
Hermitian Operators

• Definition: an operator is said to be Hermitian if

it satisfies:   A†=A

– Alternatively called ‘self adjoint’

– In QM we will see that all observable properties

must be represented by Hermitian operators

• Theorem: all eigenvalues of a Hermitian

operator are real

– Proof:

• Start from Eigenvalue Eq.:

• Take the H.c. (of both sides):

• Use A†=A:

• Combine to give:

• Since !am |am" # 0 it follows that
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Eigenvectors of a Hermitian operator

– Note: all eigenvectors are defined only up to a

multiplicative c-number constant

• Thus we can choose the normalization !am|am"=1

• THEOREM: all eigenvectors corresponding to

distinct eigenvalues are orthogonal

– Proof:

• Start from eigenvalue equation:

• Take H.c. with m  $ n:

• Combine to give:

• This can be written as:

• So either  am = an in which case they are not
distinct, or !am|an"=0, which means the

eigenvectors are orthogonal
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Completeness of Eigenvectors of a

Hermitian operator

• THEOREM: If an operator in an M-dimensional

Hilbert space has M distinct eigenvalues (i.e.

no degeneracy), then its eigenvectors form a

`complete set’ of unit vectors (i.e a complete

‘basis’)

– Proof:

M orthonormal vectors must span an

M-dimensional space.

• Thus we can use them to form a

representation of the identity operator:

Degeneracy

• Definition: If there are at least two linearly

independent eigenvectors associated with the

same eigenvalue, then the eigenvalue is

degenerate.

– The `degree of degeneracy’  of an eigenvalue is

the number of linearly independent eigenvectors

that are associated with it

• Let dm  be the degeneracy of the mth eigenvalue

• Then dm is the dimension of the degenerate

subspace

• Example: The d=2  case

– Let’s refer to the two linearly independent
eigenvectors |%n" and |&n"

• There is some operator W such that for some n

we have:

W |%n"= %n|%n" and W | &n"= &n| &n"

• Also we choose to normalize these states:

!%n|%n"=1 and  ! &n| &n"=1

• Linear independence means !%n |&n" # 1.

– If they are not orthogonal (!%n |&n" # 0), we can

always use Gram-Schmidt Orthogonalization to

get an orthonormal set



Gram-Schmidt Orthogonalization

• Procedure:

– Let

– A second orthogonal vector is then

• Proof:

– but

– Therefore

– Can be continued for higher degree of degeneracy

– Analogy in 3-d:

• Result: From M linearly independent degenerate
eigenvectors we can always form M orthonormal
unit vectors which span the M-dimensional
degenerate subspace.

– If this is done, then the eigenvectors of a Hermitian
operator form a complete basis even with degeneracy
present
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Phy851/Lecture 4: Basis sets and

representations

• A `basis’ is a set of orthogonal unit vectors in

Hilbert space

– analogous to choosing a coordinate system in

3D space

– A basis is a complete set of unit vectors that

spans the state space

• Basis sets come in two flavors: ‘discrete’ and

‘continuous’

– A discrete basis is what we have been

considering so far. The unit vectors can be
labeled by integers, e.g. {|1", |2",…, |M"}, where

M can be either finite or infinite

• The number of basis vectors is either finite or

‘countable infinity’.

– A continuous basis is a generalization whereby

the unit  vectors are labeled by real numbers,
e.g. {|x"}; xmin< x < xmax, where the upper and

lower bounds can be either finite or infinite

• The number of basis vectors is `uncountable

infinity’.



Properties of basis vectors

Matrix element

operator

expansion

projector

component/

wavefunction

state

expansion

normalization

orthogonality

continuousdiscreteproperty
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Example 1

• Consider the relation:

– To know |' _ " or |'" you must know its

components in some basis

– Here we will go from the abstract form to the

specific relation between components
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Project onto a single

unit vector:

Insert the projector:

Translate to vector

notation:
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Same procedure for

continuous basis:

Abstract equation:
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Example 2: Combining different basis

sets in a single expression

• Let’s assume we know the components of |(" in the

basis {|1",|2",|3",… }

– cj)!j|("

• Let’s suppose that we only know the wavefunction

of |'" in the continuous basis {|x"}

– '(x) )!x|'"

• In addition, we only know the matrix elements of A

in the alternate continuous basis {|k"}

– A(k,k') )!k|A|k'"

• How would we compute the matrix element !(|A|'"?
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j
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• We see that in order to compute this number, we
need the inner-products !j|k" and !k|'"

– These are the transformation coefficients to go from

one basis to another
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Change of Basis

• Let the sets {|1",|2",|3",…} and {|u1",|u2",|u3",…} be
two different orthonormal basis sets

• Suppose we know the components of |'" in the
basis {|1",|2",|3",…}, this means we know the
elements {cj}:

• How do we find the components {Cj} of |'" in the
alternate basis {|u1",|u2",|u3",…}

• This is easily handled with Dirac notation:

• The change of basis is accomplished by multiplying
the original column vector by a transformation
matrix U.
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The Transformation matrix

• The transformation matrix looks like this

• The columns of U are the components of the

old unit vectors in the new basis

• If we specify at least one basis set in physical

terms, then we can define other basis sets by

specifying the elements of the transformation

matrix
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Example: 2-D rotation

• Let’s do a familiar problem using the new

notation

• Consider a clockwise rotation of 2-dimensional

Cartesian coordinates:



Continued

Insert

projector

onto ‘known’

basis

Summary

• Basis sets can be continuous or discrete

– The important equations are:

• Change of basis is simple with Dirac notation:

1. Write unknown quantity

2. Insert projector onto known basis

3. Evaluate the transformation matrix elements

4. Perform the required summations
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