QUANTUM MECHANICS SUBJECT EXAM Spring 2008

ID NUMBER:_____

- 1. POSTULATES OF QUANTUM MECHANICS: A certain quantum system is governed by the Hamiltonian $H = \sum_{n=0}^{\infty} E_n |n\rangle \langle n|$, where the state $|n\rangle$ is the n^{th} energy eigenstate of the system, with eigenvalue E_n . Assume that the system is prepared in the initial state $|\psi(t_0)\rangle = \frac{1}{\sqrt{6}} [|1\rangle + 2|2\rangle + |3\rangle]$, where the states $|1\rangle$, $|2\rangle$ and $|3\rangle$ refer to the 1st 2nd and 3rd energy eigenstates. At time t_1 a measurement is made of the total energy of the system.
 - (a) Taking the initial state into account, what are the possible results from the measurement.
 - (b) What is the probability of obtaining each possible result?
 - (c) For each possible result, what is the normalized state of the system after the measurement?

Now consider a system of two spin-1/2 particles prepared in the state

$$|\psi\rangle = a|\uparrow\uparrow\rangle + b|\uparrow\downarrow\rangle + c|\downarrow\uparrow\rangle + d|\downarrow\downarrow\rangle,$$

where $|a|^2 + |b|^2 + |c|^2 + |d|^2 = 1$. While the particles are in this state, the operator S^2 is measured, where $\vec{S} = \vec{S}_1 + \vec{S}_2$ is the total spin.

- (d) What are the possible results of the measurement?
- (e) What are the probabilities for getting each possible result? (In terms of a, b, c, and d)

2. SCATTERING IN 1-D: A particle with energy E is incident from the left onto a combination of a step potential and a delta-potential. Thus the total potential the particle sees is $V(x) = V_1(x) + V_2(x)$, where $V_1(x) = U_0$ for x > 0 and is zero otherwise, and $V_2(x) = V_0\delta(x)$. Compute the probability that the particle is **reflected**. Give the answer in terms of $k = \sqrt{2mE}/\hbar$ and $K = \sqrt{2m(E - U_0)}/\hbar$, as well as the constants m, V_0 and \hbar . You can assume that $E > U_0$.

3. PERTURBATION THEORY: Let

$$H_0 = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{1}{2}m\omega^2 x^2$$

and

 $V = V_0 \delta(x).$

Denote the bare eigenstates by $|n\rangle$, with $H_0|n\rangle = \hbar\omega_n |n\rangle$; n = 0, 1, 2, ...

(a) For this system, what is the energy of the n^{th} eigenstate of H_0 ?

(b) Based on symmetry considerations, which bare levels will not be shifted at all by this perturbation?

(c) Use perturbation theory to find the ground state energy of $H = H_0 + \lambda V$ to second order in λ , and the ground-state wavefunction to first order in λ .

Tip: You can write " $\phi_n(0)$ " for the bare trap eigenfunctions at x = 0, rather than finding an exact expression.

4. THE THREE DIMENSIONAL RIGID ROTOR: Consider a particle in three dimensions which is constrained to move on the surface of a sphere of radius R. The classical kinetic energy of a particle moving on the sphere with angular velocity ω about some axis is $I\omega^2/2$, where $I = mR^2$ is the moment of inertia. The kinetic energy may be written $L^2/2I$, where \vec{L} is the (classical) angular momentum. The corresponding quantum Hamiltonian is $H = L^2/2I$, where \vec{L} is now the angular momentum operator.

(a) What are the energy levels of the quantum mechanical rigid rotor? What is the degeneracy of each energy level?

(b) A convenient basis for the position of the particle is given by $|\theta\phi\rangle$, where θ and ϕ are the angles in spherical polar coordinates. What are the energy eigenfunctions in this basis?

Now, suppose the particle is charged and the sphere is in a uniform magnetic field $\vec{B} = B_z \hat{k}$. The Hamiltonian now becomes

$$H = \frac{\mathbf{L}^2}{2I} + \gamma B_z L_z.$$

(c) What are the energy levels and eigenfunctions now? What is the degeneracy of each level?

5. THE BORN SERIES: The Lippman-Schwinger equation is

$$|\psi\rangle = |\psi_0\rangle + GV|\psi\rangle,$$

(a) Starting from the Lippman-Schwinger equation, derive the Born series expansion for the full solution, $|\psi\rangle$.

(b) The T-matrix is defined via $|\psi\rangle = |\psi_0\rangle + GT |\psi_0\rangle$. Combine this with your result from (a) and derive the Born series expansion for T.

(c) The scattering amplitude, $f(\vec{k}', \vec{k})$ is defined via

$$f(\vec{k}',\vec{k}) = -\frac{(2\pi)^2 M}{\hbar^2} \langle \vec{k}' | T | \vec{k} \rangle. \label{eq:f}$$

Using the first-order Born approximation for T, find the scattering amplitude for the Gaussian potential $V(\vec{r}) = V_0 e^{-(r/R)^2}$. HINT: $\int_{-\infty}^{\infty} dx \, e^{iqx} e^{-ax^2} = \sqrt{\frac{\pi}{a}} e^{-q^2/4a^2}$.

6. HEISENBERG EQUATIONS OF MOTION: The quantum state in the Heisenberg picture is related to the state in the Schrödinger picture by

$$|\psi_H\rangle = e^{iHt/\hbar} |\psi_S(t)\rangle.$$

(a) Let \hat{O} be an arbitrary operator. How must $\hat{O}_H(t)$ be related to \hat{O}_S so that the expectation value $\langle \hat{O} \rangle$ is the same in both pictures?

(b) Use the previous result to derive the Heisenberg equation of motion for $\hat{O}_H(t)$.

A certain nonlinear crystal absorbs photons of energy $2\hbar\omega$ and emits two photons of energy $\hbar\omega$. When this crystal is placed between two high-quality mirrors, and pumped by a laser with frequency 2ω , the buildup of light at frequency ω is governed by the Hamiltonian

$$\hat{H} = \hbar \chi (\hat{A}\hat{A} + \hat{A}^{\dagger}\hat{A}^{\dagger}),$$

where \hat{A} and \hat{A}^{\dagger} are the operators which describe the destruction and creation of a photon in the resonator mode. They satisfy the usual bosonic commutation relation

$$[\hat{A}, \hat{A}^{\dagger}] = 1.$$

. . .

(c) Using the Heisenberg picture, find the equations of motion for the operators $\hat{A}(t)$ and $\hat{A}^{\dagger}(t)$.

(d) Solve the equations to relate $\hat{A}(t)$ and $\hat{A}^{\dagger}(t)$ to their initial values $\hat{A}(0)$ and $\hat{A}^{\dagger}(0)$.