Lecture I: Dirac Notation

• To describe a physical system, QM assigns a complex number (‘amplitude’) to each distinct available physical state.
 - (Or alternately: two real numbers)
 - What is a ‘distinct physical state’?

• Consider a system with M distinct available states
 - The 2M real numbers can be viewed as a vector in an 2M-dimensional real-valued vector space
 - Or alternatively as a vector in an M-dimensional complex-valued vector space
 - We will refer to this abstract vector space as ‘Hilbert Space’ or ‘state space’
 - Any vector in this space corresponds to a possible quantum-mechanical state. The number of such quantum states is uncountable infinity

• Just as calculus provides the mathematical basis for Classical Mechanics, the mathematical basis for QM is linear algebra
 - Vectors, matrices, eigenvalues, rotations, etc... are key concepts

Various common vector notations:

1. Vector notation: \(\vec{r}(t) \)
 - Just a name, an abstraction that refers to something physical
2. Unit vectors: \(\vec{r}(t) = r_1(t)\vec{e}_1 + r_2(t)\vec{e}_2 + r_3(t)\vec{e}_3 \)
 - Unit vectors are predefined in physical terms
 - Components are projections onto unit vectors
 - Unit vectors are orthonormal
3. Column vector:
 - Unit vectors are implied
 \[\vec{r}(t) = \begin{pmatrix} r_1(t) \\ r_2(t) \\ r_3(t) \end{pmatrix} \]

‘Dirac notation’:

- Just new symbols for same concepts ‘ket’
 \(\vec{r}(t) \rightarrow |\psi(t)\rangle, \langle \varphi(t) |, |\Psi(t)\rangle, ... \) ‘bra’
 \(\vec{r}^T(t) \rightarrow \langle \psi(t) |, |\varphi(t)\rangle, \langle \Psi(t) |, ... \)
 \(\vec{e}_j \rightarrow |j\rangle, |n\rangle, |a_n\rangle, |r\rangle, |p\rangle, |n,m\rangle, |E_n\rangle, |E_n,m\rangle, ... \)
\(\vec{r}(t) = r_1(t)\vec{e}_1 + r_2(t)\vec{e}_2 + r_3(t)\vec{e}_3 \rightarrow |\psi(t)\rangle = c_1(t)|1\rangle + c_2(t)|2\rangle + c_3(t)|3\rangle \)
 \(\vec{a} \cdot \vec{b} = \vec{a}^T \vec{b} = \langle a | b \rangle \) ‘inner product’
 \(r_j(t) = \vec{e}_j \cdot \vec{r}(t) \rightarrow c_j(t) = \langle j | \psi(t) \rangle \)
Added catch since QM vectors are complex

- Transpose operation replaced by 'Hermitian conjugation' or 'dagger' operation
 \[\langle b | a \rangle = \langle a | b \rangle^* \]

 - '†' is transpose plus complex conjugation
 \[\tilde{\bar{r}}^T = (\tilde{\bar{r}})^T \rightarrow \langle \bar{\psi} | = (|\bar{\psi}\rangle)^\dagger \]

\[\tilde{r} = r_1 \tilde{e}_1 + r_2 \tilde{e}_2 + \ldots + \tilde{r}_M \tilde{e}_M \]
\[= \tilde{e}_1 (\tilde{e}_1 \cdot \tilde{r}) + \tilde{e}_2 (\tilde{e}_2 \cdot \tilde{r}) + \ldots + \tilde{e}_M (\tilde{e}_M \cdot \tilde{r}) \]

- Projectors and Closure relations:
 \[|\psi\rangle = c_1|1\rangle + c_2|1\rangle + \ldots + c_M|M\rangle \]
 \[= |1\langle 1|\psi\rangle + |2\rangle\langle 2|\psi\rangle + \ldots + |M\rangle\langle M|\psi\rangle \]
 \[= (|1\rangle\langle 1| + |2\rangle\langle 2| + \ldots + |M\rangle\langle M|)\psi \]

- This proves the `closure relation': \[\sum_{j=1}^{M} |j\rangle\langle j| = 1 \]

 The summation is over a complete set of unit vectors that spans any Hilbert sub-space is equal to the identity operator in that sub-space

 - The entire Hilbert space is a trivial sub-space

- Norm of a vector:
 - a.k.a. magnitude, length
 \[\|r\| = \sqrt{\bar{r} \cdot \bar{r}} \]
 \[= \sqrt{\bar{r}^T \bar{r}} \rightarrow \|\psi\| = \sqrt{\langle \psi | \bar{\psi} \rangle} \]

- To compute the norm in terms of the components along a set of orthogonal unit vectors:

 - Insert the identity
 \[\langle \psi | = \langle \psi | \right \langle j \rangle |j\rangle \]
 \[= \left \langle \psi \left | \sum_{j=1}^{M} |j\rangle\langle j| \right \langle j \right | \psi \right \rangle \]
 \[= \sum_{j=1}^{M} \langle \psi | j \rangle \langle j | \psi \rangle \]
 \[= \sum_{j=1}^{M} c_j^* c_j = \sum_{j=1}^{M} |c_j|^2 \]

 Old notation:
 \[\bar{r} \cdot \tilde{r} = r_1^2 + r_2^2 + \ldots \]
 \[= \sum_{j} r_j^2 \]
Avoid being confused by implied meanings of various symbols

- To avoid confusion, keep in mind that \(| \psi \rangle \) indicates a Hilbert-space vector, the \(\psi \) in \(| \psi \rangle \) is just a label
 - We could call it anything
 - \(| \psi \rangle, |\phi \rangle, |3 \rangle, |\text{Alice} \rangle \)
 - We just need to clearly define our labels

 - "let \(| \psi(t) \rangle \) be the state of our system at time \(t \)."

 - "let \(| x \rangle \) be the state in which the particle lies at position \(x \)"
 - Here \(x \) is a placeholder which could take on any numerical value. I.e. defining the state \(| x \rangle \) as above actually defines an infinite set of vectors, one for each point on the real axis.
 - This is exactly how the symbol \(x \) is used when you say \(f(x) = \cos(x) \)

- \(|j \rangle \) be the state in which our system is in the \(j \)th quantized energy level.
 - Here \(j \) is a placeholder for an arbitrary integer

Summary

- There are 'ket's and 'bra's:
 - kets: \(| \psi \rangle \)
 - A ket is a vector in an \(M \) dimensional Hilbert space, where \(M \) is the number of distinct physical states of a system
 - bras: \(\langle \psi | \)
 - A bra is a transposed, conjugated ket

- Put a bra and a ket together to get a c-number
 - \(\langle \psi | \psi \rangle := \text{a } c\text{-number} \)
 - \(c\text{-number} := \text{complex number} \)

- Unit vectors:
 - An \(M \) dimensional Hilbert space is spanned by \(M \) orthonormal unit vectors
 - \(\{ |j \rangle \}_{j=1}^{M} \) (\(\{ \} = \text{the set of} \)
 - \(\langle j | k \rangle = \delta_{jk} \) (\(\delta_{jk} \) is 'Kronecker delta function')
 - \(1 \text{ if } j=k \)
 - \(0 \text{ else} \)
 - Closure relation:
 \[\sum_{j=1}^{M} |j \rangle \langle j | = 1 \]