Hermitian Operators

Definition: an operator is said to be Hermitian if
it satisfies: A7=4
— Alternatively called ‘self adjoint’

— In QM we will see that all observable properties
must be represented by Hermitian operators

Theorem: all eigenvalues of a Hermitian
operator are real
— Proof:
« Start from Eigenvalue Eq.: A|am> =a,

a,)

« Take the H.c. (of both sides):  (a, |4" =a,(a,

e Use A"=4: <am |A = a; <am

+ Combine to give:
(a,|a,)=a,{a,la,)=a,(a,l|a,)

* Since (a,, |a,,) = 0 it follows that

*_
a, =a

m

Eigenvectors of a Hermitian operator

— Note: all eigenvectors are defined only up to a
multiplicative c-number constant
am>)

A|am> =a, am> — A(c| am>)= a, (c

+ Thus we can choose the normalization (a,,|a,,)=1

THEOREM: all eigenvectors corresponding to
distinct eigenvalues are orthogonal

— Proof:
- Start from eigenvalue equation: A|am> = am|am>

+ Take H.c. withm —n: <a

A=an<a

+ Combine to give:
(a,

* This can be written as:  (a, - am)<an

A|am> = an<a

a,)

am>=0

am> = am <an

n

» So either a,, = a, in which case they are not
distinct, or (a,,|a,)=0, which means the

eigenvectors are orthogonal



Completeness of Eigenvectors of a
Hermitian operator

THEOREM: If an operator in an M-dimensional
Hilbert space has M distinct eigenvalues (i.e.
no degeneracy), then its eigenvectors form a
‘complete set’ of unit vectors (i.e a complete
‘basis’)

— Proof:

M orthonormal vectors must span an
M-dimensional space.

Thus we can use them to form a
representation of the identity operator:

Degeneracy

Definition: If there are at least two linearly
independent eigenvectors associated with the
same eigenvalue, then the eigenvalue is
degenerate.

— The "degree of degeneracy’ of an eigenvalue is
the number of linearly independent eigenvectors
that are associated with it

 Letd,, be the degeneracy of the m™" eigenvalue

» Then d,, is the dimension of the degenerate
subspace

Example: The d=2 case
— Let’s refer to the two linearly independent
eigenvectors o, ) and |Q )
* There is some operator W such that for some n
we have:

Wlw,)= oo, and W|Q )= Q| Q,)

» Also we choose to normalize these states:
(w,J0,)=1and (Q,|Q,)=1

+ Linear independence means {0, |Q,) = 1.

— If they are not orthogonal ((w, |2,) = 0), we can
always use Gram-Schmidt Orthogonalization to
get an orthonormal set



Gram-Schmidt Orthogonalization

Procedure:
- |@,.1) =|,)
— A second orthogonal vector is then
|0,,2) = [2,)-|o, )@, |2,)
I2.)~[oXo.2,)
* Proof:
<wn 1 wn’2> _ <wn Qn>—<wn wn><wn Qn>
I2.) -, Xe,[2.)
-t (w,|o,)=1
— Therefore <a)n ,1 (1)’1,2> =0
— Can be continued for higher degree of degeneracy

— Analogy in 3-d:

F-e. (e, F)Le,  |r)-le)elr) L
Result: From M linearly independent degenerate
eigenvectors we can always form M orthonormal
unit vectors which span the M-dimensional
degenerate subspace.

— If this is done, then the eigenvectors of a Hermitian

operator form a complete basis even with degeneracy
present

e,)

Phy851/Lecture 4: Basis sets and
representations

A "basis’ is a set of orthogonal unit vectors in
Hilbert space

— analogous to choosing a coordinate system in
3D space

— A basis is a complete set of unit vectors that
spans the state space

Basis sets come in two flavors: ‘discrete’ and
‘continuous’

— A discrete basis is what we have been
considering so far. The unit vectors can be
labeled by integers, e.g. {|1), |2),..., |M)}, where
M can be either finite or infinite

» The number of basis vectors is either finite or
‘countable infinity’.

— A continuous basis is a generalization whereby
the unit vectors are labeled by real numbers,
e.g. {};x,, <x<x,., where the upper and

max’

lower bounds can be either finite or infinite

* The number of basis vectors is ‘uncountable
infinity’.



Properties of basis vectors

property discrete continuous
orthogonality (jlky=5, (x|x"y=8(x-x")
normalization (jljy=1 (x]x) =00
state = e =(d
expansion \W qu W> f x‘xw )
Componen.t/ ¢, =(jlw) wx)= (x|w)
wavefunction
projector 1= E‘JXJ‘ 1= fdx|x)(x|
J

operator A= Z‘j>AJ_k (k| | 4= fdxdx'|x)Ae,x'Yx'|
expansion g
Matrix element 4, E(j\A\k> A(x,x’)s(x\A\x’>

I’ =

([ ax)x]] = [ dedx’|x)x] ')

= fdx dx' |x>6(x - x’)<x’|

= fdx|x><x|

Example 1

Consider the relation: ‘1/)’> = A‘l/)>
— To know |y ) or |y) you must know its
components in some basis

— Here we will go from the abstract form to the
specific relation between components

Abstract equation: ‘1,0 I> = A‘w>

Project onto a single

unit vector: <] ‘IIJ ’> = <J‘A‘W>

Insert the projector: <J ‘w /> B Z <J ‘A‘ k><k‘w>

Translate to vector

nhotation: C; = Z Ay
Same procedure for T,U,> = A|w>
continuous basis: <x|¢’> _ <x|A|1,U>

()= [ e’ (x|Al)x' )
w'(x) = fdx'A(x,x')t/}(x')



Example 2: Combining different basis

. , : Change of Basis
sets in a single expression g
+ Let's assume we know the components of |¢) in the + Letthe sets {|1),12),]3),...} and {Ju,),Ju,),|u;),...} be
basis {|7),|12),]3),... } two different orthonormal basis sets

- CjE<7|(P>
» Let’s suppose that we only know the wavefunction

of [y) in the continuous basis {[x)} « Suppose we know the components of |y) in the

basis {|7),|2),3),...}, this means we know the
— P(x) =(x[y) elements {c}:
* In addition, we only know the matrix elements of A
in the alternate continuous basis {k)}
— A(kK) =(KAK') *+ How do we find the components {C} of |yp) in the

alternate basis {|u,),[u,),ju;),...}
+  How would we compute the matrix element {¢@|4[y)?

(o|4y) ={(o|4y)  This is easily handled with Dirac notation:

= S (@]}l (oldy) = (@l 7)Xil4w)

- S ool el e
= 3, k(| ) ) AR K )l

= X Jebxakak (| j)j| k)| AR )| x)x|)
7 = > [drdkdk’; (j|k) Alk.k XK' x)p (x)

- Efdxdkdk’cj <j‘k>A(k’k’)<k’ x)uJ (x) * The change of basis is accomplished by multiplying
- the original column vector by a transformation

*  We see that in order to compute this number, we matrix U
need the inner-products (jlk) and (k) '

— These are the transformation coefficients to go from
one basis to another



The Transformation matrix

The transformation matrix looks like this

(w,|1) (u,|2)  (u,|3)
<”2‘1> <“2‘2> <”2‘3>

<u3- 1) <u3. 2) <u3. 3)

The columns of U are the components of the

Example: 2-D rotation

» Let’s do a familiar problem using the new

notation

» Consider a clockwise rotation of 2-dimensional

Cartesian coordinates:

old unit vectors in the new basis

If we specify at least one basis set in physical
terms, then we can define other basis sets by

specifying the elements of the transformation
matrix
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Continued Summary

F - ( ‘ + Basis sets can be continuous or discrete
» TIND % Flkﬁ.'[’ . — The important equations are:
¢ ~
Co: <FIrD 1=V 7\ _
e B SN = fad g
projector = ZZYN/R(FD 4.(,2'{q>(«]r> 5 = N = 5

onto 'known':> {F (¥ >(%[ v o°f <]‘k> 6jk <x x> O(x-x)

basis al a

q.l "
) Rly tR-Y (\7’ « Change of basis is simple with Dirac notation:
_ S"V\ (0B ‘\7 1. Write unknown quantity
2. Insert projector onto known basis
3. Evaluate the transformation matrix elements
4. Perform the required summations

T CosO Vg
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