for precisely measuring
the output light field. While this scheme is not tolerant of a
single photon loss, this problem might be overcome by using
a class of less extreme cat states. Also, besides using a single
NOON input state with definite photon number, we have
shown that the present scheme can also use a class of states
with indefinite photon number that correspond to the super-
position of NOON states.

V. EXAMPLES OF APPLICATIONS

The present interferometrical method of generating en-
tanglement can serve as a basic protocol in the quantum in-
formation processing, based on which quantum computation
and communication can be realized with the aid of local
qubit operations. As an example, here we first show how it
can be used to teleport an arbitrary quantum state from one
qubit to another. We assume the x qubit is the source qubit
carrying an unknown teleporting quantum state, and the y
qubit is the target qubit to which the state is transported. The
x qubit is initially in the state

��x� = �0
x�0�x + �1

x�1�x, �69�

while the y qubit is initially prepared as

��y� =
1
	2

��0�y + �1�y� . �70�

We first collapse the two qubits into entangled qubit pair
interferometrically using our method. Once the qubit pair is
generated, completing the teleportation requires that the qu-
bits be disentangled. This can be accomplished in the follow-
ing manner. Conditional upon a null result, a � pulse is ap-
plied to the source qubit, flipping �0�x↔ �1�x. When using a
MZ interferometer with the coherent or TF state, in the case
of an odd measured n, an additional relative � phase must be
applied to the state �1�x �or �1�y�. After these steps, the qubits’
state becomes

�0
x�00� + �1

x�11� . �71�

A � /2 pulse is then applied to the source �or the target�
qubit, transforming the state into

��0
x�00� − i�0

x�10� − i�1
x�01� + �1

x�11��/	2. �72�

This is followed by a state measurement of the x qubit. If it
is measured �0�x, the y qubit will collapse to

�0
x�0�y − i�1

x�1�y , �73�

after which a � /2 phase is imprinted onto �1�y. Otherwise, it
is measured in �1�x, and a � /2 phase is imprinted onto �0�y.
After these conditional operations, the y qubit will end up in
the desired state,

�0
x�0�y + �1

x�1�y , �74�

which accomplishes the teleportation.
Besides the state teleportation between two qubits, our

scheme can be easily generalized to generate many-qubit en-
tanglement �39� as well as realize entanglement swapping
�40,41�. For example, the three-particle Greenberger-Horne-
Zeilinger �GHZ� state,

��000�xyz + �111�xyz�/	2, �75�

can be created by first preparing each qubit in the state

���� =
1
	2

��0�i + �1�i� , �76�

with i=x ,y ,z. Then the two-qubit protocol is used to col-
lapse x and y into the state

��00�xy + �11�xy�/	2 � ��0�z + �1�z�/	2. �77�

If the same two-qubit procedure is applied to B and C, the
GHZ state is obtained. This simple scheme can be extended
in a straightforward manner to producing an N-particle
Shrödinger cat state.

To realize entanglement swapping, we take an initially
entangled qubit pair,

1
	�c00�2 + �c11�2

�c00�00�xy + c11�11�xy� , �78�

and an uncorrelated third qubit
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��z� =
1
	2

��0�z + �1�z� �79�

and apply our protocol to qubits y and z to create a GHZ-like
state. Then, by disentangling y in the same manner as de-
scribed for the source qubit in teleportation, we arrive at the
desired swapped state,

1
	�c00�2 + �c11�2

�c00�00�xz + c11�11�xz� . �80�

VI. CONCLUSION

In conclusion, we have used the formalism of the optical
interferometer to treat the problem of creating entanglement
among single-atom qubits via a common photonic channel.
We have compared the results from a MZ interferometer
with a coherent input state and high-finesse cavity enhance-
ment, a MZ interferometer with TF input, and those from a

non-MZ interferometer based on the NOON state and non-
linear beamsplitter. Our results suggest that high-fidelity en-
tanglement can in principle be generated via any of the in-
terferometrical approaches. Experimental feasible schemes
under current techniques are found by combining a
Heisenberg-limited interferometer with photon resonators. In
particular, we find that a two-photon input state has a funda-
mental upper limit to fidelity of 0.99, and provides the ad-
vantage that failure due to photon losses could be readily
detected. Our interferometrical approaches of generating en-
tanglement is operated on demand and is scalable, and thus
can serve as a universal protocol in quantum information
processing, based on which quantum computation and com-
munication can be realized with the aid of single-qubit op-
erations.
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