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A zero-range approach to atom-molecule coupling is developed in analogy to the Fermi-Huang
pseudopotential approach to collisions. It is shown by explicit comparison to an exactly solvable finite-
range model that replacing the molecular bound-state wave function with a regularized delta function can
reproduce the exact scattering amplitude in the long-wavelength limit. Using this approach, we find an
analytical solution to the two-channel Feshbach resonance problem for two atoms in a spherical harmonic
trap, highlighting the strong dependence of the effective scattering length and bare-molecule population

on the atom-molecule coupling strength.
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Coupling between atoms and molecules in quantum-
degenerate gases is an ever-present aspect of ultracold
atomic physics. Feshbach resonances (FR) [1] are now
routinely used for control over atomic interactions [2]
and the formation of molecular Bose-Einstein condensates
[3—-6]. Laser-induced photoassociation (PA) is also widely
employed [7,8], having the advantage of control over both
the coupling strength [9] and detuning, which depend on
the laser intensity and frequency, respectively. In contrast,
for FR changing the intensity of a static B field adjusts the
detuning, while the coupling strength depends only on
atomic parameters. While a pseudopotential [10] approach
to atom-atom collisions has long been a cornerstone of
Bose-Einstein condensation (BEC) theory, an analog has
yet to be formulated to treat multichannel free-bound
coupling in ultracold atomic gases. In this Letter, we for-
mulate such an approach which is applicable to both the FR
and PA versions of atom-molecule coupling.

The first zero-range models for BEC atom-molecule
coupling replaced the bound-state wave function with a
simple delta function [11-14]. While suitable for mean-
field models, the delta function model is known to intro-
duce a UV divergence when atom-atom correlations are
taken into account. A renormalization scheme was devel-
oped by Holland and co-workers [15], where the diver-
gence is removed via a momentum cutoff and a cutoff-
dependent shift to the bound-state energy. In subsequent
work, this approach was extended to include zero-range
atom-atom collisions by introducing cutoff-dependent re-
normalized coupling constants [16].

The origin of the UV divergence lies in ‘“‘rogue disso-
ciation” [17,18] of molecules into “virtual” atom pairs,
which form a 1/r core in the relative wave function of a
pair of atoms which necessarily exists in superposition
with any bound-state amplitude. A zero-range approach
involves replacing the molecular bound state with a zero-
range object, which sits at the center of this core; hence, a
simple delta function leads to a nonphysical divergence. In
this work, we show that if the correct zero-range object is
employed, the long-wavelength scattering properties of a
finite-range model can be exactly reproduced without in-
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troducing renormalized (infinite) detunings and or cou-
pling constants. The correct zero-range pseudowave func-
tion is a regularized delta function, whose (finite) coeffi-
cient depends only on the details of the interatomic poten-
tial. We note that the renormalization approach of Ref. [16]
is not as desirable in the presence of a trapping potential,
because the renormalized parameters must then depend not
just on the cutoff but also on the relative energy of each
atom pair. The present approach contains no energy-
dependent parameters or explicit momentum cutoff and
can be considered as a closed-form analytic expression
for the cutoff — oo limit of the previous renormaliztion
approach.

We proceed by first analyzing a model square-potential
system and establishing the validity of the regularized delta
function approach. We then obtain an analytic solution for
the 2-atom problem in a harmonic trap. We examine the
dependence of the effective scattering length and bare-
molecule populations on the coupling strength and detun-
ing. Our primary result is to demonstrate that the bare-
molecule population decreases as the square of the cou-
pling strength, a result qualitatively consistent with similar
recent results [19,20]. This suggests that PA is a more
versatile tool than FR for control over atom-molecule
coupling.

We begin our analysis by considering a pair of atoms
described by a relative wave function ¢(r, #), where j =
1, 2 corresponds to an internal spin state. The eigenstates of
this system obey the Schrodinger equation

2
B 1) = — 5 V() + S Vuln yte), (D
k

where E is the energy eigenvalue, u is the reduced mass,
and V;;(r) is the interatom potential. For our model system,
we assume that the first channel sees a flat potential,
V,1(r) = 0. The second channel sees a spherical-well po-
tential of depth V|, and radius w, Vy,(r) = Uy — VoU(w —
r), where U, is the continuum threshold energy and U(x) is
the unit-step function. In the absence of coupling terms, the
spectrum of the second channel consists of a continuum of
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states above the threshold energy U, and a discrete set of

bound states with energies between U, and U, — V. The
bound states are all of the form
N, et r>w
b, (r) = { "ta (kyr) 2)
Nb s1n(kbv[:) o rh r<w,

where a, and k, satisfy the equations (h%/2u) X
[k2 + 1/a2] = V, and cot(k,w) = —1/(ka,), and N,
is determined by normalization.

We proceed by first expanding the second channel wave
function ¢,(r) onto its bare eigenstates under the simplify-
ing assumptions that only a single bound state is near-
resonantly coupled to the first channel so that all other
states may be neglected. We assume the interaction poten-
tial has the form Vy,(r, 1) = (W>G/u)e . Taking E =
h%k*/(2u) then leads to an eigenvalue problem for a con-
tinuum coupled to a single bound state,

LR + V216, (1) = Gy (0)c, 3)

%[kz — 22k =G f Lryme, ), @

where c is the probability amplitude for the atom pair to be
in the bound state, and A = (u/h*)(Uy — @) — (1/243) is
the detuning away from the atom-molecule resonance at
k = 0. The coupling constant G will depend on the details
of the atom-molecule coupling scheme.

Our goal is now to solve this eigenvalue problem, under
the boundary conditions lim, ¢, (r) = (e *"/r) +
f(e™*/r) and lim,_yr¢,(r) =0, in order to determine
the scattering amplitude f = f(k). The solution can be
obtained via the ansatz

ikr ikr 2

_ 2
A ey () r>w
Igsln(kr) + ZGZC%(I')

¢, (r) = &)

r<<w.

This ansatz explicitly satisfies (3), as well as the boundary
conditions. Equation (4), together with the continuity equa-
tions ¢;(wt) = ¢p;(w™) and Vop,(w") = Vgp;(w™), can
then be used to determine the three unknowns f, ¢, and 8.

The long-wavelength limit requires that 1/k be large
compared to the size of the bound state. As the size of the
bound state is w + a, this is equivalent to the limits kw <
1 and ka, < 1. For our model potential, the condition
K, > 1/w is always satisfied, so that k/K, is a small
parameter as well. Expanding the scattering amplitude
f(k) in terms of these small parameters then yields

2 - 26 — ik

ot 0[], (6)

k) = —
o K —26+i

where & € {kw, ka,, k/K,}, and we have introduced the
light-shifted detuning

2w/ab 1 3
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and the effective coupling constant
1
X = 47GN e va,(a, + w)[l + > :| (8)
Kpaj,

The important point here is that all of the details of the
potential can be absorbed into effective detuning and cou-
pling constants.

We now consider a zero-range model in which the
bound-state wave function ¢, (r) in (3) is replaced by a
regularized delta function via G, (r) — x8°(r) Zr. In
addition, the detuning A is replaced by the light-shifted
detuning 6. The Schrodinger equation for this model is
given by

K + V2], (r) = x&3(r)c, 9)

%[k2 —268]c = x* fd3r63(r)%r¢1(r). (10)

This problem can be solved by making use of the ansazt
é,(r) = (e7™*"/r) + f(e*"/r), resulting in a scattering
amplitude given by Eq. (6), but without the O[ &3] correc-
tion. Thus, the zero-range model (9) and (10) will repro-
duce correctly the long-wavelength atom-molecule
quantum dynamics of our model potential.

As an example, we now solve the problem of two
bosonic atoms in a spherical harmonic oscillator (fre-
quency y,,) with both s-wave collisions and coupling
to a bound state in a second channel. With E =
h (v, + 3/2), 8 = hawy,, 8, and using harmonic oscil-
lator units, the time-independent Schrédinger equation can
be written as

[v, +iV2 =12 + 319, (r) = «,8(r), (11)

[v, — 8lc, = m/*Q fd3r83(r)%r¢n(r), (12)

where n is an integer label for each quantum level (the
lowest energy level corresponding to n = 0), a is the
background scattering length, A is the harmonic oscillator
length of the trap, Q = A2z~ 3/*y, and k, = 7/*Qc, +
279 Lr,(r)],—o.

The normahzed eigenfunctions are found to be [21]

Q F[__ r2/2 _V 3
277 Blom ) " U( 27 ) (13

where B(v,x) = 1 — 2xI'[— 5]/T[— 2], U(a, b, z) is the
confluent hypergeometric function, and ¢(z) is the poly-

gamma function [22]. The eigenvalues {»,} are determined
by the characteristic equation

¢n(r) ==
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Intriguingly, it is found that the bare-molecule fraction
lc,|*> obeys the relation |c,|*> = dv,/ds. From a series
expansion of (13), the 1/r part of ¢,(r) is found to be
—[Q/274B(v,, Y(c,/r). Only for a =0 is this term
independent of v,, so that it can be removed via an
energy-independent renormalized detuning [15].

The spectrum of eigenvalues agrees exactly with those
of a single-channel system with the energy-dependent
effective scattering length

(14)

A JTQ?
2 (v—29)
which is the familiar FR result. The only difference be-
tween the true atom-molecule eigenstates and the equiva-
lent single-channel states with scattering length a. is the
presence of the bare-molecule population |c,|?.

On resonance, we have v, = 8 and |a.g| — 0. A care-
ful analysis shows that this requires v,, = 2n — l and ¢,, #
0. Thus, the eigenvalues are driven to odd-integer values,
for which the regular part of ¢, (r) vanishes at r = 0. This
result leads to an analytic expression for the on-resonance
molecular fraction |c,|> =1/(1 + a,Q?), where a, =
[@r)!1/2n — D](7r/2).

The energy dependence in a.¢(7) plays a crucial role in
the crossover between the weak-coupling and strong-
coupling regimes. The requirement for a significant devia-
tion from the bare-trap spectrum ¥, is agg/A ~ 1.
Obtaining this condition via Feshbach resonance requires
|6 — ,| < /mQ?/2. In the weak-coupling regime 2 <«
1, only one trap level can be near resonance; thus, the
spectrum consists of a series of avoided crossings between
the bare-molecular level and the uncoupled eigenstates of
the “open”” channel. This is illustrated in Fig. 1, where we
have plotted the eigenvalue spectrum as a function of the
detuning for the case a = 0.3A and ) = 0.2. The dotted
lines show the uncoupled () = 0) eigenvalues. It is im-
portant to note that the avoided crossings do not corre-
spond to the location of the Feshbach resonance. The FR

agr(v) =a + (15)
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FIG. 1. Energy levels as a function of detuning for the case
a = 0.3) and Q) = 0.2, illustrating a sequence of avoided cross-
ings in the weak-coupling regime. The dashed lines correspond
to the uncoupled eigenvalues.

condition »,, = & occurs slightly to the left of each avoided
crossing, where the perturbed eigenvalue is resonant with
the bound-state energy. The large avoided crossing at 6 =
—7 occurs when the bound state in the closed channel
crosses the bound state in the open channel. There is no
FR associated with this crossing.

In the strong-coupling regime, defined as ()% > 1, the
width of the resonance is much larger than the trap level
spacing; hence, many levels can be resonant simulta-
neously. Thus, the low-lying levels all lie very close to
their on-resonance values of v, = 2n — 1. This is illus-
trated in Fig. 2, which shows the eigenvalue spectrum as a
function of detuning for the case { = 10 and a = 0. In this
regime, the resonance value is a good estimate for the
molecular fraction, showing that the molecular amplitude
decreases dramatically with increasing coupling strength.
To understand this effect, simply make the reasonable
assumption that in the strong-coupling limit all quasireso-
nant levels are mixed with equal amplitudes. For Q2 > 1,
the number of near-resonant levels is Njeyes = Q2. If we
equate the probability for any given bare state to the total
probability divided by the approximate number of levels,
we arrive at |c|?> = 1/Q2, which agrees well with the
analytic result.

In Fig. 3, we plot a.; and |c,|*> versus detuning for
several cases of interest. In Figs. 3(a) and 3(b), we show
the weak-coupling case () = 0.2 and a = 0.3 for levels
n =1 and n = 2, respectively. The n = 1 case shows a
sweep (right to left) from the lowest “unbound” state
through the closed channel and into the bound state in
the open channel. The n = 2 case shows a transfer from
one unbound state to another via the molecular state. As the
level is swept through resonance, we see a broad feature in
the molecular fraction |c,|?, whose maximum value is
slightly larger than the on-resonance value and occurs to
the right of the resonance. Figures 3(c) and 3(d) show the
intermediate case () = 1 and a = 0 for levels n = 0 and
n = 1. We see in the n = 1 case that the molecular fraction
is significantly reduced compared to the weak-coupling
regime. Last, in Figs. 3(e) and 3(f), we see the strong-

-400 -200 0 200 400
S

FIG. 2. Energy levels as a function of detuning for the case
a=0 and Q = 10, illustrating the “fermionization” of the
low-lying levels in the strong-coupling regime (in the vicinity
of 6 = 0). The dashed lines correspond to the odd-integer values
v, ="2n—1.
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FIG. 3. Effective scattering length a g (solid line) and molecu-
lar fraction |c,|? (dashed line) as the detuning & is swept across
resonance. (a) and (b) show the cases n = 1 and n = 2, respec-
tively, for the case () = 0.2 and a = 0.3A. (¢) and (d) show n =
Oand n = 1for ) = 1 and a = 0, respectively, while (e) and (f)
show n = 0 and n = 1 for the case {) = 10 and a = 0, respec-
tively. The vertical dotted lines mark the location of the reso-
nance, while the horizontal dotted lines correspond to the
analytical resonance result for |c,|?.

coupling case () = 10 and a = 0, for levels n = 0 and
n = 1. We see that, in the strong-coupling regime, the
scattering length can be tuned from —oo to +oo, with a
negligible bare-molecular component.

In conclusion, we see that the effects of rogue dissocia-
tion play a major role in atom-molecule coupling, resulting
in the appearance of a 1/r singularity in the relative wave
function together with a corresponding decrease in the
bare-molecule population. This suggests that for molecule
formation it is best to have a weak coupling, while for
manipulation of atomic interactions, e.g., for BCS pairing
of fermions [23,24], a strong coupling will remove the
corresponding bare-molecule population. In FR the free-
space coupling strength is predetermined by atomic prop-
erties; hence, () can only be increased by decreasing the
trap size. In PA, however, the coupling strength is readily
increased by increasing the laser intensity. This suggests
that laser-induced photoassociation may have a significant
advantage over Feshbach resonance for tuning atom-atom
interactions.

Last, we note recent theory work [25] in which recent
fermion data [26] were successfully modeled only by
employing a finite momentum cutoff, thus calling into
question the validity of the zero-range approximation in
the SLi system. In the present work, it was found that the
zero-range approach should fail when the incident wave-
length is small compared to the size of the bare bound state.
At face value, this is inconsistent with the fitted cutoff
length of 1500a,. This discrepency must be understood
before applying the present pseudopotential approach to

the °Li system.
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