Lecture 13: The classical limit
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Wavepacket Evolution

e For a wavepacket in free space, we have
already seen that

<x> = X, +%t

<p> = Do

— So that the center of the wavepacket obeys
Newton’s Second Law (with no force):

—(p)=0
\p)
e Assuming that:

- The wavepacket is very narrow

— spreading is negligible on the relevant time-
scale

e Would Classical Mechanics provide a
quantitatively accurate description of the
wavepacket evolution?

— How narrow is narrow enough?

e What happens when we add a potential, (x)?

- Will we find that the wavepacket obeys
Newton’s Second Law of Motion?

I



Equation of motion for expectation
value

e How do we find equations of motion for
expectation values of observables?

— Consider a system described by an arbitrary
Hamiltonian, H

— Let A be an observable for the system
— Question: what is:

() 2

e Answer:
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Example 1: A free particle
04

e Assuming that —=0
ot
e The basic equation of motion is:
d I
—(A)=——(|AH
(a1 ([am)
P2
e For a free particle, we have: H = Y,
1 )
X, H|=—— X,P =
[X.H]=— [ X.P’] [H,P]=0
_ L (xpr_p ’X)
2M
1 Very common
= ——(XP* - PXP + PXP - P’X) trickin QM fo
21]\4 become familiar
_ ﬁ([X,P]P +P[X,P]) with
_an L
M




Adding the Potential

P2
2M

o |et H =

+V(X)

[X,H]= ﬁ[x,lﬂ] +[XV(X0)]

[H,P]= ﬁ[Pz,P] +[V(X),P]

N

o,
=-[P,V(X)]

e How do we handle this commutator?




One possible approach

e We want an expression for: [P,V (x)]

e We can instead evaluate: (x[P.V(X)]y)

Theorem: If (x|4|p)={(x|BJp) is true for any x and
[y, then it follows that A=B.

You should think of

J this as the defining

<X‘P‘I/J> = —ihd—<x‘lp> equation for' how fo
X handle P in x-basis

e Will need to make use of

(x[P.V O]y} = (x[PV Oy} = (x [V ()Pl
= —ih<x

V'(X)‘q}> You will derive this
in the HW
d

~Where V'(x)=—V(x)
dx

e Thus we have:

lP,v(x) |- —inv'(x)
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Equations of motion for (X) and (P)

2
e Aslongas: H = P +V(X)
2M
e The we will have: i<)(>=@
dt m

— Not just true for a wavepacket

e For the momentum we have:

() =[PV D)

L
= _%<— ihy (X)> F(X) is the Force
operator

= _<V’(X)> d
F(x)=-—V(x)
= (F(X)) dx

e The QM form of the Second Law is Thus:
d2

M_
dt’

(X) = (FCO)
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Difference between classical and QM forms

of the 2nd Law of Motion

2
Classical: M%x = F(x)
4

2

e Quantum: M%(X) = (F(X))

e (lassical Mechanics would be an accurate
description of the motion of the center of a
wavepacket, defined as x(¢) = <X>, if:

(F(X)) =~ F((X))
e So that Mj_;<X>=F(<X>)

e This condition is satisfied in the limit as the
width of the wavepacket goes to zero

e ALWAYS TRUE for a constant (e.g. gravity) or
linear force (harmonic oscillator potential),
regardless of the shape of the wavefunction
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Narrow wavepacket

The expectation value of the Force is:
2
(F(X))= fdx F(x)y (x))

Let us assume that the force F(x) does not
change much over the length scale o

\

F(x)

pof N

(X) =X,

Xo
In this case we can safely pull F(x) out of

integral:
(FX0)) = F(x,) fdx [y (x) P
~ F(x,)

-F()

So CM is a valid description if the wavepacket
is narrow enough

» X
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A More Precise Formulation

(FCX0) = [dx F(oy ()|

e Expand F(x) around x = (X):

FO0 = F{()+ F(0)(x () po) EE
e Then take the expectation value:

(FOO) = F((X))1)+ F(0)X - (X)) + F/((X))

+...

(x-)x()’)
2

This is known as the Quantum
Mechanical Variance. We will "
study it more formally later.




e We have:

(F(X))=F((X))+ F"((X)) (Mz()z o

e For CM to be a good approximation, it is
therefore necessary that:

(AX)

F((X)) > [P ((0) =

— The width of the wavepacket squared times the
curvature of the force should be small
compared to the force itself

e CAUTION: Even if the width of the
wavepacket is small enough at one instant to
satisfy this inequality, we also need to
consider the rate of spreading




Example 1: Baseball

e Lets consider a baseball accelerating under
the force of gravity:
— m=1kg
- let AX=10"m
e Will then be stable for 30 million years

— The force is: F(X)=- GMm
X2
) 2GMm
F(X) = e
" 6GMm
F (X) == X4

e Requirement for CM validity is:

F((0)]>> () ax )
GMi;n - 6GM4m (AX)2
Xy X

<X>2 >> 6(AX)

2
e Since X= Re: 6_107 m this gives 1015 S>> 10_14

e S0 CM should work pretty well for a baseball
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Example 2: Hydrogen atom

Consider the very similar problem of an
electron orbiting a proton:

— Use ground state parameters
2

F(<x>) - 4n€i<x>2
()

Thus applicability of classical mechanics
requires:

<X>2 >> 6(AX)

2

In the ground state we have: (X)—0
AX ~a,=10""m

Which gives 0>>10"%

— So CM will not be valid for an electron in the
hydrogen ground state

Highly excited "wavepacket’ states can be
described classically @ Rydberg States

- Because (X) can get extremely large "‘




Rydberg States in Hydrogen

e The coulomb potential is

Do
N

High quantum numbers:
motion very classical.
Kepplerian orbits.
RYDBERG STATES

Low quantum
humbers:
motion very
quantum
mechanical




