Lecture 34:
The Density Operator’

Phy851 Fall 2009




The QM "density operator’

HAS NOTHING TO DO WITH MASS PER
UNIT VOLUME

The density operator formalism is a
generalization of the Pure State QM we
have used so far.

New concept: Mixed state

Used for:
— Describing open quantum systems

— Incorporating our ignorance into our
quantum theory

Main idea:

— We need to distinguish between a
" statistical mixture’ and a coherent
superposition’
- Statistical mixture: it is either a or b,
but we don’t know which one
e No interference effects

— Coherent superposition: it is both a
and b at the same time

e Quantum interference effects appear "‘




Pure State quantum Mechanics

e The goal of quantum mechanics is to
make predictions regarding the
outcomes of measurements

e Using the formalism we have developed
so far, the procedure is as follows:

— Take an initial state vector

— Evolve it according to Schrodinger's
equation until the time the measurement
takes place

— Use the projector onto eigenstates of the
observable to predict the probabilities for
different results

— To confirm the prediction, one would
prepare a system in a known initial state,
make the measurement, then re-prepare
the same initial state and make the same
measurement after the same evolution
time. With enough repetitions, the results
should show statistical agreement with
the results of quantum theory
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Expectation Value

e The expectation value of an operator is
defined (with respect to state |y)) as:

(4) =W |4y)

e The interpretation is the average of the
results of many measurements of the
observable 4 on a system prepared in
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This is clearly the weighted average of

all possible outcomes ||‘




Statistical mixture of states

e What if we cannot know the exact initial
quantum state of our system?

— For example, suppose we only know the
temperature, T, of our system?

e Suppose I know that with probability P,,
the system is in state |y,), while with

probability P,, the system is in state |y,).

— This is called a statistical mixture of the
states |y,) and |y,).

e In this case, what would be the
probability of obtaining result a, of a
measurement of observable 47

— Clearly, the probability would be
(y,la_Xa |y, with probability p,, and

(Y,la,Xa,|y,) with probability p,
P(a,) = P(a, |y )PW,)+ P(a, |y, PW,)

e Thus the frequency with which «, would
be obtained over many repetitions would

¢1>‘2Pl +‘<an ‘¢2>‘2Pz ||‘

p(a,)=|(a,



The Density Operator’

e For the previous example, Let us define
a density operator’ for the system as:
This will describe the
B ‘W1><¢1 ‘Pl * ‘¢2><¢2 ‘Pz state of the system, in

place of a wavefunction

e The probability to obtain result a, could
then obtained in the following manner:

P(a,)=Tripl(a,)} I(a,)=|a,)a,

e Proof:
P(a)=Tr{ipl(a,)} {lm)} is a

complete basis
=Y (m|p|a,)a,|m)
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Generic Density Operator

e For a ‘statistical mixture’ of the states
{lw)} with respective probabilities {P},
the density operator is thus:

P = E_Pj‘wjij‘
J
e The sum of the P;’s is Unity: ZPJ =1

e The |y,’s are required to be normalized
to one, but are not necessarily
orthogonal

— For example, we could say that with 50%
probability, an electron is in state |1), and

the other 50% of the time it is in state
([ 1)+]i))/V2
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This state is only " partially mixed',

meaning interference effects are
reduced, but not eliminated ||‘




Density matrix of a pure state

e Every pure state has a density matrix
description:

p =)y

e Every density matrix does not have a
pure state description

— Any density matrix can be tested to see if
it corresponds to a pure state or not:

e Test #1:

— If it is a pure state, it will have exactly
one non-zero eigenvalue equal to unity

— Proof:
e Start from: P = ‘w ><1P‘

e Pick any orthonormal basis that spans the
Hilbert space, for which |y) is the first basis

vector
e In any such basis, we will have the matrix
elements 1 0 0 -
<m‘p‘n> =0,.,0,, _ 0 0 O

0O 0 O
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Testing for purity cont.

o Test #2:

- In any basis, the pure state will satisfy for
every m,n:

— A partially mixed state will satisfy for at
least one pair of m,n values:

0< 0L < Lo P

— And a totally mixed state will satisfy for at
least one pair of m, n values:

P = P =0 and p,,p,, =0

e Examples in spin-1/2 system:
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Probabilities and Coherence’

In a given basis, the diagonal elements
are always the probabilities to be in the
corresponding states:

The off diagonals are a measure of the
‘coherence’ between any two of the basis

states.
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— Coherence is maximized when:



Rule 1: Normalization

e Consider the trace of the density

operator 0= 2}?‘1}})@}]“
Tr{p} = EPJ@JJ ‘wf>
-Sp
Trip} =1

Since the P;’s are probabilities, they
must sum to unity




Rule 2: Expectation Values

The expectation value of any operator 4
is defined as:

(A4) =Tr{pA}

For a pure state this gives the usual
result:

(A) = Tr{w)w|A}
= (y|Aly)

For a mixed state, it gives:

(A=l S o ]|
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Rule 3: Equation of motion

e For a closed system:

p =)
o=t ol Gt )
-~ Hly Y |+ v ) |1

p =—ih[H,,0:|

— Pure state will remain pure under
Hamiltonian evolution

e For an open system, will have additional
terms:
— Called ‘master equation’

- Example: 2 -level atom interacting with
quantized electric field.

p==-H.p)- (le)elo+ ple)e]) + Tlg)eleie)s]

h

— Master equation describes state of system
only, not the "environment’, but includes
effects of coupling to environment

— Pure state can evolve into mixed state ||




Example: Interference fringes

Consider a system which is in either a
coherent, or incoherent (mixture)
superposition of two momentum states Kk,
and -k:

— Coherent supelrposition:

)= () +|-)
0 = [kl + k)= |+ | k) |+~ k)~ &
P(x) = Tr{p‘x><x‘} = <x‘p‘x>

P(x)=14+cos(2kx) Fringes!
— Incoherent mixture:

v)= N4
o = {k)(k |+ |- k)-K]

P(x) =1 No fringes!
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Entanglement Gives the
Illusion of decoherence

Consider a small system in a pure state. It
is initially decoupled from the
environment:

)" = (Ecs

S

(s) (e)
)" |elo
Then turn on coupling to the environment:

‘w/>(s,e) _ U(S,e) w(0)>(s,e)

Let the interaction be non-dissipative
- System states do not decay to lower energy

states
(e)
0,)

U(S’e)
Strong interaction: assume that different
|s) states drive |¢) into orthogonal states

¢s' >(e) = 5S,S'

S>(S) ®‘¢>(8) _ ‘S>(S) ®

(4,
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The reduced system density
operator’

e Suppose we want to make predictions
for system observables only

— Definition of ‘system observable’:

A =AY 1

e Take expectation value:

<As> _ Tr{p(”)A“) ®I(€)}
_ E<m (s) ®<n (e)p(S,e) A(s) ®[(e)

='§<m O

m n

m>(S) ® ‘ n>(e)

m>(S)

(e) (s,e)
fo

n>(e) A(S)

e Define the reduced system density

operator’:
n>(€) _ Tre{p(s,e)}

(5)
PV = (n
e Physical predictions regarding system
observables depend only on p(s):

<AS> _ E<m (S)p(s)A(s) m>(S)

m

(4,)=Tr{p"'A"} I

(e) (s,e)
0




Entanglement mimics

" collapse’

e Return to our entangled state of the
system + environment:

‘w>(s,e) _ Ecs S>(S) ® ¢S>(e)

e Compute densitsy matrix:

=y )w [

CSC:, S>(S) ® ¢S>(e) <S' (s) ®<¢S’ (e)
e Compute the reduced system density
operator:

p(S) =Ty { ><w (s,e)}

C c Tr{ (s) (e) <s> ®<¢ (e)}

(S)<

(s)

>

*
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‘Collapse’ of the state

p = e[ |s)s

Conclusion: Any subsequent measurement
on the system, will give results as if the
system were in only one of the |s), chosen at
random, with probability P, = |c.|?
— This is also how we would describe the

" collapse’ of the wavefunction

(s)

C

S

Yet, the true state of the whole system is not

" collapsed”:
S>(S) ® ¢S >(e)

(s.e)

v) =Y

We see that the entanglement between

system and env. mimics " collapse’

— Is collapse during measurement real or
illusion?

Pointer States: for a measuring device to

work properly, the assumption, (¢ |¢s ) = O o

will only be true if the system basis states,
{|s )}, are the eigenstates of the observable

being measured




