Hermitian Operators

- Definition: an operator is said to be Hermitian if it satisfies: $A^{\dagger}=A$
 - Alternatively called 'self adjoint'
 - In QM we will see that all observable properties must be represented by Hermitian operators
- Theorem: all eigenvalues of a Hermitian operator are real
 - Proof:
 - Start from Eigenvalue Eq.: $A|a_m\rangle = a_m|a_m\rangle$
 - Take the H.c. (of both sides): $\langle a_m | A^{\dagger} = a_m^* \langle a_m |$

• Use
$$A^{\dagger} = A$$
: $\langle a_m | A = a_m^* \langle a_m |$

· Combine to give:

$$\langle a_m | A | a_m \rangle = a_m^* \langle a_m | a_m \rangle = a_m \langle a_m | a_m \rangle$$

• Since $\langle a_m | a_m \rangle \neq 0$ it follows that

$$a_m^* = a_m$$

Eigenvectors of a Hermitian operator

 Note: all eigenvectors are defined only up to a multiplicative c-number constant

$$A|a_{m}\rangle = a_{m}|a_{m}\rangle \quad \rightarrow A(c|a_{m}\rangle) = a_{m}(c|a_{m}\rangle)$$

- Thus we can choose the normalization $\langle a_m | a_m \rangle = 1$
- THEOREM: all eigenvectors corresponding to distinct eigenvalues are orthogonal
 - Proof:
 - Start from eigenvalue equation: $A|a_m\rangle = a_m|a_m\rangle$

• Take H.c. with
$$m \rightarrow n$$
: $\langle a_n | A = a_n \langle a_n |$

Combine to give:

$$\langle a_n | A | a_m \rangle = a_n \langle a_n | a_m \rangle = a_m \langle a_n | a_m \rangle$$

- This can be written as: $(a_n a_m)\langle a_n | a_m \rangle = 0$
- So either $a_m = a_n$ in which case they are not distinct, or $\langle a_m | a_n \rangle = 0$, which means the eigenvectors are orthogonal

Completeness of Eigenvectors of a Hermitian operator

- THEOREM: If an operator in an M-dimensional Hilbert space has M distinct eigenvalues (i.e. no degeneracy), then its eigenvectors form a `complete set' of unit vectors (i.e a complete 'basis')
 - Proof:

M orthonormal vectors must span an M-dimensional space.

• Thus we can use them to form a representation of the identity operator:

Degeneracy

- Definition: If there are at least two linearly independent eigenvectors associated with the same eigenvalue, then the eigenvalue is degenerate.
 - The `degree of degeneracy' of an eigenvalue is the number of linearly independent eigenvectors that are associated with it
 - Let d_m be the degeneracy of the m^{th} eigenvalue
 - Then d_m is the dimension of the degenerate subspace
- Example: The d=2 case
 - Let's refer to the two linearly independent eigenvectors $|\omega_{_{\! n}}\rangle$ and $|\Omega_{_{\! n}}\rangle$
 - There is some operator *W* such that for some *n* we have:

 $W |\omega_n \rangle = \omega_n |\omega_n \rangle$ and $W |\Omega_n \rangle = \Omega_n |\Omega_n \rangle$

- Also we choose to normalize these states: $\langle \omega_n | \omega_n \rangle \text{=1 and } \langle | \Omega_n | | \Omega_n \rangle \text{=1}$
- Linear independence means $\langle \omega_n | \Omega_n \rangle \neq 1$.
- If they are not orthogonal $(\langle \omega_n | \Omega_n \rangle \neq 0)$, we can always use Gram-Schmidt Orthogonalization to get an orthonormal set

Gram-Schmidt Orthogonalization

Procedure:

$$|\omega_n,1\rangle = |\omega_n\rangle$$

- A second orthogonal vector is then

$$\begin{split} \left| \omega_{n}, 2 \right\rangle &= \frac{\left| \Omega_{n} \right\rangle - \left| \omega_{n} \right\rangle \! \left\langle \omega_{n} \left| \Omega_{n} \right\rangle \right|}{\left\| \Omega_{n} \right\rangle - \left| \omega_{n} \right\rangle \! \left\langle \omega_{n} \left| \Omega_{n} \right\rangle \right\|} \\ \bullet \text{ Proof:} \\ \left\langle \omega_{n}, 1 \right| \omega_{n}, 2 \right\rangle &= \frac{\left\langle \omega_{n} \left| \Omega_{n} \right\rangle - \left\langle \omega_{n} \left| \omega_{n} \right\rangle \! \left\langle \omega_{n} \left| \Omega_{n} \right\rangle \right| \right|}{\left\| \Omega_{n} \right\rangle - \left| \omega_{n} \right\rangle \! \left\langle \omega_{n} \left| \Omega_{n} \right\rangle \right\|} \\ - \text{ but } \left\langle \omega_{n} \left| \omega_{n} \right\rangle = 1 \\ - \text{ Therefore } \left\langle \omega_{n}, 1 \right| \omega_{n}, 2 \right\rangle = 0 \end{split}$$

- Can be continued for higher degree of degeneracy
- Analogy in 3-d:

$$\vec{r} = \vec{e}_x r_x + \vec{e}_y r_y + \vec{e}_z r_z$$

$$\vec{r} = \vec{e}_x (\vec{e}_x \cdot \vec{r}) + \vec{e}_y (\vec{e}_y \cdot \vec{r}) + \vec{e}_z (\vec{e}_z \cdot \vec{r})$$

$$\vec{r} - \vec{e}_x (\vec{e}_x \cdot \vec{r}) \perp \vec{e}_x \qquad |r\rangle - |e_x\rangle \langle e_x |r\rangle \perp |e_x\rangle$$

- Result: From M linearly independent degenerate eigenvectors we can always form M orthonormal unit vectors which span the M-dimensional degenerate subspace.
 - If this is done, then the eigenvectors of a Hermitian operator form a complete basis even with degeneracy present

Phy851/Lecture 4: Basis sets and representations

- A `basis' is a set of orthogonal unit vectors in Hilbert space
 - analogous to choosing a coordinate system in 3D space
 - A basis is a complete set of unit vectors that spans the state space
- Basis sets come in two flavors: 'discrete' and 'continuous'
 - A discrete basis is what we have been considering so far. The unit vectors can be labeled by integers, e.g. {|1⟩, |2⟩,..., |M⟩}, where *M* can be either finite or infinite
 - The number of basis vectors is either finite or 'countable infinity'.
 - A continuous basis is a generalization whereby the unit vectors are labeled by real numbers, e.g. $\{|x\rangle\}$; $x_{min} < x < x_{max}$, where the upper and lower bounds can be either finite or infinite
 - The number of basis vectors is `uncountable infinity'.

Properties of basis vectors

property	discrete	continuous
orthogonality	$\langle j k \rangle = \delta_{jk}$	$\langle x x' \rangle = \delta(x - x')$
normalization	$\langle j j \rangle = 1$	$\langle x x \rangle = \infty$
state expansion	$ \psi\rangle = \sum_{j} j\rangle c_{j}$	$ \psi\rangle = \int dx x\rangle \psi(x)$
component/ wavefunction	$c_{j} = \left\langle j \left \psi \right\rangle \right.$	$\psi(x) = \langle x \psi \rangle$
projector	$1 = \sum_{j} \left j \right\rangle \left\langle j \right $	$1 = \int dx x\rangle \langle x $
operator expansion	$A = \sum_{jk} \left j \right\rangle A_{jk} \left\langle k \right $	$A = \int dx dx' x\rangle A(x, x') \langle x' $
Matrix element	$A_{jk} = \left\langle j \left A \right k \right\rangle$	$A(x, x') = \langle x A x' \rangle$

$$1^{2} = 1$$

$$\left[\int dx |x\rangle \langle x|\right]^{2} = \int dx \, dx' |x\rangle \langle x|x'\rangle \langle x'|$$

$$= \int dx \, dx' |x\rangle \delta(x - x') \langle x'|$$

$$= \int dx |x\rangle \langle x|$$

Example 1

 Consider the relation: ψ'⟩ = A ψ⟩ To know ψ_⟩ or ψ⟩ you must know its components in some basis Here we will go from the abstract form to the specific relation between components 		
Abstract equation:	$ \psi' angle = A \psi angle$	
Project onto a single unit vector:	$\langle j \psi' \rangle = \langle j A \psi \rangle$	
Insert the projector:	$\left\langle j\left \psi'\right angle =\sum_{k}\left\langle j\left A\right k ight angle \!\left\langle k\left \psi ight angle ight angle$	
Translate to vector notation:	$c_j' = \sum_k A_{jk} c_k$	
Same procedure for continuous basis:	$ \psi'\rangle = A \psi\rangle$ $\langle x \psi'\rangle = \langle x A \psi\rangle$ $\langle x \psi'\rangle = \int dx'\langle x A x'\rangle\langle x' \psi\rangle$	

 $\psi'(x) = \int dx' A(x,x')\psi(x')$

Example 2: Combining different basis sets in a single expression

- Let's assume we know the components of $|\varphi\rangle$ in the basis $\{|I\rangle,|2\rangle,|3\rangle,\dots\}$

$$- c_j \equiv \langle j | \varphi \rangle$$

- Let's suppose that we only know the wavefunction of |ψ⟩ in the continuous basis {|x⟩}
 - $\psi(\mathbf{x}) = \langle \mathbf{x} | \psi \rangle$
- In addition, we only know the matrix elements of A in the alternate continuous basis {|k⟩}
 - $A(k,k') = \langle k | \mathbf{A} | \mathbf{k}' \rangle$
- How would we compute the matrix element $\langle \varphi | A | \psi \rangle$?

$$\begin{split} \langle \varphi | A | \psi \rangle &= \langle \varphi | A | \psi \rangle \\ &= \sum_{j} \langle \varphi | j \rangle \langle j | A | \psi \rangle \\ &= \sum_{j} \int dx \langle \varphi | j \rangle \langle j | A | x \rangle \langle x | \psi \rangle \\ &= \sum_{j} \int dx dk dk' \langle \varphi | j \rangle \langle j | k \rangle \langle k | A | k' \rangle \langle k' | x \rangle \langle x | \psi \\ &= \sum_{j} \int dx dk dk' c_{j}^{*} \langle j | k \rangle A(k, k') \langle k' | x \rangle \psi(x) \end{split}$$

- We see that in order to compute this number, we need the inner-products $\langle j|k\rangle$ and $\langle k|\psi\rangle$
 - These are the transformation coefficients to go from one basis to another

Change of Basis

- Let the sets $\{|I\rangle,|2\rangle,|3\rangle,...\}$ and $\{|u_1\rangle,|u_2\rangle,|u_3\rangle,...\}$ be two different orthonormal basis sets
- Suppose we know the components of |ψ⟩ in the basis {|1⟩,|2⟩,|3⟩,...}, this means we know the elements {c_i}:
- How do we find the components $\{C_j\}$ of $|\psi\rangle$ in the alternate basis $\{|u_1\rangle, |u_2\rangle, |u_3\rangle, ...\}$
- This is easily handled with Dirac notation:

$$\begin{split} \langle \varphi | A | \psi \rangle &= \sum_{j} \langle \varphi | j \rangle \langle j | A | \psi \rangle \\ &= \sum_{j} \int dx \langle \varphi | j \rangle \langle j | A | x \rangle \langle x | \psi \rangle \\ &= \sum_{j} \int dx dk dk' \langle \varphi | j \rangle \langle j | k \rangle \langle k | A | k' \rangle \langle k' | x \rangle \langle x | \psi \rangle \\ &= \sum_{j} \int dx dk dk' c_{j}^{*} \langle j | k \rangle A(k, k') \langle k' | x \rangle \psi(x) \end{split}$$

• The change of basis is accomplished by multiplying the original column vector by a transformation matrix $U_{\rm c}$

The Transformation matrix

· The transformation matrix looks like this

$$U = \begin{pmatrix} \langle u_1 | 1 \rangle & \langle u_1 | 2 \rangle & \langle u_1 | 3 \rangle & \cdots \\ \langle u_2 | 1 \rangle & \langle u_2 | 2 \rangle & \langle u_2 | 3 \rangle & \cdots \\ \langle u_3 | 1 \rangle & \langle u_3 | 2 \rangle & \langle u_3 | 3 \rangle & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

- The columns of *U* are the components of the old unit vectors in the new basis
- If we specify at least one basis set in physical terms, then we can define other basis sets by specifying the elements of the transformation matrix

Example: 2-D rotation

- Let's do a familiar problem using the new notation
- Consider a clockwise rotation of 2-dimensional Cartesian coordinates:

Continued . FIND r' FIRST: $C'_{k} = \langle \hat{x}' | r \rangle$ Insert projector onto 'known' = $\hat{x} \cdot \hat{x} \cdot r_{x} + \hat{x} \cdot \hat{\gamma} \cdot \hat{\gamma}$ basis = cos & rx - sin & ry · LIKEWISE: ry = <ŷ'Ir> =<デリネン(ネリアンチ<ダリタン(ダリアン = y'.x rx + y'.y ry = sindry + cus Ory $\cos \theta = \sin \theta$ $\sin \theta \cos \theta$ - $L_{A} R(\theta) = (1$

Summary

- Basis sets can be continuous or discrete
 - The important equations are:

$$1 = \sum_{j} |j\rangle\langle j| \qquad 1 = \int dx |x\rangle\langle x|$$
$$\langle j|k\rangle = \delta_{jk} \qquad \langle x|x'\rangle = \delta(x - x')$$

- Change of basis is simple with Dirac notation:
 - 1. Write unknown quantity
 - 2. Insert projector onto known basis
 - 3. Evaluate the transformation matrix elements
 - 4. Perform the required summations

$$C_{j} = \langle u_{j} | \psi \rangle$$
$$= \sum_{k} \langle u_{j} | k \rangle \langle k | \psi \rangle$$
$$= \sum_{j} \langle u_{j} | k \rangle c_{k}$$