
Lecture 13: The classical limit
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Wavepacket Evolution

• For a wavepacket in free space, we have
already seen that

– So that the center of the wavepacket obeys
Newton’s Second Law (with no force):

• Assuming that:
– The wavepacket is very narrow
– spreading is negligible on the relevant time-

scale
• Would Classical Mechanics provide a

quantitatively accurate description of the
wavepacket evolution?
– How narrow is narrow enough?

• What happens when we add a potential, V(x)?
– Will we find that the wavepacket obeys

Newton’s Second Law of Motion?
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Equation of motion for expectation
value

• How do we find equations of motion for
expectation values of observables?
– Consider a system described by an arbitrary

Hamiltonian, H
– Let A be an observable for the system
– Question: what is:

• Answer:
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Example 1: A free particle

• Assuming that

• The basic equation of motion is:

• For a free particle, we have:
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Adding the Potential

• Let

• How do we handle this commutator?
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One possible approach

• We want an expression for:

• We can instead evaluate:

• Will need to make use of

– Where

• Thus we have:
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You should think of
this as the defining
equation for how to
handle P in x-basis
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Theorem: If  〈x|A|ψ〉=〈x|B|ψ〉 is true for any x and
|ψ〉, then it follows that A=B.



Equations of motion for 〈X〉 and 〈P〉

• As long as:

• The we will have:

– Not just true for a wavepacket

• For the momentum we have:

• The QM form of the Second Law is Thus:
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F(X) is the Force
operator



Difference between classical and QM forms
of the 2nd Law of Motion

• Classical:

• Quantum:

• Classical Mechanics would be an accurate
description of the motion of the center of a
wavepacket, defined as                 , if:

• So that

• This condition is satisfied in the limit as the
width of the wavepacket goes to zero

• ALWAYS TRUE for a constant (e.g. gravity) or
linear force (harmonic oscillator potential),
regardless of the shape of the wavefunction
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• The expectation value of the Force is:

• Let us assume that the force F(x) does not
change much over the length scale σ

• In this case we can safely pull F(x) out of
integral:

• So CM is a valid description if the wavepacket
is narrow enough

Narrow wavepacket
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A More Precise Formulation

• Expand F(x) around x = 〈X〉:

• Then take the expectation value:
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This is known as the Quantum
Mechanical Variance. We will
study it more formally later.



• We have:

• For CM to be a good approximation, it is
therefore necessary that:

– The width of the wavepacket squared times the
curvature of the force should be small
compared to the force itself

• CAUTION: Even if the width of the
wavepacket is small enough at one instant to
satisfy this inequality, we also need to
consider the rate of spreading
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Example 1: Baseball

• Lets consider a baseball accelerating under
the force of gravity:

– m = 1 kg

– let ΔX = 10-10 m
• Will then be stable for 30 million years

– The force is:

• Requirement for CM validity is:

• Since X ≈ Re = 6_107 m this gives

• So CM should work pretty well for a baseball
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Example 2: Hydrogen atom

• Consider the very similar problem of an
electron orbiting a proton:
– Use ground state parameters

• Thus applicability of classical mechanics
requires:

• In the ground state we have:

• Which gives

– So CM will not be valid for an electron in the
hydrogen ground state

• Highly excited `wavepacket’ states can be
described classically  Rydberg States
– Because 〈X〉 can get extremely large
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law for gravity and
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Low quantum
numbers:

motion very
quantum

mechanical

Rydberg States in Hydrogen

• The coulomb potential is

High quantum numbers:
motion very classical.

Kepplerian orbits.
RYDBERG STATES


