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A Mach-Zender interferometer with a Gaussian number-difference squeezed input state can exhibit
sub-shot-noise phase resolution over a large phase interval. We derive the optimal level of squeezing for a
given phase interval ��0 and particle number N. We then propose an adaptive measurement sequence in
which the amount of squeezing is increased with each measurement. With this scheme, any phase on
����0;��0� can be measured with a precision of 3:5=N, requiring only 2– 4 measurements, provided
only that N tan���0�< 1040. In a double-well Bose-Einstein condensate, the optimized input states can be
created by adiabatic manipulation of the ground state.
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Measuring an arbitrary phase with precision well above
the standard quantum limit (SQL) has been a long-standing
challenge in quantum interferometry [1–4]. The SQL
minimum phase uncertainty is 1=

��������
Ntot

p
, but the theoretical

lower limit to the phase uncertainty, known as the
Heisenberg limit (HL), is 1=Ntot, where Ntot is the total
number of particles used in the determination of the phase.
There have been many proposals to achieve 1=Ntot scaling
in a two-input interferometer, using number-difference
squeezed input states [1–3,5], coherent and/or squeezed-
vacuum input states [6–8], or the maximally entangled
N-particle NOON state 1

2 �jN; 0i � j0; Ni� [9–12].
Recently, the double-well Bose-Einstein condensate
(BEC) has emerged as a promising system for high-
precision matter-wave interferometry [13–17], including
progress towards atom counting at the single-particle level
[18,19]. For this system, the squeezed-vacuum protocols
are not applicable, and the NOON state is highly problem-
atic due to the periodicity of the phase distribution [20,21],
leaving the number-difference squeezed state as the most
viable candidate. With such squeezed states, however,
there has yet been no systematic study of how to measure
an arbitrary nonzero phase at or near HL precision in the
large-N limit. In this Letter, we perform such an analysis
and show that an asymptotic scaling of �ln�lnNtot��=Ntot can
be achieved via multiple adaptive measurements with
Gaussian number-squeezed states, which can be readily
created in a double-well BEC.

For measuring a phase of � � 0, it has been shown that
the Twin-Fock (TF) state and the related Pezze-Smerzi
(PS) state can achieve Heisenberg scaling [20,22–24].
We find, however, for � � 0 that the phase uncertainty of
the TF and PS states rapidly decay to worse than the SQL
and, in the limit of large N, approach constant values,
independent of N. While the PS state was investigated
only for � � 0, Kim et al. [24] investigated � � 0 for the
TF state with N � 100. They observe a phase uncertainty
�1=Ntot for � < 1=N and growing rapidly thereafter. Our
results similarly indicate that the TF and PS states become
worse than the shot noise for �	 1=N.

To find the optimal input state, we constrain ourselves to
the ground states of a double-well BEC with repulsive
interactions for experimental obtainability. The double-
well BEC system is described by the Hamiltonian

 Ĥ��� � �2�Ĵx � �Ĵz �UĴ
2
z ; (1)

where � is the interwell tunneling rate, U is the atom-atom
interaction strength, and � is the asymmetric tilt of the
double well, presumably due to the external perturbation
being measured. The angular momentum operators are
defined as Ĵx �

1
2 �ĉ

y
LĉR � ĉ

y
RĉL�, Ĵy �

1
2i �ĉ

y
LĉR � ĉ

y
RĉL�,

and Ĵz �
1
2 �ĉ

y
LĉL � ĉ

y
RĉR�, with ĉL and ĉR being the anni-

hilation operators for particles in the two localized modes.
For repulsive atom-atom interaction and � 
 0, the ground
state is very close to a Gaussian squeezed (GS) state of the
form j�i /

PN=2
n��N=2 e

�n2=4�2
jni, where jni is a number-

difference eigenstate satisfying Ĵzjni � njni. The width �
depends on the parameter u � U=� and is given by �2 �

N=4
����������������
1� uN
p

[25]. The squeezing parameter for the state
is then s � 2�=

����
N
p

. The nature of our adaptive mea-
surement scheme requires that we tune u to an optimal
value which takes into account our prior knowledge of N
and �; thus, we have u! u�N; ��. This tuning is accom-
plished by varying U=� via a Feshbach resonance and/or
changing the shape of the double-well potential and allows
� to be varied between 0 and

����
N
p

=2, corresponding to
maximal number-difference squeezing and no squeezing,
respectively.

To implement a Mach-Zehnder interferometer (MZI),
we set U � 0 and allow tunneling for t � �=4� duration,
thus realizing a linear 50=50 beam splitter, described by the
propagator ei��=2�Ĵx . This is followed by a sudden raising of
the potential barrier to turn off tunneling and allow phase
acquisition due to the small but nonvanishing �. By hold-
ing the system for a measurement time T, a phase shift of
� � ��T will be acquired, described by the propagator
ei�Ĵz . The barrier is then lowered again to implement a
second beam splitter.
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In the MZI, a symmetric input state j�ini is transformed
into the phase-dependent output state j�outi�

ei��=2�Ĵxei�Ĵzei��=2�Ĵx j�ini�e
�i�Ĵyei�Ĵx j�ini [1]. Applying

this transformation to a typical GS state results in an output
state whose properties are easily understood using the
Bloch-sphere quasiprobability distribution [5], which as-
signs a probability to each point on a sphere of radius N=2

according to P��;�� � jhN=2jeiĴy��=2���eiĴz�j�outij
2. In

this picture, the TF and PS states are thin equatorial rings,
and a GS input state is an ellipse centered on the Jx axis,
compressed along the Jz direction. Typical GS input and
output states are shown in Fig. 1(a).

Phase information is obtained by measuring the number
difference between the two interferometer modes, which
projects the output state onto a Ĵz eigenstate. Quantum
fluctuations in this measurement are governed by the pro-
jection of the output distribution onto the Jz axis. Because
of the rigid rotation, the width of the projection will be
determined by a �-dependent combination of the Jz and Jx
noise of the input distribution. The goal of this Letter is
thus to find the optimal amount of squeezing to minimize
the phase uncertainty given a fixed particle number N and
an initial estimated phase �0 with uncertainty ��0.

Before we present numerical results from a rigorous
Bayesian analysis, we first use linearized error propagation
to provide an approximate analytical description of the
interferometer performance. An analytical result is impor-
tant for predicting the behavior at large N, where a nu-

merical result is inaccessible. In this approach, the phase
uncertainty is estimated by evaluating �� �
�@hĴzi=@��

�1�Jz at the interferometer output. For input
states symmetric around n � 0, the expectation values at
the output are related to those at the input via hĴzi �

sin�hĴixi and �Jz �
������������������������������������������������
cos2��Ji2z � sin2��Ji2x

q
. For GS

states, hĴixi 
 N=2 and �Jiz � �, which immediately leads

to hĴzi � N�sin��=2. In Fig. 1(c), we see that �Jix 


N=2�
���������������������������
N2=4� �Ji2y

q
. Since the GS state is a minimum

uncertainty state with �Jiy�Jiz � hĴ
i
xi=2, we see that

�Jiy � N=4�. This leads to �Jix � �N=�2, with � 

0:06. Exact numerical calculations verify this analytic
form for 1� ��

����
N
p

=2, as shown in Fig. 1(d), but
with � � 0:09. By inserting these results into the error-
propagation formula, we find

 �� 

2�
N

����������������������������������������
1�

�
0:09N tan�

�3

�
2

s
: (2)

The TF and PS states roughly correspond to a fixed � & 1,
resulting in limN!1�� � 0:18 tan�=�2, which quickly
becomes saturated to an N-independent constant for �	
1=N, a result we have verified numerically with exact
Bayesian calculations. On the other hand, if holding u
fixed so that �� N1=4, the phase uncertainty scales as
��� 1=N3=4 for � � 0, as discussed in Ref. [26], and
would eventually saturate to �1=

����
N
p

for � � 0. Rather
than holding � or u fixed, we propose varying u and thus �
with N in order to minimize the phase variance. By setting
d��=d� � 0, we find

 �min��; N� 
 0:503�N tanj�j�1=3; (3)

 ��min��; N� 
 1:23�tanj�j�1=3=N2=3: (4)

From self-consistency, these expressions are valid only
when 10=N & j�j & tan�1�0:137

����
N
p
� 
 �=2.

We now employ rigorous Bayesian analysis to quantify
the phase uncertainty and validate our approximate ana-
lytic results, again assuming that j�j is not too close to�=2.
According to the Bayes theorem, upon a measurement
result nm, the probability that the actual phase is � is
P��jnm� � P�nmj��=

R
d�P�nmj��, where P�nj�� �

jhnje�i�Ĵy j inij
2. The error-propagation result (4) is very

close to the 68% confidence interval of P��jn� because the
underlying number distribution of the optimized GS output
state is well approximated by a Gaussian distribution
P�nj�� 
 �

�������
2�
p

�n��1e��n�N sin�=2�2=2�n2
. This shows that

the most-probable outcome is �n � N sin�=2, which is
sensitive to the sign of �. Because �n is only weakly
dependent on �, the inverted distribution P��jn� will
also be close to Gaussian in the small-angle regime, with
a width given by (4). To make a theoretical performance
analysis for a fixed �, we average over all possible mea-

FIG. 1 (color online). Bloch-sphere analysis of the MZI with a
GS input state: (a) A typical GS state at input and output stages;
(b) output states for optimized input states with � � 0, � �

12 ,
� �

6 , � �
4 , � �

3 , � 5�
12 ; (c) geometric origin of the Jx input noise

�Jix; (d) numerical results plotting �Jix=N versus � on a log-log
scale for three different N values, validating the functional form
of �Jix derived geometrically from (c). The dashed vertical lines
correspond to � �

���
N
p

2 , where �Jix drops to zero.
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surement outcomes, defining P��j�� �
P
nP��jn�P�nj��

[22,23]. This can be interpreted as the probability for an
experimenter to infer � given a true phase shift of �. The
phase uncertainty �� is then defined as the 68% confidence
interval, via

R
����
���� d�P��j�� � 0:68.

By using this approach, together with the exact double-
well ground state, we numerically find umin, the value of
U=� which minimizes the phase uncertainty. In Fig. 2(a),
we plot the corresponding �min � ��umin� as a function of
N for several �s. Also shown is a least-squares fit to the
N > 103 data (including many data points not shown ex-
plicitly) to the analytic form (3), giving

 �min��; N� �
�

1:00; j�j< 10=N;
0:45�N tanj�j�1=3; j�j> 10=N;

(5)

in good agreement with our analytical result. By inverting
Eq. (5) this leads to

 umin��; N� �
� N

16�
1
N ; j�j< 10=N;

1:52
�tanj�j�4=3N1=3 �

1
N ; j�j> 10=N: (6)

In Fig. 2(b), we plot the corresponding minimized ��min

versus N for several phases, achieved by setting � �
�min��;N�. Again fitting the N > 103 data to the analytic
form of (4), we find

 ��min��;N� �
�

3:50=N; j�j< 10=N;
1:63�tanj�j�1=3=N2=3; j�j> 10=N:

(7)

The difference between the prefactor here and (4) is pri-
marily due to a factor of approximately

���
2
p

which comes
from the definition of P��j��.

In practice, � is not known a priori; hence, it is not clear
what value for � to use in determining �min��; N� via
Eq. (5). If we assume prior knowledge of the form P��� /
exp����� �0�

2=2��2
0�, we should first remove �0 by add-

ing �0=T to the tilt � during phase acquisition and then use
�min���0; N�. After obtaining a measurement result n1, the
estimated uncertainty ��1 is then determined viaR�1���1

�1���1
d�0P��0jn1�, with P��0jn1� being given by the

Bayes theorem. This will result in ��1 � ��min���0; N�.
Based on Eq. (7), this uncertainty appears to scale only as
N�2=3, only a slight improvement of N1=6 over the SQL.
However, in many applications requiring high precision,
the phases are very small, in which case the phase uncer-
tainty can be reduced considerably due to the explicit phase
dependence in (7). This is in contrast to a shot-noise-
limited interferometer, where �� � 1=

����
N
p

for any � not
too close to ��=2. The explicit � dependence in the
optimized scheme is due to the fact that stronger number
squeezing can be tolerated at smaller angles before the Ĵix
noise becomes detrimental. For example, if the phase is
known to be smaller than 1=

����
N
p

, we have ��min 

1:63=N5=6, which is now an N1=3 improvement over the
SQL. As can be seen from Eq. (7), a maximum sensitivity
of 3:5=N can be achieved for j�j< 10=N, which is true
Heisenberg scaling.

In fact, almost any phase between��=2 and�=2 can be
measured at the maximum precision of 3:5=N if the present
scheme is combined with multiple adaptive measurements
[1,7]. After the first measurement as described above, we
can again rebalance the interferometer by adding �1=T to
the tilt [27], followed by a second measurement with �2 �
�min���1; N�, with result n2. The Bayesian distribution for
�2 will then be approximately P��2jn2; n1� / exp����2 �
��2�

2=2y2
2�, where ��j � sin�1�2nj=N� and 1=y2

j �Pj
k�0 1=��2

k. Since ��j is much smaller than ��j�1, we
can say yj 
 ��j ���min���j�1; N�. In other words,
since the distribution after a measurement is much nar-
rower than the previous distribution, multiplying the dis-
tributions has little effect, so that the final uncertainty is
effectively determined by the resolution of the final mea-
surement alone. After M iterations, with �j �
�min���j�1; N� 
 0:57�N tan��0=2:1�3

�j
, we find ��M �

�2:1=N��N tan��0=2:1�3
�M

. While these expressions are
good estimates of the expected behavior, in practice each
�j and ��j would be computed exactly by applying the
Bayes theorem after each measurement. This procedure
should be repeated only until ��M & 10=N, after which an
addition measurement will push the phase uncertainty to
3:5=N. The final measurement is then made using the GS
state with � � 1, which lies at the edge of the maximally
squeezed Fock regime defined by�� 1. Thus an arbitrary
phase can be measured at 3:5=N precision with M� 1
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FIG. 2. (a) Optimal width �min versus N for different �;
(b) corresponding minimized phase uncertainty ��min. In both
figures, from (i) to (iv) the interferometer phases are � � 0, 0.01,
0.1, and 1, respectively. The data points represent numerical
results from strict Bayesian analysis using the exact ground
states of a double-well BEC, while the straight lines represent
the asymptotical forms of Eqs. (5) and (7), respectively.
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measurements in total. Setting ��M � 10=Nand solving
for M gives

 M 
 0:9 ln�ln�N tan��0=2:1�� � 0:4; (8)

where again this is just an estimate subject to run-to-run
fluctuations. For �r � �=3 and N � 104, M � 1:6, i.e.,
<3 total measurements will be required. For N � 1012,
M � 2:6, requiring <4 measurements. In fact, the esti-
mated total measurement number will be  4, provided
only that N tan���0�< 1040, which corresponds to a phase
window of ��0 � �=2� N=1040 
 �=2.

The final experimental value for the initial unknown
phase is then � �

PM�1
j�1 �j with uncertainty �� �

3:5=N. The total number of atoms used to obtain this
precision is Ntot � �M� 1�N. For large enough N, we
can approximate ln�Ntot=2�M� 1�� 
 ln�Ntot�, so that
M� 1 
 0:9 ln�ln�Ntot tan��0�� � 0:6, which leads to the
asymptotic scaling law

 �� 
 f2:1� 3:2 ln�ln�Ntot tan��0��g=Ntot: (9)

That the scaling law should depend on the initial phase
interval has been previously pointed out [28]. For a typical
value of M� 3, the final phase uncertainty will thus be
��� 10=Ntot.

In order to verify the accuracy of Eq. (8), we carried out
exact Monte Carlo simulations of many measurements of
the phase �=6, with an initial uncertainty ��0 � �=3.
During each simulation run, the measurement outcome
was randomly selected according to the output distribution,
and the phase information was determined numerically via
the Bayes theorem. The prescribed measure-rebalance pro-
cess was iterated until the estimated phase uncertainty
reached 3:5=N. We obtained average values of M� 1 �
2:2 for N � 500, and 2.5 for 5000, which agree with
Eq. (8). The observed variances ��M� 1� were 0.4 and
0.6, respectively.

For TF and PS states, similar adaptive measurement
schemes are extremely inefficient. While their inability to
distinguish positive from negative phases makes rebalanc-
ing difficult, the primary difficulty is that the phase uncer-
tainty is N-independent for large phases, so that �N2

measurements are required to obtain 1=N precision. This
results in 1=N1=3

tot scaling, worse than SQL.
The above discussions have assumed that the input state

is optimally squeezed to width �min. A realistic input state,
however, may deviate from �min, due to imprecise control
over u and/or imprecise knowledge of N. A straightfor-
ward error analysis shows that our scheme is extremely
robust against such uncertainties. The relative increase in
the single-measurement phase uncertainty ��� due to
fluctuations in u and N is found to be ���=��min �
�2=3��N=N � �1=8���u=umin�

2. The scaling with �u2 re-
flects the fact that u � umin is a local minimum with
respect to the phase uncertainty. Thus a 10% variation in
N results in a 7% variation in the phase uncertainty, while

even a 100% uncertainty in u results only in a 13% varia-
tion. For our purposes, these increases are essentially
negligible and are independent of the values of N or �.
Of course, there are many other potential sources of error,
e.g., the precision with which the tilt can be rebalanced and
the precision with which the scattering length can be set to
zero during interferometer operation. Reaching the
Heisenberg limit in a double-well BEC interferometer
will clearly require major technological advances in
many areas. Assuming that a level of precision signifi-
cantly below the SQL is eventually obtained, the scheme
we have developed will be the optimal method to obtain
this precision, whether or not it is close to the Heisenberg
limit.
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