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Trionic optical potential for electrons in
semiconductors
Martin J. A. Schuetz*, Michael G. Moore and Carlo Piermarocchi

Laser-induced optical potentials for atoms have led to remarkable advances in precision measurement, quantum information
and towards addressing fundamental questions in condensed-matter physics. Here, we describe analogous optical potentials
for electrons in quantum wells and wires that can be generated by optically driving the transition between a single electron
and a three-body electron–exciton bound state, known as a trion. The existence of a bound trion state adds a term to the
a.c. Stark shift of the material proportional to the light intensity at the position of the electron. According to our theoretical
calculations, this shift can be large relative to the thermal equilibrium temperature of the electron, resulting in a relatively
strong optical potential that could be used to trap, guide and manipulate individual electrons within a semiconductor quantum
well or wire. These potentials can be thought of as artificial nanostructures on the scale of 100 nm that can be spin dependent
and reconfigurable in real time. Our results suggest the possibility of integrating ultrafast optics and gate voltages in
new resolved-carrier semiconductor optoelectronic devices, with potential applications in fields such as nanoelectronics,
spintronics and quantum information processing.

The optical properties of one- and two-dimensional
semiconductor confined systems are dominated at low tem-
perature by bound electron–hole pairs known as excitons1.

In samples with a small excess of electrons, an exciton can capture
another electron to form a charged exciton, or trion, which is
the bound state of two electrons and a hole2,3. In good iii–v
and ii–vi quantum-well samples, trions with high mobility have
been observed4–6. From an atomic physics perspective, the electron
to trion optical transition occurring in a semiconductor host
environment effectively gives a second internal state to the electron,
which is otherwise a point-like, structure-less particle in free space.
Optically driving the transition between these two states then
induces the electron to respond to the light in an atom-likemanner.

When transitions between two internal atomic energy levels
are driven by near-resonant laser light, the ground-state a.c. Stark
shift is proportional to the laser intensity at the position of
the atom. Thus, a spatially varying intensity pattern creates a
spatially varying optical potential that acts on the atomic centre-
of-mass motion. We propose creating analogous optical potentials
for semiconductor charge carriers by driving the sample with
light tuned near the trion resonance. A spatially inhomogeneous
intensity profile will result in a mechanical potential acting
on the electron (see Fig. 1). As a resonant effect, the trionic
optical potential is many orders of magnitude stronger than
the ponderomotive potential7 that arises from the Lorentz force
acting on the electron. In contrast to electron–hole pairs localized
by transversal light forces8, an electron (or hole) in a trionic
optical potential will not radiatively decay, opening the possibility
for optical manipulation of charge flow and/or the creation
of interesting many-electron states, for example, a solid-state
quantum simulator9.

At present, we focus on the case of electrons confined in GaAs
and CdTe quantum wells, as their optical properties have been
most thoroughly investigated experimentally, but similar potentials
should be obtainable for holes, as well as for carriers confined in
quantum wires. A variational approach has been used to calculate
the wavefunction and the optical properties of the three-particle
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Figure 1 | Interference pattern for two laser beams incident on the
semiconductor structure. a, Top excitation at incidence angle π/3.
b, Lateral excitation. The interference pattern has been calculated using an
average index of refraction n= 3.5 corresponding to typical III–V-based
structures. Note that the optical lattice periodicity can be partially
controlled by changing the incidence angle.

trion state, as described in the Methods section. Under laser
excitation, the electron makes virtual transitions into a bound
trion state; while at the same time, the laser drives the transition
to non-localized excitons. As these states are locally perturbed by
the exciton–electron interaction, they can be viewed as ’unbound
trions’. Including both types of transition we have treated the
light–matter coupling perturbatively and obtained a second-order
effective Hamiltonian. We consider a monochromatic standing
wave E(r,t )= E0 cos(Qr)cos(ωt ) containing photon modes with
±Q in-plane momenta, producing an intensity pattern in the
form of periodic stripes along the quantum well. Neglecting small
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Figure 2 | Scheme of energy-level shifts for an empty quantum well |0〉
and for a quantum well with one electron at re, in the red- and
blue-detuning case. An exciton in a neutral quantum well, ideally coherent
over the whole sample, has an oscillator strength that scales as Nx=A/Ax,
where A is the total area of the sample and Ax is the exciton size. In
contrast, the fact that a free carrier must be already present in the sample
to create a trion implies that the trion oscillator strength scales as
At/Ax=Nt (ref. 10), where At is an effective trion size. In the diagram the
contributions from the bound trion (proportional to Ω0

2/∆t) and the
continuum (proportional to Ω0

2/∆x) are shown separately. ∆x(t) is the
photon–exciton (trion) detuning. Notice that the constant global energy
shift−NxΩ̄

2/∆x, where Ω̄ is a spatially averaged Rabi energy, does not
contribute to the electron potential.

non-local effects (see the Methods section and Supplementary Fig.
S1), the resulting potential for the electron can be expressed as

U (r)=−ε∆tfc(∆t)cos2(Q ·r)

where we introduce the dimensionless saturation parameter
ε = χ(Ω0/∆t)2. The parameter Ω0 = d0|E0| is the Rabi energy,
with d0 being the inter-band dipole moment, and ∆t is the
difference between the trion resonance and the laser energy. The
factor fc(∆t) is due to the presence of the continuum of unbound
trions (see the Methods section), and can be approximated by
fc(∆t) = Eb/(Eb+∆t), where Eb is the trion binding energy. As
unbound excitons in our system would be equivalent to electron–
positron excitations in the vacuum, we interpret this coefficient as a
non-negligible vacuum polarizability correction. In the definition
of the saturation parameter we include the coefficient χ (see
Supplementary Fig. S2), which is proportional to the integral
over all configurations of the three-particle wavefunction with one
electron and the hole taken at the same position10. The coefficient
χ is about 80 for GaAs and 90 for CdTe.

By decreasing the saturation ε, heating of the electron owing
to spontaneous scattering of photons can be reduced. Photon
scattering is enhanced by the trion resonance, occurring at the rate
Γse = εΓt, with Γt ∼ 1010 s−1 being the natural linewidth of the
trion state. Whereas Γse scales as ∼1/∆t

2, the trap depth scales as
fc(∆t)/∆t. The sign of the trion–photon detuning ∆t, corresponds
to two qualitatively different regimes for the optical potential (see
Fig. 2). For red detuning, ∆t > 0, the potential minima are at the
anti-nodes of the intensity profile, so that the electrons will be
attracted towards high field intensities, where Γse, proportional
the laser intensity, is maximum. The situation is reversed for
intermediate blue detuning, ∆t < 0, where the potential minima
correspond to the nodes of the standing-wave pattern, where Γse
is minimized. We show in Fig. 3a,b the potential depth U0 for red
and blue detuning as a function of the saturation parameter ε,
which is proportional to the laser intensity. The detuning∆t as well
as the potential depth is represented in units of the trion binding
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Figure 3 | Potential depth as a function of laser intensity for various
detunings. a,b, Optical potential depths for red (a) and blue (b) detuning
expressed in terms of the trion binding energy for different values of the
optical detuning with respect to the trion resonance. In the red-detuned
case the potential is attractive and electrons will be trapped at the
anti-nodes of the interference pattern, whereas for blue detuning the
potential is repulsive and electrons will be trapped at the nodes.

energy Eb, which is typically of the order of 2meV in GaAs and
3.6meV in CdTe semiconductor quantum wells. For red detuning,
the continuum and the bound trion level give contributions of
opposite sign to the shift of the electron ground-state energy
(see Fig. 2). As a consequence, the potential depth saturates at a
maximum of εEb. For intermediate blue detuning, Eb < |∆t|< 0,
the continuum and bound trion contributions add constructively,
resulting in a significantly deeper potential, scaling as 1/(Eb−|∆t|).
The enhancement owing to the singularity at ∆t =−Eb is limited
by the requirement to remain well outside the exciton resonance
linewidth ΓX , given for both GaAs and CdTe by approximately
0.05Eb. For ε = 0.05, we find that a potential depth of 0.5Eb
is feasible. To realize this strong potential, laser intensities of
I = 3×103 Wcm−2 and I = 9×103 Wcm−2 would be required for
GaAs and CdTe quantum wells, respectively. These intensities are
muchweaker, for instance, than the ones used to observe the exciton
Stark shift11, where a strong laser was followed by a weak probe to
probe the energy difference between adjacent light-dressed states12.
The optical potential, on the other hand, is simply the shift of the
lowest dressed state, and is thereforemuch stronger.

A natural energy scale for quantifying the effects of laser heating
is the single-photon recoil energy defined as ER= h̄2Q2/2me

∗, that
is, the kinetic energy of an electron with a momentum equal to
that of the laser photons and mass equal to the electron effective
massme

∗. Translational invariance along the quantum well implies
conservation of the in-planemomentum,which reduces the average
recoil kick an electron experiences in the process of spontaneous
photon emission. For GaAs and CdTe the in-plane kinetic energy
imparted by photon recoil, averaged over the emission angle,
is 〈ER〉 = 0.29meV and 〈ER〉 = 0.16meV, respectively. This is a
conservative estimate neglecting the possibility of having part of
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Table 1 | Electron equilibrium temperature in K for GaAs and
CdTe for different values of the saturation parameter.

GaAs (K) CdTe (K)

ε=0.10 4.6 2.9
ε=0.05 3.5 2.3
ε=0.01 2.3 1.2

Equilibrium temperature resulting from the balance of laser heating and phonon cooling for
different saturation parameters for the two materials. The lattice temperature is 300 mK (see
also Supplementary Fig. S4).

the recoil momentum transferred to phonons. The small effective
mass of the electron—which is about seven orders of magnitude
smaller than the mass of rubidium atoms—gives rise to relatively
large recoil energies. However, this energy has to be compared with
the maximum achievable depth of the trionic optical potential,
which is significantly deeper than atomic potentials owing to
a much higher oscillator strength, as well as the enhancement
owing to the background polarizability. We compare our potential-
depth to recoil-energy ratio with three typical atomic optical
lattice experiments on macroscopic quantum interference13, Bloch
oscillations14 and quantum phase transitions15. The maximum
achievable potential depths in these experiments have been 2.1ER,
6ER and 22ER, respectively. Despite the large recoil energies involved
in our system, we predict potential depths of about 3ER and 10ER
for GaAs and CdTe, respectively. For CdTe, we have also estimated
the number of quasi-bound states by approximating the trapping
potential as a single harmonic oscillator and comparing the energy-
level separation to the total depth. We found that three levels are
boundwithin a large range of detuning and saturation parameters.

In contrast to the casewith trapped atoms, cooling of the electron
is provided by a mechanism completely separate from the optical
trapping mechanism: coupling to the phonon reservoir. In our
energy range, the electrons will cool down by acoustic phonon
emission (Supplementary Fig. S3). The equilibrium temperature
is therefore determined by competition between phonon emission
and laser heating (we assume that the experiment will be carried out
at 300mK, where phonon absorption can be neglected). The laser
heating rate Rh—measured in energy per time—can be expressed
as Rh = εΓt〈ER〉, whereas acoustic phonon emission tends to cool
the electron down at some cooling rate Rc(E). The two competing
processes lead to an effective equilibrium energy defined by
Rc(Eeq)= Rh (Supplementary Fig. S4). Using the electron–phonon
deformation potential interaction, a lattice temperature of 300mK
and a quantum-well width of 20 nm we have calculated cooling
and heating rates and the effective equilibrium electron temperature
for different values of the saturation ε (Table 1). For ε= 0.05 and
∆t=−0.9Eb, we predict a potential depth of 0.5Eb, corresponding
to 1meV for GaAs and 1.8meV for CdTe. The depth of the trapping
potential thus exceeds the electron equilibrium temperature by up
to one order of magnitude.

In the blue-detuned case, the possibility arises for phonon-
assisted photon absorption. Virtual trions created by photon
absorption can decay into real trions by acoustic phonon emission.
This occurs at a rate of the order of 0.8 ns−1 in homogeneously
illuminated GaAs samples with ε= 0.05 (Supplementary Fig. S3).
We note that, in the blue-detuned case electrons are confined in
the vicinity of the nodes of the intensity pattern, which will further
suppress both the photon and phonon emission rates by a factor
that can be analytically calculated as (1−e−

√
ER/U0)/2. Note that

although the resulting real trion will decay by spontaneous photon
emission, and thus lead to an increase in the heating rate, the
emitted photons will be at the trion resonance frequency. This raises
the possibility ofmeasuring the electron density by imaging the light

at the trion resonance frequency, as this light will be emitted only in
proximity to an electron.

As a result of spin–orbit interaction and confinement, the
trion level structure allows spin-up electrons to respond only
to right-handed photons, whereas spin-down electrons see only
left-handed photons (see Supplementary Fig. S5). This means
that the trionic optical potentials for spin-up and spin-down
electrons, generated by left- and right-circularly polarized laser
fields, respectively, can be completely independent of each other.
Thus, it might be possible to generate entanglement between an
electron’s spin and orbital motions. This could then be used to
generate entanglement between the spins of two neighbouring
electrons, as their separation, and therefore interaction strength,
can depend strongly on the spin states of the individual electrons.
These possibilities show that, when viewed either as a platform
for addressing fundamental open questions in condensed-matter
physics, and/or as a platform for spin-based quantum information
processing, optically trapped charged particles in a semiconductor
environment are not intrinsically disadvantageous with respect to
their atomic cousins.

In future work, we will consider optical potentials for heavy
holes, which have a reduced heating rate owing to their larger mass;
as well as for bi-layer excitons16, which have the advantage of being
electrically neutral, and thus interact at a much shorter range than
either electrons or holes. We will also explore the possibility for
even deeper potentials in quantumwires, where confinement in two
dimensions should lead to even stronger enhancement.

Methods
Charge loading. The loading of charges in the optical potential could be
experimentally realized using different techniques. The electronic density has to
remain low to limit Coulomb effects, ideally around 109 cm−2, corresponding
to a Fermi energy of about 0.02meV, much smaller than the optical potential
depth. The quantum well could be embedded in a Schottky diode structure
controlled by an external d.c. field. This method has been used in loading layers
of quantum dots with one electron each17. Realizations relying on delta doping
layers may present problems owing to ionized doping centres, which generate
a random potential in the plane of the quantum well. However, according to
direct scanning probe techniques, this potential is characterized by patterns with
dominant length scales of the order of one micrometre18 and we expect that
electron trapping could be created inside these micrometre-sized patterns. As we
need a low carrier density, the sample design can be optimized to minimize the
effect of ionized impurities. For instance, the dopant layers could be made thick
and relatively distant from the optical potential region. Charge loading could
also be realized by photo-doping double-quantum-well systems. Here, spatially
separated electrons and holes are created following high-energy excitation. For
distant quantum wells the charges can remain confined for seconds19 and we could
obtain two independent optical potentials for the two types of carrier. For smaller
separation of the wells the optical potential will trap indirect excitons and could
complement other methods of controlling indirect exciton fluxes in integrated
circuits16. Finally, one could simply take advantage of unintentional doping in the
barriers, and pump with an energy just above the ionized acceptor to conduction
transition in the barriers to produce electrons that relax in a single quantum well,
as recently demonstrated20.

Competing effects. We have studied the possibility of optical excitation of the
electron out of the confining quantum well. This process competes with virtual
trion formation, but the corresponding matrix element is vanishingly small owing
to the mismatch between the two-dimensional wavefunction in the quantum well
and the extended bulk-like states in the barriers. An upper bound estimation of
the branching ratio between electron ionization and trion creation in the quantum
well, neglecting Coulomb enhancement effects, gives 10−5. We have also considered
disorder effects owing to fluctuations in the number of atomic monolayers. These
fluctuations create islands corresponding to different well or wire widths. The
optical potential will not be affected if the characteristic length of the islands is
much smaller or much larger than the carrier confinement length. From this point
of view, a promising system for the experimental realization is represented by
V-groove semiconductor quantum wires, in which one-dimensional islands of
the order of 1 µm and extremely narrow homogeneous emission lines have been
explicitly observed21,22. In wires, the trion binding energy and thus the optical
potential will be larger than the one calculated above. In principle very high-quality
quantum wells without growth interruption should feature large islands similar
to the ones in quantum wires. For relatively large quantum wells with a width of
around 20 nm, the exciton linewidths can be extremely narrow. For instance, 25 nm
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quantum wells with exciton lines of 0.075meV have been reported23. In those
samples the effect of interface disorder is completely negligible. Alloy disorder is
also present, but owing to its extremely short-range characteristic length24 its effects
are averaged out within the electron envelope function. Finally, unintended doping
can contribute to the absorption through impurity-bound exciton resonances and
their phonon satellites lines. However, absorption of energy owing to unintended
dopingmostly occurs in the barriers and substrate, and is significant only at energies
quite higher than the quantum-well trion resonance.

Detection schemes. The detection of electrons trapped by the optical potential
can be realized by detecting the weak optical emission at the trion energy, which
will be spectrally separated from emission at the pump energy. The emission at
the trion energy at a given spot is a signature of the presence of the electron. In
the blue-detuning case the trion emission will occur at the dark spots of the pump
interference pattern and should be less challenging to observe. Both far-field and
near-field optical techniques should be able to demonstrate the carrier localization.
In contrast to atomic systems, the confined carriers are charged, and charge-imaging
methods could also be used to detect electrons trapped by the optical potential in
a way similar to the detection of single electrons trapped by impurity centres25.
We note that the experiments we propose are very similar to four-wave-mixing
experiments that have been carried out in two-dimensional electron gas systems
(for a review see ref. 26). The only difference is that we are proposing to explore a
different regime of carrier density and excitation energy.

Variational calculation. For the trion state (X−) we have used a two-dimensional
variational Hylleraas function27 of the form ϕb(s,t ,u)=N e−αs(1+βu+γ t 2),
where α, β and γ are three variational parameters and N is the normalization
constant. The position of the three carriers in the trion is expressed in terms of two
elliptic coordinates s= re1h+ re2h and t = re1h− re2h and the inter-electron distance
u= re1e2 . Hylleraas-type wavefunctions are known to accurately describe radial
and internal angular correlation effects28. For GaAs and CdTe quantum wells we
have obtained trion binding energies of about 2.05meV and 3.6meV, respectively,
which is in good agreement with the experiments6. Using this wavefunction we
have found radiative lifetimes of about 20 ps for both materials, also in reasonable
agreement with the experimental values5.

The matrix element for the optical transition from an initial electron
with momentum k to a bound trion state with centre-of-mass momentum
K can be written as

〈K|HLM|k〉=
Ω0

2
[δK,k+QI (βXk−βeQ)+δK,k−QI (βXk+βeQ)] (1)

where the first and second terms on the right-hand side describe the absorption
of a photon in the +Q mode and in the −Q mode, respectively. The coefficient
βe = 1−βX =me/mt is the electron to trion mass ratio, the light–matter
interaction is indicated by HLM and Ω0 is the Rabi energy. The quantity
I (p)= (1/

√
2π)

∫
dr e−iprϕb(r,r,r) is the Fourier transform of the bound trion

wavefunction ϕb taken with one electron and the hole at the same position.
This function enters in equation (1) with p= βXk±βeQ, which is the relative
momentum of the initial electron k and the photo-created exciton with ±Q. For
the calculation of the optical potentials we have used a full analytical expression
for the function I (p) (ref. 29). Note that the enhancement factor is approximately
given by χ = |I (p= 0)|2.

Perturbation theory. The second-order effective Hamiltonian for the electron
can be written as

Heff= Pe

∑
k

(εk(0)+εk (2))|k(0)〉〈k(0)|+εk(0)(|k(0)〉〈k(2)|+|k(2)〉〈k(0)|)Pe (2)

where the subscripts (0) and (2) indicate the zeroth- and second-order corrections
to the electron energy εk and wavefunction |k〉 with respect to the light–matter
coupling, and Pe is a projector on single-electron states. The second term on the
right-hand side of equation (2) includes off-diagonal processes between electronic
states with different k owing to the mixing with photon modes. These off-diagonal
contributions can be written in the form

HOD =

−∑
k

Ω0
2

4

 1
∆t
+
χc(∆x)

∆x

|I (k)|2+ Ω0ΩX

∆x
O(K,k)I (k)


× |k−Q〉〈k+Q|+hc

where ∆x(t ) is the photon–exciton (trion) detuning, O(K,k)= 〈K|K,k〉 is the
overlap between a bound state trion with centre-of-mass momentum K and an
unbound state composed of one exciton with centre-of-mass momentum K and
one electron of momentum k and ΩX is the Rabi energy modified by excitonic
effects. We have defined the quantity χc(∆)/∆=

∑
k(O(0,k)

2)/h̄2k2/2µt+∆,
where µt is the reduced mass of the free-exciton/free-electron system. These

off-diagonal terms are the dominant terms in the derivation of a potential that
carries the signature of the intensity profile. From the effective Hamiltonian in
k-space, we derive a Schrödinger equation for the electron wavefunction ψ(r) in
the presence of the standing wave given by

−
h̄2∇2

2me
∗
ψ(r)−

Ω0
2

∆t
fc(∆t)

∫
dr′cos2

Q
r+r′

2

m(r−r′)ψ(r′)= Eψ(r)

We note that the optical potential is not diagonal in coordinate representation;
rather it depends on the non-local kernel m(r− r′). The continuum factor and
non-local kernel are new effects related to the vacuum polarizability of the
electron’s environment, and are not observed in atomic systems. A plot of the
kernel function m(x) is shown in Supplementary Fig. S1, where we see that
it matches the size of the trion bound state. As the size of the kernel is small
compared with the optical wavelength, non-local effects can be treated as a
perturbation that effectively averages the light intensity over a small area centred
on the electron position, corresponding to the approximation m(x)= χδ(x). In
practical terms, the non-locality will limit the obtainable electron localization
to the trion length scale, even if significantly deeper potentials than we consider
might somehow be realized.
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