
Chapter 3

A Comparison of AMR and SPH
cosmology codes

3.1 Summary

We compare two cosmological hydrodynamic simulation codes in the context of hierar-
chical galaxy formation: the Lagrangian smoothed particle hydrodynamics (SPH) code
‘GADGET’, and the Eulerian adaptive mesh refinement (AMR) code ‘Enzo’. Both codes
represent dark matter with the N-body method but use different gravity solvers and
fundamentally different approaches for baryonic hydrodynamics. The SPH method in
GADGET uses a recently developed ‘entropy conserving’ formulation of SPH, while for
the mesh-based Enzo two different formulations of Eulerian hydrodynamics are employed:
the piecewise parabolic method (PPM) extended with a dual energy formulation for cos-
mology, and the artificial viscosity-based scheme used in the magnetohydrodynamics code
ZEUS. In this paper we focus on a comparison of cosmological simulations that follow
either only dark matter, or also a non-radiative (‘adiabatic’) hydrodynamic gaseous com-
ponent. We perform multiple simulations using both codes with varying spatial and mass
resolution with identical initial conditions.

The dark matter-only runs agree generally quite well provided Enzo is run with a
comparatively fine root grid and a low overdensity threshold for mesh refinement, oth-
erwise the abundance of low-mass halos is suppressed. This can be readily understood
as a consequence of the hierarchical particle-mesh algorithm used by Enzo to compute
gravitational forces, which tends to deliver lower force resolution than the tree-algorithm
of GADGET at early times before any adaptive mesh refinement takes place. At compa-
rable force resolution we find that the latter offers substantially better performance and
lower memory consumption than the present gravity solver in Enzo.

In simulations that include adiabatic gas dynamics we find general agreement in the
distribution functions of temperature, entropy, and density for gas of moderate to high
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overdensity, as found inside dark matter halos. However, there are also some significant
differences in the same quantities for gas of lower overdensity. For example, at z = 3 the
fraction of cosmic gas that has temperature log T > 0.5 is ∼ 80% for both Enzo/ZEUS and
GADGET, while it is 40−60% for Enzo/PPM. We argue that these discrepancies are due
to differences in the shock-capturing abilities of the different methods. In particular, we
find that the ZEUS implementation of artificial viscosity in Enzo leads to some unphysical
heating at early times in preshock regions. While this is apparently a significantly weaker
effect in GADGET, its use of an artificial viscosity technique may also make it prone
to some excess generation of entropy which should be absent in ENZO/PPM. Overall,
the hydrodynamical results for GADGET are bracketed by those for Enzo/ZEUS and
Enzo/PPM, but are closer to Enzo/ZEUS. This chapter has been previously published as
a paper in the Astrophysical Journal [4].

3.2 Motivation

Within the currently leading theoretical model for structure formation small fluctuations
that were imprinted in the primordial density field are amplified by gravity, eventually
leading to non-linear collapse and the formation of dark matter (DM) halos. Gas then
falls into the potential wells provided by the DM halos where it is shock-heated and then
cooled radiatively, allowing a fraction of the gas to collapse to such high densities that star
formation can ensue. The formation of galaxies hence involves dissipative gas dynamics
coupled to the nonlinear regime of gravitational growth of structure. The substantial
difficulty of this problem is exacerbated by the inherent three-dimensional character of
structure formation in a ΛCDM universe, where due to the shape of the primordial power
spectrum a large range of wave modes becomes nonlinear in a very short time, resulting in
the rapid formation of objects with a wide range of masses which merge in geometrically
complex ways into ever more massive systems. Therefore, direct numerical simulations
of structure formation which include hydrodynamics arguably provide the only method
for studying this problem in its full generality.

Hydrodynamic methods used in cosmological simulations of galaxy formation can
be broken down into two primary classes: techniques using an Eulerian grid, including
‘Adaptive Mesh Refinement’ (AMR) techniques, and those which follow the fluid elements
in a Lagrangian manner using gas particles, such as ‘Smoothed Particle Hydrodynamics’
(SPH). Although significant amounts of work have been done on structure/galaxy for-
mation using both types of simulations, very few detailed comparisons between the two
simulation methods have been carried out [171, 172], despite the existence of widespread
prejudices in the field with respect to alleged weaknesses and strengths of the different
methods.

Perhaps the most extensive code comparison performed to date was the Santa Barbara
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cluster comparison project [172], in which several different groups ran a simulation of the
formation of one galaxy cluster, starting from identical initial conditions. They compared
a few key quantities of the formed cluster, such as radially-averaged profiles of baryon and
dark matter density, gas temperature and X-ray luminosity. Both Eulerian (fixed grid
and AMR) and SPH methods were used in this study. Although most of the measured
properties of the simulated cluster agreed reasonably well between different types of
simulations (typically within ∼ 20%), there were also some noticeable differences which
largely remained unexplained, for example in the central entropy profile, or in the baryon
fraction within the virial radius. Later simulations by Ascasibar et al. [173] compare
results from the Eulerian AMR code ART [174] with the entropy-conserving version
of GADGET. They find that the entropy-conserving version of GADGET significantly
improves agreement with grid codes when examining the central entropy profile of a
galaxy cluster, though the results are not fully converged. The GADGET result using
the new hydro formulation now shows an entropy floor – in the Santa Barbara paper the
SPH codes typically did not display any trend towards a floor in entropy at the center
of the cluster while the grid-based codes generally did. The ART code produces results
that agree extremely well with the grid codes used in the comparison. The observed
convergence in cluster properties is encouraging, but there is still a need to explore other
systematic differences between simulation methods.

The purpose of the present study is to compare two different types of modern cos-
mological hydrodynamic methods, SPH and AMR, in greater depth, with the goal of
obtaining a better understanding of the systematic differences between the different nu-
merical techniques. This will also help to arrive at a more reliable assessment of the
systematic uncertainties in present numerical simulations, and provide guidance for fu-
ture improvements in numerical methods. The codes we use are ‘GADGET’1, an SPH
code developed by Springel et al. [175], and ‘Enzo’2, an AMR code developed by Bryan
et al. [134, 135]. In this paper, we focus our attention on the clustering properties of
dark matter and on the global distribution of the thermodynamic quantities of cosmic
gas, such as temperature, density, and entropy of the gas. Our work is thus complemen-
tary to the Santa Barbara cluster comparison project because we examine cosmological
volumes that include many halos and a low-density intergalactic medium, rather than fo-
cusing on a single particularly well-resolved halo. We also include idealized tests designed
to highlight the effects of artificial viscosity and cosmic expansion.

The present study is the first paper in a series that aims at providing a comprehensive
comparison of AMR and SPH methods applied to the dissipative galaxy formation prob-
lem. In this paper, we describe the general code methodology, and present fundamental
comparisons between dark matter-only runs and runs that include ordinary ‘adiabatic’
hydrodynamics. This paper is meant to provide statistical comparisons between simula-

1http://www.MPA-Garching.MPG.DE/gadget/
2http://www.cosmos.ucsd.edu/enzo/
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tion codes, and we leave detailed comparisons of baryon properties in individual halos to
a later paper. Additionally, we plan to compare simulations using radiative cooling, star
formation, and supernova feedback in forthcoming work.

The organization of this paper is as follows. We provide a short overview of the
GADGET code in Section 3.3 (Enzo is described in detail in Section 2.2), and then describe
the details of our simulations in Section 3.4. Our comparison is then conducted in two
steps. We first compare the dark matter-only runs in Section 3.5 to test the gravity solver
of each code. This is followed in Section 3.6 with a detailed comparison of hydrodynamic
results obtained in adiabatic cosmological simulations. We then discuss effects of artificial
viscosity in Section 3.7, and the timing and memory usage of the two codes in Section 3.8.
Finally, we conclude in Section 3.9 with a discussion of our findings.

3.3 The GADGET smoothed particle hydrodynam-

ics code

In this study, we compare Enzo with a new version of the parallel TreeSPH code GADGET

[176], which combines smoothed particle hydrodynamics with a hierarchical tree algo-
rithm for gravitational forces. Codes with a similar principal design [177, 178, 179, 180]
have been employed in cosmology for a number of years. Compared with previous SPH
implementations, the new version GADGET-2 used here differs significantly in its formula-
tion of SPH (as discussed below), in its timestepping algorithm, and in its parallelization
strategy. In addition, the new code optionally allows the computation of long-range
forces with a particle-mesh (PM) algorithm, with the tree algorithm supplying short-
range gravitational interactions only. This ‘TreePM’ method can substantially speed up
the computation while maintaining the large dynamic range and flexibility of the tree
algorithm.

3.3.1 Hydrodynamical method

SPH uses a set of discrete tracer particles to describe the state of a fluid, with continuous
fluid quantities being defined by a kernel interpolation technique if needed [181, 182, 183].
The particles with coordinates ri, velocities vi, and masses mi are best thought of as fluid
elements that sample the gas in a Lagrangian sense. The thermodynamic state of each
fluid element may either be defined in terms of its thermal energy per unit mass, ui, or
in terms of the entropy per unit mass, si. We in general prefer to use the latter as the
independent thermodynamic variable evolved in SPH, for reasons discussed in full detail
by Springel & Hernquist [184]. In essence, use of the entropy allows SPH to be formulated
so that both energy and entropy are manifestly conserved, even when adaptive smoothing
lengths are used. [185] In the following we summarize the “entropy formulation” of SPH,
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which is implemented in GADGET-2 as suggested by Springel & Hernquist [184].
We begin by noting that it is more convenient to work with an entropic function

defined by A ≡ P/ργ, instead of directly using the thermodynamic entropy s per unit
mass. Because A = A(s) is only a function of s for an ideal gas, we will simply call A
the ‘entropy’ in what follows. Of fundamental importance for any SPH formulation is
the density estimate, which GADGET calculates in the form

ρi =
N

∑

j=1

mjW (|rij|, hi), (3.1)

where rij ≡ ri−rj , and W (r, h) is the SPH smoothing kernel. In the entropy formulation
of the code, the adaptive smoothing lengths hi of each particle are defined such that their
kernel volumes contain a constant mass for the estimated density; i.e. the smoothing
lengths and the estimated densities obey the (implicit) equations

4π

3
h3

i ρi = Nsphm, (3.2)

where Nsph is the typical number of smoothing neighbors, and m is the average particle
mass. Note that in traditional formulations of SPH, smoothing lengths are typically
chosen such that the number of particles inside the smoothing radius hi is equal to a
constant value Nsph.

Starting from a discretized version of the fluid Lagrangian, one can show [184] that
the equations of motion for the SPH particles are given by

dvi

dt
= −

N
∑

j=1

mj

[

fi
Pi

ρ2
i

∇iWij(hi) + fj
Pj

ρ2
j

∇iWij(hj)

]

, (3.3)

where the coefficients fi are defined by

fi =

[

1 +
hi

3ρi

∂ρi

∂hi

]−1

, (3.4)

and the abbreviation Wij(h) = W (|ri − rj|, h) has been used. The particle pressures are
given by Pi = Aiρ

γ
i . Provided there are no shocks and no external sources of heat, the

equations above already fully define reversible fluid dynamics in SPH. The entropy Ai of
each particle simply remains constant in such a flow.

However, flows of ideal gases can easily develop discontinuities where entropy must
be generated by microphysics. Such shocks need to be captured by an artificial viscosity
technique in SPH. To this end GADGET uses a viscous force

dvi

dt

∣

∣

∣

∣

∣

visc.

= −
N

∑

j=1

mjΠij∇iW ij . (3.5)
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For the simulations of this paper, we use a standard Monaghan-Balsara artificial viscosity
Πij [186, 187], parameterized in the following form:

Πij =

{

[

−αcijµij + 2αµ2
ij

]

/ρij if vij · rij < 0

0 otherwise,
(3.6)

with

µij =
hij vij · rij

|rij|2
. (3.7)

Here hij and ρij denote arithmetic means of the corresponding quantities for the two
particles i and j, with cij giving the mean sound speed. The symbol W ij in the viscous
force is the arithmetic average of the two kernels Wij(hi) and Wij(hj). The strength of
the viscosity is regulated by the parameter α, with typical values in the range 0.75− 1.0.
Following Steinmetz [188], GADGET also uses an additional viscosity-limiter in Eqn. (3.6)
in the presence of strong shear flows to alleviate angular momentum transport.

Note that the artificial viscosity is only active when fluid elements approach one
another in physical space, to prevent particle interpenetration. In this case, entropy is
generated by the viscous force at a rate

dAi

dt
=

1

2

γ − 1

ργ−1
i

N
∑

j=1

mjΠijvij ·∇iW ij , (3.8)

transforming kinetic energy of gas motion irreversibly into heat.
We have also run a few simulations with a ‘conventional formulation’ of SPH in order

to compare its results with the ‘entropy formulation’. This conventional formulation
is characterized by the following differences. Equation (3.2) is replaced by a choice of
smoothing length that keeps the number of neighbors constant. In the equation of motion,
the coefficients fi and fj are always equal to unity, and finally, the entropy is replaced
by the thermal energy per unit mass as an independent thermodynamic variable. The
thermal energy is then evolved as

dui

dt
=

N
∑

j=1

mj

(

Pi

ρ2
i

+
1

2
Πij

)

vij ·∇iW ij, (3.9)

with the particle pressures being defined as Pi = (γ − 1)ρiui.

3.3.2 Gravitational method

In the GADGET code, both the collisionless dark matter and the gaseous fluid are rep-
resented by particles, allowing the self-gravity of both components to be computed with
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gravitational N-body methods. Assuming a periodic box of size L, the forces can be for-
mally computed as the gradient of the periodic peculiar potential φ, which is the solution
of

∇2φ(x) = 4πG
∑

i

mi

[

−
1

L3
+

∑

n

δ̃(x − xi − nL)

]

, (3.10)

where the sum over n = (n1, n2, n3) extends over all integer triples. The function δ̃(x)
is a normalized softening kernel, which distributes the mass of a point-mass over a scale
corresponding to the gravitational softening length ε. The GADGET code adopts the
spline kernel used in SPH for δ̃(x), with a scale length chosen such that the force of a
point mass becomes fully Newtonian at a separation of 2.8 ε, with a gravitational potential
at zero lag equal to −Gm/ε, allowing the interpretation of ε as a Plummer equivalent
softening length.

Evaluating the forces by direct summation over all particles becomes rapidly pro-
hibitive for large N owing to the inherent N2 scaling of this approach. Tree algorithms
such as that used in GADGET overcome this problem by using a hierarchical multipole
expansion in which distant particles are grouped into ever larger cells, allowing their
gravity to be accounted for by means of a single multipole force. Instead of requiring
N − 1 partial forces per particle, the gravitational force on a single particle can then be
computed from just O(logN) interactions.

It should be noted that the final result of the tree algorithm will in general only
represent an approximation to the true force described by Eqn. (3.10). However, the
error can be controlled conveniently by adjusting the opening criterion for tree nodes,
and, provided sufficient computational resources are invested, the tree force can be made
arbitrarily close to the well-specified correct force.

The summation over the infinite grid of particle images required for simulations with
periodic boundary conditions can also be treated in the tree algorithm. GADGET uses
the technique proposed by Hernquist et al. [189] for this purpose. Alternatively, the
new version GADGET-2used in this study allows the pure tree algorithm to be replaced
by a hybrid method consisting of a synthesis of the particle-mesh method and the tree
algorithm. GADGET’s mathematical implementation of this so-called TreePM method
[190, 191, 192] is similar to that of Bagla [193]. The potential of Eqn. (3.10) is explicitly
split in Fourier space into a long-range and a short-range part according to φk = φlong

k +
φshort

k , where

φlong
k = φk exp(−k2r2

s), (3.11)

with rs describing the spatial scale of the force-split. This long range potential can be
computed very efficiently with mesh-based Fourier methods. Note that if rs is chosen
slightly larger than the mesh scale, force anisotropies that exist in plain PM methods
can be suppressed to essentially arbitrarily small levels.
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The short range part of the potential can be solved in real space by noting that for
rs % L the short-range part of the potential is given by

φshort(x) = −G
∑

i

mi

ri
erfc

(

ri

2rs

)

. (3.12)

Here ri = min(|x − ri − nL|) is defined as the smallest distance of any of the images
of particle i to the point x. The short-range force can still be computed by the tree
algorithm, except that the force law is modified according to Eqn. (3.12). However,
the tree only needs to be walked in a small spatial region around each target particle
(because the complementary error function rapidly falls for r > rs), and no corrections for
periodic boundary conditions are required, which together can result in a very substantial
performance gain. One typically also gains accuracy in the long range force, which is
now basically exact, and not an approximation as in the tree method. In addition, the
TreePM approach maintains all of the most important advantages of the tree algorithm,
namely its insensitivity to clustering, its essentially unlimited dynamic range, and its
precise control about the softening scale of the gravitational force.

3.4 The simulation set

In all of our simulations, we adopt the standard concordance cold dark matter model
of a flat universe with Ωm = 0.3, ΩΛ = 0.7, σ8 = 0.9, n = 1, and h = 0.7. For
simulations including hydrodynamics, we take the baryon mass density to be Ωb = 0.04.
The simulations are initialized at redshift z = 99 using the Eisenstein & Hu [194] transfer
function. For the dark matter-only runs, we chose a periodic box of comoving size
12 h−1 Mpc, while for the adiabatic runs we preferred 3h−1 Mpc to achieve higher mass
resolution, although the exact size of the simulation box is of little importance for the
present comparison. Note however that this is different in simulations that also include
cooling, which imprints additional physical scales. We place the unperturbed dark matter
particles at the vertices of a Cartesian grid, with the gas particles offset by half the mean
interparticle separation in the GADGET simulations. These particles are then perturbed
by the Zel’dovich approximation for the initial conditions. In Enzo, fluid elements are
represented by the values at the center of the cells and are also perturbed using the
Zel‘dovich approximation.

For both codes, we have run a large number of simulations, varying the resolution, the
physics (dark matter only, or dark matter with adiabatic hydrodynamics), and some key
numerical parameters. Most of these simulations have been evolved to redshift z = 3. We
give a full list of all simulations we use in this study in Tables 3.1 and 3.2 for GADGET

and Enzo, respectively; below we give some further explanations for this simulation set.
We performed a suite of dark matter-only simulations in order to compare the gravity

solvers in Enzo and GADGET. For GADGET, the spatial resolution is determined by
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the gravitational softening length ε, while for Enzo the equivalent quantity is given by
the smallest allowed mesh size e (note that in Enzo the gravitational force resolution is
approximately twice as coarse as this: see Section 2.2.4). Together with the box size Lbox,
we can then define a dynamic range Lbox/e to characterize a simulation (for simplicity
we use Lbox/e for GADGET as well instead of Lbox/ε). For our basic set of runs with 643

dark matter particles we varied Lbox/e from 256 to 512, 1024, 2048 and 4096 in Enzo. We
also computed corresponding GADGET simulations, except for the Lbox/e = 4096 case,
which presumably would already show sizable two-body scattering effects. Note that it is
common practice to run collisionless tree N-body simulations with softening in the range
1/25−1/30 of the mean interparticle separation, translating to Lbox/e = 1600−1920 for
a 643 simulation.

Unlike in GADGET, the force accuracy in Enzo at early times also depends on the root
grid size. For most of our runs we used a root grid with 643 cells, but we also performed
Enzo runs with a 1283 root grid in order to test the effect of the root grid size on the dark
matter halo mass function. Both 643 and 1283 particles were used, with the number of
particles never exceeding the size of the root grid.

Our main interest in this study lies, however, in our second set of runs, where we
additionally follow the hydrodynamics of a baryonic component, modeled here as an
ideal, non-radiative gas. As above, we use 643 DM particles and 643 gas particles (for
GADGET), or a 643 root grid (for Enzo), in most of our runs, though as before we also
perform runs with 1283 particles and root grids. Again, we vary the dynamic range
Lbox/e from 256 to 4096 in Enzo, and parallel this with corresponding GADGET runs,
except for the Lbox/e = 4096 case.

An important parameter of the AMR method is the mesh-refinement criterion. Usu-
ally, Enzo runs are configured such that grid refinement occurs when the dark matter
mass in a cell reaches a factor of 4.0 times the mean dark matter mass expected in a cell
at root grid level, or if it has a factor of 8.0 times the mean baryonic mass of a root level
cell, but several runs were performed with a threshold density set to 0.5 of the standard
values for both dark matter and baryon density. All that the “refinement overdensity”
criteria does is set the maximum gas or dark matter mass which may exist in a given
cell before that cell must be refined based on a multiple of the mean cell mass on the
root grid. For example, a baryon overdensity threshold of 4.0 means that a cell is forced
to refine once a cell has accumulated more than 4 times the mean cell mass on the root
grid.

When the refinement overdensity is set to the higher value discussed here, the simu-
lation may fail to properly identify small density peaks at early times, so that they are
not well resolved by placing refinements on them. As a result, the formation of low-mass
DM halos or substructure in larger halos may be suppressed. Note that lowering the
refinement threshold results in a significant increase in the number of refined grids, and
hence a significant increase in the computational cost of a simulation; i.e., one must tune
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GADGET simulations

Run Lbox/e Npart mDM mgas ε notes

L12N64 dm 2048 643 5.5 × 108 — 5.86 DM only
L12N128 dm 3840 1283 6.9 × 107 — 3.13 DM only
L12N256 dm 7680 2563 8.6 × 106 — 1.56 DM only
L3N64 3.1e 256 2 × 643 7.4 × 106 1.1 × 106 11.7 Adiabatic
L3N64 3.2e 512 2 × 643 7.4 × 106 1.1 × 106 5.86 Adiabatic
L3N64 3.3e 1024 2 × 643 7.4 × 106 1.1 × 106 2.93 Adiabatic
L3N64 3.4e 2048 2 × 643 7.4 × 106 1.1 × 106 1.46 Adiabatic

L3N128 3200 2 × 1283 9.3 × 105 1.4 × 105 0.78 Adiabatic
L3N256 6400 2 × 2563 1.2 × 105 1.8 × 104 0.39 Adiabatic

Table 3.1: List of GADGET cosmological simulations that are used in this study. Lbox/e
is the dynamic range, and Npart is the particle number (in the adiabatic runs there are
identical numbers of dark matter and gas particles). mDM and mgas are the masses of
the dark matter and gas particles in units of [h−1 M"]. ε is the Plummer-equivalent
gravitational softening length in units of [h−1 kpc], but the GADGET code adopts the
spline kernel. See Section 3.3.2 for more details.

the refinement criteria to compromise between performance and accuracy.

We also performed simulations with higher mass and spatial resolution, ranging up to
2×2563 particles with GADGET, and 1283 dark matter particles and a 1283 root grid with
Enzo. For DM-only runs, the gravitational softening lengths in these higher resolution
GADGET runs were taken to be 1/30 of the mean dark matter interparticle separation,
giving a dynamic range of Lbox/e = 3840 and 7680 for 1283 and 2563 particle runs,
respectively. For the adiabatic GADGET runs, they were taken to be 1/25 of the mean
interparticle separation, giving Lbox/e = 3200 and 6400 for the 1283 and 2563 particle
runs, respectively. All Enzo runs used a maximum refinement ratio of Lbox/e = 4096.

As an example, we show the spatial distribution of the projected dark matter and gas
mass in Figure 3.1 from one of the representative adiabatic gas runs of GADGET and
Enzo. The mass distribution in the two simulations are remarkably similar for both dark
matter and gas, except that one can see slightly finer structures in GADGET gas mass
distribution compared to that of Enzo. The good visual agreement in the two runs is
very encouraging, and we will analyze the two simulations quantitatively in the following
sections.
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Enzo simulations

Run Lbox/e NDM Nroot notes

64g64d 6l dm hod 4096 643 643 DM only, high od
128g64d 5l dm hod 4096 643 1283 DM only, high od
128g128d 5l dm hod 4096 1283 1283 DM only, high od
64g64d 6l dm lod 4096 643 643 DM only, low od
128g64d 5l dm lod 4096 643 1283 DM only, low od
128g128d 5l dm lod 4096 1283 1283 DM only, low od
64g64d 6l z 4096 643 643 Adiabatic, ZEUS
64g64d 6l z lod 4096 643 643 Adiabatic, ZEUS, low OD
64g64d 6l q0.5 4096 643 643 Adiabatic, ZEUS, QAV = 0.5
128g64d 5l z 4096 643 1283 Adiabatic, ZEUS

128g64d 5l z lod 4096 643 1283 Adiabatic, ZEUS, low OD
128g128d 5l z 4096 1283 1283 Adiabatic, ZEUS

64g64d 2l ppm 256 643 643 Adiabatic, PPM
64g64d 3l ppm 512 643 643 Adiabatic, PPM
64g64d 4l ppm 1024 643 643 Adiabatic, PPM
64g64d 5l ppm 2048 643 643 Adiabatic, PPM
64g64d 6l ppm 4096 643 643 Adiabatic, PPM
64g64d 6l ppm lod 4096 643 643 Adiabatic, PPM, low OD
128g64d 5l ppm 4096 643 1283 Adiabatic, PPM
128g64d 5l ppm lod 4096 643 1283 Adiabatic, PPM, low OD
128g128d 5l ppm 4096 1283 1283 Adiabatic, PPM
128g128d 5l ppm 4096 1283 1283 Adiabatic, PPM, low OD

Table 3.2: List of Enzo simulations used in this study. Lbox/e is the dynamic range (e is
the size of the finest resolution element, i.e. the spatial size of the finest level of grids),
NDM is the number of dark matter particles, and Nroot is the size of the root grid. ‘ZEUS’
and ‘PPM’ in the notes indicate the adopted hydrodynamic method. ‘low OD’ means
that the low overdensity threshold for refinement were chosen (cells refine with a baryon
overdensity of 4.0/dark matter density of 2.0). ‘QAV’ is the artificial viscosity parameter
for the ZEUS hydro method when it is not the default value of 2.0.
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GADGET ENZO

DM

GAS

Figure 3.1: Projected dark matter (top row) and gas mass (bottom row) distribution for
GADGET and Enzo in a slab of size 3×3×0.75 (h−1 Mpc)3. For GADGET (left column),
we used the run with 2 × 643 particles. For Enzo (right column), the run with 643 dark
matter particles and 1283 root grid was used.
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3.5 Simulations with dark matter only

According to the currently favored theoretical model of the CDM theory, the material
content of the universe is dominated by as of yet unidentified elementary particles which
interact so weakly that they can be viewed as a fully collisionless component at spatial
scales of interest for large-scale structure formation. The mean mass density in this cold
dark matter far exceeds that of ordinary baryons, by a factor of ∼ 5− 7 in the currently
favored ΛCDM cosmology. Since structure formation in the Universe is primarily driven
by gravity it is of fundamental importance that the dynamics of the dark matter and the
self-gravity of the hydrodynamic component are simulated accurately by any cosmological
code. In this section we discuss simulations that only follow dark matter in order to
compare Enzo and GADGET in this respect.

3.5.1 Dark matter power spectrum

One of the most fundamental quantities to characterize the clustering of matter is the
power spectrum of dark matter density fluctuations. In Figure 3.2 we compare the power
spectra of DM-only runs at redshifts z = 10 and 3. The short-dashed curve is the linearly
evolved power spectrum based on the transfer function of Eisenstein & Hu [194], while
the solid curve gives the expected nonlinear power spectrum calculated with the Peacock
& Dodds [195] scheme. We calculate the dark matter power spectrum in each simulation
by creating a uniform grid of dark matter densities. The grid resolution is twice as fine
as the mean interparticle spacing of the simulation (i.e. a simulation with 1283 particles
will use a 2563 grid to calculate the power spectrum) and densities are generated with the
triangular-shaped cloud (TSC) method. A fast Fourier transform is then performed on
the grid of density values and the power spectrum is calculated by averaging the power
in logarithmic bins of wavenumber. We do not attempt to correct for shot-noise or the
smoothing effects of the TSC kernel.

The results of all GADGET and Enzo runs with 1283 root grid agree well with each
other at both epochs up to the Nyquist wavenumber. However, the Enzo simulations with
a 643 root grid deviate on small scales from the other results significantly, particularly
at z = 10. This can be understood to be a consequence of the particle-mesh technique
adopted as the gravity solver in the AMR code, which induces a softening of the grav-
itational force on the scale of one mesh cell (this is a property of all PM codes, not
just Enzo). To obtain reasonably accurate forces down to the scale of the interparticle
spacing, at least two cells per particle spacing are therefore required at the outset of
the calculation. In particular, the force accuracy of Enzo is much less accurate at small
scales at early times when compared to GADGET because before significant overdensities
develop the code does not adaptively refine any regions of space (and therefore increased
force resolution to include small-scale force corrections). GADGET is a tree-PM code –
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at short range, forces on particles are calculated using the tree method, which offers a
force accuracy that is essentially independent of the clustering state of the matter down
to the adopted gravitational softening length (see Section 3.3.2 for details).

However, as the simulation progresses in time and dark matter begins to cluster into
halos, the force calculation by Enzo becomes more accurate as additional levels of grids
are adaptively added to the high density regions, reducing the discrepancy seen between
Enzo and GADGET at redshift z = 10 to something much smaller at z = 3.

3.5.2 Halo dark matter mass function and halo positions

We have identified dark matter halos in the simulations using a standard Friends-of-
Friends algorithm with a linking length of 0.2 in units of the mean interparticle separation.
In this section, we consider only halos with more than 32 particles. We obtained nearly
identical results to those described in this section using the HOP halo finder [196].

In Figure 3.3, we compare the cumulative DM halo mass function for several simula-
tions with 643, 1283 and 2563 dark matter particles as a function of Lbox/e and particle
mass. In the bottom panel, we show the residual in logarithmic space with respect to the
Sheth-Tormen mass function, i.e., log(N>M)− log(S&T). The agreement between Enzo
and GADGET simulations at the high-mass end of the mass function is reasonable, but
at lower masses there is a systematic difference between the two codes. The Enzo run
with 643 root grid contains significantly fewer low mass halos compared to the GADGET
simulations. Increasing the root grid size to 1283 brings the low-mass end of the Enzo
result closer to that of GADGET.

This highlights the importance of the size of the root grid in the adaptive particle-
mesh method based AMR simulations. Eulerian simulations using the particle-mesh
technique require a root grid twice as fine as the mean interparticle separation in order
to achieve a force resolution at early times comparable to tree methods or so-called P3M
methods [138], which supplement the softened PM force with a direct particle-particle
(PP) summation on the scale of the mesh. Having a conservative refinement criterion
together with a coarse root grid in AMR is not sufficient to improve the low mass end
of the halo mass function because the lack of force resolution at early times effectively
results in a loss of small-scale power, which then prevents many low mass halos from
forming.

We have also directly compared the positions of individual dark matter halos identified
in a simulation with the same initial conditions, run both with GADGET and Enzo. This
run had 643 dark matter particles and a Lbox = 12h−1 Mpc box size. For GADGET, we
used a gravitational softening equivalent to Lbox/e = 2048. For Enzo, we used a 1283 root
grid, a low overdensity threshold for the refinement criteria, and we limited refinements
to a dynamic range of Lbox/e = 4096 (5 total levels of refinement).

In order to match up halos, we apply the following method to identify “pairs” of halos
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Figure 3.2: Dark matter power spectra at z = 10 and z = 3 for both Enzo and GADGET

simulations with 643 dark matter particles, Lbox = 12 h−1 Mpc (comoving) and varying
spatial resolution. The short-dashed curve in each panel is the linear power spectrum
predicted by theory using the transfer function of Eisenstein & Hu [194]. The solid curve
in each panel is the non-linear power spectrum calculated with the Peacock & Dodds
method. [195] Arrows indicate the largest wavelength that can be accurately represented
in the simulation initial conditions (k = 2π/Lbox) and those that correspond to the
Nyquist frequencies of 643, 1283, and 2563 Enzo root grids.
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Figure 3.3: Cumulative mass functions at z = 3 for dark matter-only Enzo & GADGET

runs with 643 particles and a comoving box size of Lbox = 12h−1 Mpc. All Enzo runs have
Lbox/e = 4096. The solid black line denotes the Sheth & Tormen [198] mass function. In
the bottom panel, we show the residual in logarithmic space with respect to the Sheth
& Tormen mass function, i.e., log(N>M)− log(S&T).
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Figure 3.4: Left column: Probability distribution function of the number of dark matter
halos as a function of the separation of the matched halo pair in corresponding Enzo and
GADGET simulations (see text for the details of the runs used in this comparison). The
separation is in units of the initial mean interparticle separation, ∆ . The shaded region
in the distribution function shows the quartiles on both sides of the median value (which
is shown by the arrows) of the distribution. Right column: Separation of each pair (in
units of ∆) vs. mean halo mass of each pair. The top row is of pairs whose masses agree
to within 10% (i.e. fM = 1.1) and the bottom row is of pairs whose masses agree to
within a factor of two (i.e. fM = 2.0).
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with approximately the same mass and center-of-mass position. First, we sort the halos
in order of decreasing mass, and then select a halo from the massive end of one of the two
simulations (i.e. the beginning of the list). Starting again from the massive end, we then
search the other list of halos for a halo within a distance of rmax = fR∆, where ∆ is the
mean interparticle separation (1/64 of the box size in this case) and fR is a dimensionless
number (chosen here to be either 0.5 or 1.0). If the halo masses are also within a fraction
fM of one another, then the two halos in question are counted as a ‘matched pair’ and
removed from the lists to avoid double-counting. This procedure is continued until there
are no more halos left that satisfy these criteria.

In the left column of Figure 3.4, we show the distribution of pair separations obtained
in this way. The arrow indicates the median value of the distribution, and the quartile on
each side of the median value is indicated by the shaded region. The values of rmax and
fM are also shown in each panel. A conservative matching-criterion that allows only a
10% deviation in halo mass and half a cell of variation in the position (i.e. rmax = 0.5∆,
fM = 1.1) finds only 117 halo pairs (out of ∼ 292 halos in each simulation) with a median
separation of 0.096∆ between the center-of-mass positions of halos. Increasing rmax to
1.0 ∆ does very little to increase the number of matched halos. Keeping rmax = 0.5∆
and increasing fM to 2.0 gives us 252 halo pairs with a median separation of 0.128∆.
Increasing fM any further does little to increase the number of matched pairs, and looking
further away than rmax = 1.0∆ produces spurious results in some cases, particularly for
low halo masses.

This result therefore suggests that the halos are typically in almost the same places
in both simulations, but that their individual masses show somewhat larger fluctuations.
Note however that a large fraction of this scatter simply stems from noise inherent in
the group sizes obtained with the halo finding algorithms used. The friends-of-friends
algorithm often links (or not yet links) infalling satellites across feeble particle bridges
with the halo, so that the numbers of particles linked to a halo can show large variations
between simulations even though the halo’s virial mass is nearly identical in the runs. We
also tested the group finder HOP [196], but found that it also shows significant noise in
the estimation of halo masses. It may be possible to reduce the latter by experimenting
with the adjustable parameters of this group finder (one of which controls the “bridging
problem” that the friends-of-friends method is susceptible to), but we have not tried this.

In the right panels of Figure 3.4, we plot the separation of halo pairs against the
average mass of the two halos in question. Clearly, pairs of massive halos tend to have
smaller separations than low mass halos. Note that some of the low mass halos with large
separation (L/∆ > 0.4) could be false identifications. It is very encouraging, however,
that the massive halos in the two simulations generally lie within 1/10 of the initial mean
interparticle separation. The slight differences in halo positions may be caused by timing
differences between the two simulation codes.
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3.5.3 Halo dark matter substructure

Another way to compare the solution accuracy of the N-body problem in the two codes
is to examine the substructure of dark matter halos. The most massive halos in the 1283

particle dark matter-only simulations discussed in this paper have approximately 11,000
particles, which is enough to marginally resolve substructure. We look for gravitationally-
bound substructure using the SUBFIND method described in Springel et al. [197], which
we briefly summarize here for clarity. The process is as follows: a Friends-of-Friends
group finder is used (with the standard linking length of 0.2 times the mean interparticle
spacing) to find all of the dark matter halos in the simulations. We then select the two
most massive halos in the calculation (each of which has at least 11,000 particles in both
simulations) and analyze them with the subhalo finding algorithm. This algorithm first
computes a local estimate of the density at the positions of all particles in the input
group, and then finds locally overdense regions using a topological method. Each of
the substructure candidates identified in this way is then subjected to a gravitational
unbinding procedure where only particles bound to the substructure are kept. If the
remaining self-bound particle group has more than some minimum number of particles
it is considered to be a subhalo. We use identical parameters for the Friends-of-Friends
and subhalo detection calculations for both the Enzo and GADGET dark matter-only
calculations.

Figure 3.5 shows the projected dark matter density distribution and substructure
mass function for the two most massive halos in the 1283 particle DM-only calculations
for both Enzo and GADGET, which have dark matter masses close to Mhalo ∼ 1012M".
Bound subhalos are indicated by different colors, with identical colors being used in
both simulations to denote the most massive subhalo, second most massive, etc. Qual-
itatively, the halos have similar overall morphologies in both calculations, though there
are some differences in the substructures. The masses of these two parent halos in the
Enzo calculation are 8.19 × 1011 M" and 7.14 × 1011 M", and we identify total 20 and
18 subhalos, respectively. The corresponding halos in the GADGET calculation have
masses of 8.27 × 1011 M" and 7.29 × 1011 M", and they have 7 and 10 subhalos. De-
spite the difficulty of Enzo in fully resolving the low-mass end of the halo mass function,
the code apparently has no problem in following dark matter substructure within large
halos, and hosts larger number of small subhalos than the GADGET calculation. Some
corresponding subhalos in the two calculations appear to be slightly off-set. Overall,
the agreement of the substructure mass functions for the intermediate mass regime of
subhalos is relatively good and within the expected noise.

It is not fully clear what causes the observed differences in halo substructure between
the two codes. It may be due to lack of spatial and/or dark matter particle mass resolution
in the calculations – typically simulations used for substructure studies have at least
an order of magnitude more dark matter particles per halo than we have here. It is

68



also possible that systematics in the grouping algorithm are responsible for some of the
differences.

3.6 Adiabatic simulations

In this section, we start our comparison of the fundamentally different hydrodynamical
algorithms of Enzo and GADGET. It is important to keep in mind that a direct compar-
ison between the AMR and SPH methods when applied to cosmic structure formation
will always be convolved with a comparison of the gravity solvers of the codes. This is
because the process of structure formation is primarily driven by gravity, to the extent
that hydrodynamical forces are subdominant in most of the volume of the universe. Dif-
ferences that originate in the gravitational dynamics will in general induce differences in
the hydrodynamical sector as well, and it may not always be straightforward to cleanly
separate those from genuine differences between the AMR and SPH methods themselves.
Given that the dark matter comparisons indicate that one must be careful to appropri-
ately resolve dark matter forces at early times unless relatively fine root grids are used
for Enzo calculations, it is clear that any difference found between the codes needs to be
regarded with caution until confirmed with AMR simulations of high gravitational force
resolution.

Having made these cautionary remarks, we will begin our comparison with a seemingly
trivial test of a freely expanding universe without perturbations, which is useful to check
conservation of entropy (for example). After that, we will compare the gas properties
found in cosmological simulations of the ΛCDM model in more detail.

3.6.1 Unperturbed adiabatic expansion test

Unperturbed ideal gas in an expanding universe should follow Poisson’s law of adiabatic
expansion: T ∝ V γ−1 ∝ ρ1−γ . Therefore, if we define entropy as S ≡ T/ργ−1, it should
be constant for an adiabatically expanding gas.

This simple relation suggests a straightforward test of how well the hydrodynamic
codes described in Chapter 2 and Section 3.3 conserve entropy [185]. To this end, we set
up unperturbed simulations for both Enzo and GADGET with 163 grid cells or particles,
respectively. The runs are initialized at z = 99 with uniform density and temperature
T = 104 K. This initial temperature was deliberately set to a higher value than expected
for the real universe in order to avoid hitting the temperature floor set in the codes while
following the adiabatic cooling of gas due to the expansion of the universe. The box was
then allowed to expand until z = 3. Enzo runs were performed using both the PPM and
ZEUS algorithms and GADGET runs were done with both ‘conventional’ and the ‘entropy
conserving’ formulation of SPH.
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Figure 3.5: Dark matter substructure in both Enzo and GADGET dark matter-only cal-
culations with 1283 particles. The Enzo simulations use the “low overdensity” refinement
parameters. Left column: data from the most massive halo in the simulation volume.
Right column: second most massive halo. Top row: Projected dark matter density for
halos in the Enzo simulation with substructure color-coded. Middle row: projected dark
matter density for GADGET simulations. Bottom row: Halo substructure mass function
for each halo with both Enzo and GADGET results plotted together, with units of num-
ber of halos greater than a given mass on the y axis and number of particles on the x
axis. In these simulations the dark matter particle mass is 9.82 × 107 M", resulting in
total halo masses of ∼ 1012 M". In the top and middle rows subhalos with the same
color correspond to the most massive, second most massive, etc. subhalos. In the Enzo
calculation all subhalos beyond the 10th most massive are shown using the same color.
Both sets of halos have masses of ∼ 1012 M" The x and y axes in the top two rows are
in units of comoving kpc/h. In the bottom row, Enzo results are shown as a black solid
line and GADGET results are shown as a red dashed line.
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Figure 3.6: Fractional deviations from the expected adiabatic relation for temperature,
comoving gas density and entropy as a function of redshift in simulations of unperturbed
adiabatic expansion test. Left column: the ‘entropy conserving’ formulation of SPH (top
panel) and the ‘conventional’ formulation (bottom panel). Right column: The PPM
(top panel) and ZEUS (bottom panel) hydrodynamic methods in Enzo. Error bars in
all panels show the variance of each quantity. The short-long-dashed line in the bottom
right panel shows the case where the maximum timestep is limited to be 1/10 of the
default maximum. Note the difference in scales of the y axes in the bottom row.

71



In Figure 3.6 we show the fractional deviation from the expected adiabatic relation
for density, temperature, and entropy. The GADGET results (left column) show that the
‘entropy conserving’ formulation of SPH preserves the entropy very well, as expected.
There is a small net decrease in temperature and density of only ∼ 0.1%, reflecting the
error of SPH in estimating the mean density. In contrast, in the ‘conventional’ SPH
formulation the temperature and entropy deviate from the adiabatic relation by 15%,
while the comoving density of each gas particle remains constant. This systematic drift
is here caused by a small error in estimating the local velocity dispersion owing to the
expansion of the universe. In physical coordinates, one expects ∇ · v = 3H(a), but in
conventional SPH, the velocity divergence needs to be estimated with a small number
of discrete particles, which in general will give a result that slightly deviates from the
continuum expectation of 3H(a). In our test, this error is the same for all particles, with-
out having a chance to average out for particles with different neighbor configurations,
hence resulting in a substantial systematic drift. In the entropy formulation of SPH, this
problem is absent by construction.

In the Enzo/PPM run (top right panel), there is a net decrease of only ∼ 0.1% in
temperature and entropy, whereas in Enzo/ZEUS (bottom right panel), the temperature
and entropy drop by 12% between z = 99 and z = 3. The comoving gas density remains
constant in all Enzo runs. In the bottom right panel, the short-long-dashed line shows
an Enzo/ZEUS run where we lowered the maximum expansion of the simulation volume
during a single timestep (i.e. ∆a/a, where a is the scale factor) by a factor of 10. This
results in a factor of ∼ 10 reduction of the error, such that the fractional deviation
from the adiabatic relation is only about 1%. This behavior is to be expected since the
ZEUS hydrodynamic algorithm is formally first-order-accurate in time in an expanding
universe.

In summary, these results show that both the Enzo/ZEUS hydrodynamic algorithm
and the conventional SPH formulation in GADGET have problems in reliably conserving
entropy. However, these problems are essentially absent in Enzo/PPM and the new SPH
formulation of GADGET.

3.6.2 Differential distribution functions of gas properties

We now begin our analysis of gas properties found in full cosmological simulations of
structure formation. In Figures 3.7 and 3.8 we show mass-weighted one-dimensional
differential probability distribution functions of gas density, temperature and entropy, for
redshifts z = 10 (Figure 3.7) and z = 3 (Figure 3.8). We compare results for GADGET

and Enzo simulations at different numerical resolution, and run with both the ZEUS and
PPM formulations of Enzo.

At z = 10, effects owing to an increase of resolution are clearly seen in the distribution
of gas overdensity (left column), with runs of higher resolution reaching higher densities
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earlier than those of lower resolution. However, this discrepancy becomes smaller at z = 3
because lower resolution runs tend to ‘catch up’ at late times, indicating that then more
massive structures, which are also resolved in the lower resolution simulations, become
ever more important. One can also see that the density distribution becomes wider at
z = 3 compared to those at z = 10, reaching to higher gas densities at lower redshift.

At z = 3, both Enzo and GADGET simulations agree very well at log T > 3.5 and
log S > 21.5, with a characteristic shoulder in the temperature (middle column) and a
peak in the entropy (right column) distributions at these values. This can be understood
with a simple analytic estimate of gas properties in dark matter halos. We estimate
the virial temperature of a dark matter halo with mass 108 M" (1011 M") at z = 3 to
be log T = 3.7 (5.7). Assuming a gas overdensity of 200, the corresponding entropy is
log S = 21.9 (23.9). The good agreement in the distribution functions at log T > 3.5 and
log S > 21.5 therefore suggests that the properties of gas inside the dark matter halos
agree reasonably well in both simulations. The gas in the upper end of the distribution
is in the most massive halos in the simulation, with masses of ∼ 1011 M" at z = 3.
Enzo has a built-in temperature floor of 1 Kelvin, resulting in an artificial feature in the
temperature and entropy profiles at z = 3. GADGET also has a temperature floor, but it
is set to 0.1 Kelvin and is much less noticeable since that temperature is not attained in
this simulation. Note that the entropy floor stays at the constant value of log Sinit = 18.44
for all simulations at both redshifts.

However, there are also some interesting differences in the distribution of temper-
ature and entropy between Enzo/PPM and the other methods for gas of low overden-
sity. Enzo/PPM exhibits a ‘dip’ at intermediate temperature (logT ∼ 2.0) and entropy
(log S ∼ 20), whereas Enzo/ZEUS and GADGET do not show the resulting bimodal char-
acter of the distribution. We will revisit this feature when we examine two dimensional
phase-space distributions of the gas in Section 3.6.4, and again in Section 3.7 when we ex-
amine numerical effects due to artificial viscosity. In general, the GADGET results appear
to lie in between those obtained with Enzo/ZEUS and Enzo/PPM, and are qualitatively
more similar to the Enzo/ZEUS results.

3.6.3 Cumulative distribution functions of gas properties

In this section we study cumulative distribution functions of the quantities considered
above, highlighting the quantitative differences in the distributions in a more easily ac-
cessible way. In Figures 3.9 and 3.10 we show the mass-weighted cumulative distribution
functions of gas overdensity, temperature and entropy at z = 10 (Figure 3.9) and z = 3
(Figure 3.10). The measurements parallel those described in Section 3.6.2, and were done
for the same simulations.

We observe similar trends as before. At z = 10 in the GADGET simulations, 70% of
the total gas mass is in regions above the mean density of baryons, but in Enzo, only 50%
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Figure 3.7: Probability distribution functions of gas mass as functions of gas overdensity
(left column), temperature (middle column) and entropy (right column) at z = 10. For
GADGET, runs with 2×643 (red solid line), 2×1283 (red short-dashed line) and 2×2563

(red long-dashed line) particles are shown. The dynamic range of the Enzo simulations
were fixed to Lbox/e = 4096, but the particle numbers and the root grid size were varied
between 643 and 1283. Both the ZEUS and PPM hydro methods were used in the Enzo
calculations. The Enzo line types are: 128g/128dm PPM lowod (black dash-dotted line),
128g/128dm ZEUS (black dotted line), and 64g/64dm PPM lowod (black long dash-short
dashed line). In the bottom panels, the residuals in logarithmic scale with respect to the
GADGET N256 run are shown.
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Figure 3.8: Probability distribution functions of gas mass as functions of gas overdensity
(left column), temperature (middle column) and entropy (right column) at z = 3. For
GADGET, runs with 2 × 643, 2 × 1283 and 2 × 2563 particles were used. The dynamic
range of the Enzo simulations were fixed to Lbox/e = 4096, but the particle numbers and
the root grid size were varied between 643 and 1283 (e.g. 64dm/128grid means 643 DM
particles and 1283 root grid). Both the ZEUS and PPM hydro methods were used in the
Enzo calculations, as shown in the figure key. Lines are identical to those in Figure 3.7.
In the bottom panels, we show the residuals in logarithmic scale with respect to the
GADGET N256 run.
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is in such regions. This mass fraction increases to 80% in GADGET runs, and to 70% in
Enzo runs at z = 3, as more gas falls into the potential wells of dark matter halos.

More distinct differences can be observed in the distribution of temperature and
entropy. At z = 10, only 10− 20% of the total gas mass is heated to temperatures above
log T = 0.5 in Enzo/PPM, whereas this fraction is 70−75% in Enzo/ZEUS, and 35−55%
in GADGET. At z = 3, the mass fraction that has temperature logT > 0.5 is 40 − 60%
for Enzo/PPM, and ∼ 80% for both Enzo/ZEUS and GADGET. Similar mass fractions
can be observed for gas with entropy log S > 18.5 − 19.0.

In summary, these results show that both GADGET and particularly Enzo/ZEUS
tend to heat up a significant amount of gas at earlier times than Enzo/PPM. This may
be related to differences in the parameterization of numerical viscosity, a topic that we
will discuss in more detail in Section 3.7.

3.6.4 Phase diagrams

In Figure 3.11 we show the redshift evolution of the mass-weighted two-dimensional
distribution of entropy vs. gas overdensity for redshifts z = 30, 10 and 3 (top to bottom
rows). Two representative GADGET simulations with 2× 643 and 2× 2563 particles are
shown in the left two columns. The Enzo simulations shown in the right two columns both
have a maximum dynamic range of Lbox/e = 4096 and use 1283 dark matter particles
with a 1283 root grid. They differ in that the simulation in the rightmost column uses
the PPM hydrodynamic method, while the other column uses the ZEUS method.

The gas is initialized at z = 99 at a temperature of 140 K and cools as it adiabatically
expands. The gas should follow the adiabatic relation until it undergoes shock heating,
so one expects that there should be very little entropy production until z ∼ 30, because
the first gravitationally-bound structures are just beginning to form at this epoch. Gas
that reaches densities of a few times the cosmic mean is not expected to be significantly
shocked; instead, it should increase its temperature only by adiabatic compression. This
is true for GADGET and Enzo/PPM, where almost all of the gas maintains its initial en-
tropy, or equivalently, it stays on its initial adiabat. At z = 30, only a very small amount
of high-density gas departs from its initial entropy, indicating that it has undergone some
shock heating. However, in the Enzo/ZEUS simulation, a much larger fraction of gas has
been heated to higher temperatures. In fact, it looks as if essentially all overdense gas has
increased its entropy by a non-negligible amount. We believe this is most likely caused by
the artificial viscosity implemented in the ZEUS method, a point we will discuss further
in Section 3.7.

As time progresses, virialized halos and dark matter filaments form, which are sur-
rounded by strong accretion shocks in the gas and are filled with weaker flow shocks
[199]. The distribution of gas then extends towards much higher entropies and densities.
However, there is still a population of unshocked gas, which can be nicely seen as a flat
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Figure 3.9: Cumulative distribution functions of gas mass as functions of comoving gas
overdensity (left column), temperature (middle column) and entropy (right column) at
z = 10. The simulations and the line types used here are the same as in Figures 3.7
and 3.8. In the bottom panels, we show the residuals in logarithmic scale with respect
to the GADGET N256 run.
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Figure 3.10: Cumulative distribution functions of gas mass as functions of comoving gas
overdensity (left column), temperature (middle column) and entropy (right column) at
z = 3. The simulations and the line types used here are the same as in Figures 3.7
and 3.8. In the bottom panels, we show the residuals in logarithmic scale with respect
to the GADGET N256 run.
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Figure 3.11: Redshift evolution of the two dimensional mass-weighted distribution of gas
entropy vs. gas overdensity for four representative Enzo and GADGET simulations. Rows
correspond to (from top to bottom) z = 30, 10 and 3. In each panel six contours are
evenly spaced from 0 to the maximum value in logarithmic scale, with the scale being
identical in all simulations at a given redshift to allow for direct comparison. Column
1: GADGET, 2 × 643 particles, Lbox/e = 2048. Column 2: GADGET, 2 × 2563 particles,
Lbox/e = 6400. Column 3: Enzo/ZEUS hydro, 1283 DM particles, 1283 root grid, Lbox/e =
4096. Column 4: Enzo/PPM hydro, 1283 DM particles, 1283 root grid, Lbox/e = 4096.
The increasing minimum entropy with decreasing overdensity in the Enzo results is an
artifact of imposing a temperature floor–a numerical convenience.
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constant entropy floor in all the runs until z = 10. However, the Enzo/ZEUS simulation
largely loses this feature by z = 3, reflecting its poor ability to conserve entropy in un-
shocked regions. On the other hand, the GADGET ‘entropy conserving’ SPH-formulation
preserves a very well defined entropy floor down to z = 3. The result of Enzo/PPM lies
between that of GADGET and Enzo/ZEUS in this respect. The 1 Kelvin temperature
floor in the Enzo code results in an artificial increase in the entropy “floor” in significantly
underdense gas at z = 3.

Perhaps the most significant difference between the simulations lies however in the
‘bimodality’ that Enzo/PPM develops in the density-entropy phase space. This is already
seen at redshift z = 10, but becomes clearer at z = 3. While Enzo/ZEUS and GADGET
show a reservoir of gas around the initial entropy with an extended distribution towards
higher density and entropy, Enzo/PPM develops a second peak at higher entropy, i.e. in-
termediate density and entropy values are comparatively rare. The resulting bimodal
character of the distribution is also reflected in a ‘dip’ at log T ∼ 2.0 seen in the 1-D
differential distribution function in Figures 3.7 and 3.8.

We note that the high-resolution GADGET run with 2563 particles exhibits a broader
distribution than the 643 run because of its much larger dynamic range and better sam-
pling, but it does not show the bimodality seen in the Enzo/PPM run. We also find that
increasing the dynamic range Lbox/e with a fixed particle number does not change the
overall shape of the distributions in a qualitative way, except that the gas extends to a
slightly higher overdensity when Lbox/e is increased.

3.6.5 Mean gas temperature and entropy

In Figure 3.12 we show the mass-weighted mean gas temperature and entropy of the entire
simulation box as a function of redshift. We compare results for GADGET simulations
with particle numbers of 643, 1283 and 2563, and Enzo runs with 643 or 1283 particles for
different choices of root grid size and hydrodynamic algorithm.

In the temperature evolution shown in the left panel of Figure 3.12, we see that the
temperature drops until z ∼ 20 owing to adiabatic expansion. This decline in the temper-
ature is noticeably slower in the Enzo/ZEUS runs compared with the other simulations,
reflecting the artificial heating seen in Enzo/ZEUS at early times. After z = 20 structure
formation and its associated shock heating overcomes the adiabatic cooling and the mean
temperature of the gas begins to rise quickly. While at intermediate redshifts (z ∼ 40−8)
some noticeable differences among the simulations exist, they tend to converge very well
to a common mean temperature at late times when structure is well developed. In gen-
eral, Enzo/PPM tends to have the lowest temperatures, with the GADGET SPH-results
lying between those of Enzo/ZEUS and Enzo/PPM.

In the right panel of Figure 3.12, we show the evolution of the mean mass-weighted
entropy, where similar trends as in the mean temperature can be observed. We see that
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Figure 3.12: Mass-weighted mean gas temperature and entropy for Enzo and GADGET
runs as a function of redshift. The runs used are the same as those shown in Figures 3.7
and 3.8.

a constant initial entropy (log Sinit = 18.44) is preserved until z ∼ 20 in Enzo/PPM
and GADGET. However, an unphysical early increase in mean entropy is observed in
Enzo/ZEUS. The mean entropy quickly rises after z = 20 owing to entropy generation as
a results of shocks occurring during structure formation.

Despite differences in the early evolution of the mean quantities calculated we find
it encouraging that the global mean quantities of the simulations agree very well at low
redshift, where temperature and entropy converge within a very narrow range. At high
redshifts the majority of gas (in terms of total mass) is in regions which are collapsing
but still have not been virialized, and are hence unshocked. As we show in Section 3.7,
the formulations of artificial viscosity used in the GADGET code and in the Enzo imple-
mentation of the ZEUS hydro algorithm play a significant role in increasing the entropy
of unshocked gas which is undergoing compression (though the magnitude of the effect is
significantly less in GADGET), which explains why the simulations using these techniques
have systematically higher mean temperatures/entropies at early times than those using
the PPM technique. At late times these mean values are dominated by gas which has
already been virialized in large halos, and the increase in temperature and entropy due
to virialization overwhelms heating due to numerical effects. This suggests that most
results at low redshift are probably insensitive to the differences seen here during the
onset of structure formation at high redshift.
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3.6.6 Evolution of kinetic energy

Different numerical codes may have different numerical errors per timestep, which can
accumulate over time and results in differences in halo positions and other quantities of
interest. It was seen in the Santa Barbara cluster comparison project that each code
calculated the time versus redshift evolution in a slightly different way, and overall that
resulted in substructures being in different positions because the codes were at different
“times”. In our comparison of the halo positions in Section 3.5.2 we saw something
similar – the accumulated error in the simulations results in our halos being in slightly
different locations. Since we do not measure the overall integration error in our codes
(which is actually quite hard to quantify in an accurate way, considering the complexity
of both codes) we argue that the kinetic energy is a reasonable proxy because the kinetic
energy is essentially a measure of the growth of structure - as the halos grow and the
potential wells deepen the overall kinetic energy increases. If one code has errors that
contribute to the timesteps being faster/slower than the other code this shows up as
slight differences in the total kinetic energy.

In Figure 3.13 we show the kinetic energy (hereafter KE) of dark matter and gas
in GADGET and Enzo runs as a function of redshift. As expected, KE increases with
decreasing redshift. In the bottom panels, the residuals with respect to the GADGET
2563 particle run is shown in logarithmic units (i.e., log(KEothers) - log(KE256) ). Initially
at z = 99, GADGET and Enzo runs agree to within a fraction of a percent within their
own runs with different particle numbers. The corresponding GADGET and Enzo runs
with the same particle/mesh number agree within a few percent. These differences may
have been caused by the numerical errors during the conversion of the initial conditions
and the calculation of the KE itself. It is reasonable that the runs with a larger particle
number result in a larger KE at both early and late times, because the larger particle
number run can sample the power spectrum to a higher wavenumber, therefore having
more small-scale power at early times and more small-scale structures at late times. The
643 runs both agree with each other at z = 99, and overall have about 1% less kinetic
energy than the 2563 run. At the same resolution, Enzo runs show up to a few percent
less energy at late times than GADGET runs, but their temporal evolutions track each
other closely.

3.6.7 The gas fraction in halos

The content of gas inside the virial radius of dark matter halos is of fundamental interest
for galaxy formation. Given that the Santa Barbara cluster comparison project hinted
that there may be a systematic difference between Eulerian codes (including AMR) and
SPH codes (Enzo gave slightly higher gas mass fraction compared to SPH runs at the
virial radius), we study this property in our set of simulations.

In order to define the gas content of halos in our simulations we first identify dark
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Figure 3.13: Kinetic energy of dark matter and gas as a function of redshift, and the
residuals in logarithmic units with respect to the 2563 particle Gadget run (red long-
dashed line) is shown in the bottom panels. Red short-dashed line is for GADGET 1283

particle run, and red solid line is for GADGET 643 particle run. Black lines are for Enzo
runs: 128g128dm PPM, lowod (dot-short dash), 128g128dm Zeus (dotted), 64g64dm
PPM, lowod (short dash-long dash).
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matter halos using a standard friends-of-friends algorithm. We then determine the halo
center to be the center of mass of the dark matter halo and compute the “virial radius”
for each halo using Equation (24) of Barkana & Loeb [200] with the halo mass given by
the friends-of-friends algorithm. This definition is independent of the gas distribution,
thereby freeing us from ambiguities that are otherwise introduced owing to the different
representations of the gas in the different codes on a mesh or with particles. Next, we
measure the gas mass within the virial radius of each halo. For GADGET, we can simply
count the SPH particles within the radius. In Enzo, we include all cells whose centers
are within the virial radius of each halo. Note that small inaccuracies can arise because
some cells may only partially overlap with the virial radius. However, in significantly
overdense regions the cell sizes are typically much smaller than the virial radius, so this
effect should not be significant for large halos.

In Figure 3.14 we show the gas mass fractions obtained in this manner as a function
of total mass of the halos, with the values normalized by the universal mass fraction
fgas ≡ (Mgas/Mtot)/(Ωb/Ωm). The top three panels show results obtained with GADGET

for 2 × 644, 2 × 1283, and 2 × 2563 particles, respectively. The bottom 9 panels show
Enzo results with 643 and 1283 root grids. Simulations shown in the right column use the
ZEUS hydro algorithm and the others use the PPM algorithm. All Enzo runs shown have
643 dark matter particles, except for the bottom row which uses 1283 particles. The Enzo
simulations in the top row use a 643 root grid and all others use a 1283 root grid. Grid
and particle sizes, overdensity threshold for refinement and hydro method are noted in
each panel.

For well-resolved massive halos, the gas mass fraction reaches ∼ 90% of the universal
baryon fraction in the GADGET runs, and ∼ 100% in all of the Enzo runs. There is a hint
that the Enzo runs seem to give values a bit higher than the universal fraction, particularly
for runs using the ZEUS hydro algorithm. This behavior is consistent with the findings of
the Santa Barbara comparison project. Given the small size of our sample, it is unclear
whether this difference is really significant. However, there is a clear systematic difference
in baryon mass fraction between Enzo and GADGET simulations. Examining the mass
fraction of simulations to successively larger radii show that the Enzo simulations are
consistently close to a baryon mass fraction of unity out to several virial radii, and the
gas mass fractions for GADGET runs approaches unity at radii larger than twice the
virial radius of a given halo.

The systematic difference between Enzo and GADGET calculations, even for large
masses, is also somewhat reflected in the results of Kravtsov et al. [201]. They perform
simulations of galaxy clusters done using adiabatic gas and dark matter dynamics with
their adaptive mesh code and GADGET. At z = 0 their results for the baryon fraction
of gas within the virial radius converge to within a few percent between the two codes,
with the overall gas fraction being slightly less than unity. It is interesting to note that
they also observe that the AMR code has a higher overall baryon mass fraction than
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Figure 3.14: Gas mass fraction normalized by the universal baryon mass fraction fgas =
(Mgas/Mtot)/(Ωb/Ωm) is shown. The top 3 panels are for GADGET runs with 2 × 643,
(Lbox/e = 2048), 2 × 1283 (Lbox/e = 3200), and 2 × 2563 (Lbox/e = 6400) particles.
The bottom panels are for the Enzo runs with 643 or 1283 grid, and 643 or 1283 dark
matter particles. The ZEUS hydrodynamics method is used for one set of the Enzo

simulations (right column) and the PPM method is used for the rest. All Enzo runs have
Lbox/e = 4096.
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GADGET, though still slightly less than what we observe with our Enzoresults.
Note that the scatter of the baryon fraction seen for halos at the low mass end is a

resolution effect. This can be seen when comparing the three panels with the GADGET
results. As the mass resolution is improved, the down-turn in the baryon fraction shifts
towards lower mass halos, and the range of halo masses where values near the universal
baryon fraction are reached becomes broader. The sharp cutoff in the distribution of the
points corresponds to the mass of a halo with 32 DM particles.

It is also interesting to compare the cumulative mass function of gas mass in halos,
which we show in Figure 3.15 for adiabatic runs. This can be viewed as a combination
of a measurement of the DM halo mass function and the baryon mass fractions. In the
lower panel, the residuals in logarithmic scale are shown for each run with respect to the
Sheth & Tormen [198] mass function (i.e., log(N[>M])− log(S&T)).

As with the dark matter halo mass function, the gas mass functions agree well at the
high-mass end over more than a decade of mass, but there is a systematic discrepancy
between AMR and SPH runs at the low-mass end of the distribution. While the three
SPH runs with different gravitational softening agree well with the expectation based
on the Sheth & Tormen mass function and an assumed universal baryon fraction at
Mgas < 108 h−1 M", the Enzo run with 643 root grid and 643 DM particles has fewer halos.
Similarly, the Enzo run with 1283 grid and 1283 DM particles has fewer low mass halos
at Mgas < 107 h−1 M" compared to the GADGET 1283 DM particle run. Convergence
with the SPH results for Enzo requires the use of a root grid with spatial resolution twice
that of the initial mean interparticle separation, as well as a low-overdensity refinement
criterion. We also see that the PPM method results in a better gas mass function than
the ZEUS hydro method at the low-mass end for the same number of particles and root
grid size.

3.7 The role of artificial viscosity

In Section 3.6.4 we found that slightly overdense gas in Enzo/ZEUS simulations shows an
early departure from the adiabatic relation towards higher temperature, suggesting an
unphysical entropy injection. In this section we investigate to what extent this effect can
be understood as a result of the numerical viscosity built into the ZEUS hydrodynamic
algorithm. As the gas in the pre-shocked universe begins to fall into potential wells,
this artificial viscosity causes the gas to be heated up in proportion to its compression,
potentially causing a significant departure from the adiabat even when the shock has not
occurred yet; i.e. when the compression is only adiabatic.

This effect is demonstrated in Figure 3.16, where we compare two-dimensional entropy–
overdensity phase space diagrams for two Enzo/ZEUS where the strength of the artificial
viscosity was reduced from its “standard” value of QAV = 2.0 to QAV = 0.5. These runs
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Figure 3.15: Cumulative halo gas mass function at z = 3. For reference, the solid black
line is the Sheth & Tormen [198] mass function multiplied by the universal baryon mass
fraction Ωb/Ωm. In the bottom panel, the residuals in logarithmic scale with respect to
the Sheth & Tormen mass function are shown for each run (i.e., log(N[>M])− log(S&T)).
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Figure 3.16: Two-dimensional distribution functions of gas entropy vs. gas overdensity
for two Enzo runs performed with the ZEUS hydrodynamics algorithm, varying with
redshift. Rows correspond to (top to bottom) z = 30, 10 and 3. In each panel, six
contours are evenly spaced from 0 to the maximum value in equal logarithmic scale.
Two different values of the ZEUS artificial viscosity parameter are used: QAV = 0.5 (left
column) and QAV = 2.0 (right column). Both runs use 643 dark matter particles and a
643 root grid and have a maximum spatial resolution of Lbox/e = 4096. The standard
value of the artificial viscosity parameter is QAV = 2.0.
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used 643 dark matter particles and 643 root grid, and the QAV = 2.0 corresponds to the
case shown earlier in Figure 3.11.

Comparison of the Enzo/ZEUS runs with QAV = 0.5 and 2.0 shows that decreasing
QAV results in a systematic decrease of the unphysical gas heating at high redshifts.
Also, at z = 4 the QAV = 0.5 result shows a secondary peak at higher density, so that
the distribution becomes somewhat more similar to the PPM result. Unfortunately, a
strong reduction of the artificial viscosity in the ZEUS algorithm is numerically dangerous
because the discontinuities that can appear owing to the finite-difference method are then
no longer smoothed sufficiently by the artificial viscosity algorithm, which can produce
unstable or incorrect results.

An artificial viscosity is needed to capture shocks when they occur in both the
Enzo/ZEUS and GADGET SPH scheme. This in itself is not really problematic, pro-
vided the artificial viscosity is very small or equal to zero in regions without shocks. In
this respect, GADGET’s artificial viscosity behaves differently from that of Enzo/ZEUS.
It takes the form of a pairwise repulsive force that is non-zero only when Lagrangian fluid
elements approach each other in physical space. In addition, the strength of the force
depends in a non-linear fashion on the rate of compression of the fluid. While even an
adiabatic compression produces some small amount of (artificial) entropy, only a com-
pression that proceeds rapidly with respect to the sound-speed, as in a shock, produces
entropy in large amounts. This can be seen explicitly when we analyze equations (3.6)
and (3.8) for the case of a homogeneous gas which is uniformly compressed. For definite-
ness, let us consider a situation where all separations shrink at a rate q = ṙij/rij < 0,
with ∇ ·v = 3 q. It is then easy to show that the artificial viscosity in GADGET produces
entropy at a rate

d log Ai

d log ρi
=

γ − 1

2
α





−q hi

ci
+ 2

(

q hi

ci

)2


 . (3.13)

Note that since we assumed a uniform gas, we here have hi = hij , ci = cij , and ρi = ρij .
We see that only if the compression is fast compared to the sound-crossing time across
the typical spacing of SPH particles, i.e. for |q| > ci/hi, a significant amount of entropy
is produced, while slow (and hence adiabatic) compressions proceed essentially in an
isentropic fashion. On the other hand, the artificial viscosity implemented in Enzo/ZEUS
produces entropy irrespective of the sound-speed, depending only on the compression
factor of the gas.

We have also investigated the pre-shock entropy generation in Enzo/ZEUS using an-
other simple test, the collapse of a one-dimensional Zel’dovich pancake. The initial
conditions of this test are simple and described in full detail by Bryan et al. [145] A
one-dimensional simulation volume is set up in an expanding coordinate system in a flat
cosmology with an initially sinusoidal density perturbation with a peak at x = 0.5 and
a corresponding perturbation in the velocity field with nodes at x = 0.0, 0.5, and 1.0.
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Figure 3.17: Final results of the Zel’dovich pancake test. Panel (a): Log baryon over-
density vs. position. Panel (b): Log entropy vs. position. Panel (c): Cumulative mass-
weighted entropy distribution function. Panel (d): Pre-shock entropy evolution in the
256-cell Zeus run. All Zel’dovich pancake simulations are performed in one dimension us-
ing the Enzo code. Panels (a), (b), (c): The line types are for PPM/1024 (short-dashed),
PPM/256 (solid), ZEUS/1024 (dotted), and ZEUS/256 (long dashed) where 256 and 1024
are the number of cells used in the calculation. All data is at the end of the run (z = 0).
Panel (d): Entropy evolution of the 256-cell ZEUS and PPM runs for redshifts z = 20
(solid line), 10 (dotted line), 5 (long-dashed line), 2.5 (dot-dashed line) and 2 (dot-long-
dashed line). All PPM results overlay the ZEUS initial conditions (z = 20). Note that
the x-axis range for panel (d) is different from that of panels (a) and (b).
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A temperature perturbation is added such that gas entropy is constant throughout the
volume.

In Figure 3.17 we show the density and entropy profiles as a function of position, at
a time when the non-linear collapse of the pancake is well underway. We also show the
pre-shock evolution of the entropy profile for both algorithms. We compare runs using
256 and 1024 grid cells with both the ZEUS and PPM formulations of Enzo.

As the matter falls in onto the density peak at x = 0.5, accretion shocks on either
side form, clearly marked by the jumps in density, entropy, and temperature. Note that
the dip in the temperature at x = 0.5 is physical – the gas sitting there is unshocked
and only adiabatically compressed, and therefore has relatively low temperature. Reas-
suringly, both the ZEUS and PPM hydrodynamical methods reproduce the qualitative
behavior of the Zel’dovich pancake quite well, but there are also some systematic differ-
ences at a given resolution. This can be seen most clearly in the mass-weighted cumulative
entropy distribution in the bottom left panel of Figure 3.17. We see that the Enzo/ZEUS
calculations show a broader distribution than Enzo/PPM for a given spatial resolution.
This can be interpreted as another sign of pre-shock entropy generation by the artificial
viscosity in ZEUS. In contrast, the Riemann solver used in PPM can capture shocks such
that they are resolved as true discontinuities, which avoids this problem.

More concrete evidence of spurious entropy generation in the artificial viscosity-based
scheme can be seen by examining the pre-shock evolution of entropy in these simulations
(as seen in panel (d) of Figure 3.17). No entropy should be generated before the twin
shocks form to the left and right of x = 0.5 (as can be seen in panel (b) of the same
figure). The simulations using PPM (black solid line in panel d) produce no spurious
entropy. The simulations using the ZEUS scheme, however, produce significant amounts
of entropy in the infalling (but unshocked) gas. Note that the magnitude of the entropy
generation is relatively small compared to the final entropy produced in the shocks (as
seen in panel (b)), but the values are still significant.

While this test showed only comparatively small differences between the different
methods, it is plausible that the effects of pre-shock entropy generation become much
more important in three-dimensional cosmological simulations, where galaxies form hier-
archically through complicated merger processes that involve extremely complex shock
patterns. We thus speculate that this effect may be the key reason for the systematic
differences between the Enzo/PPM runs and the ZEUS and GADGET simulations.

3.8 Timing & memory usage

An important practical consideration when assessing the relative performance of com-
putational methods or simulation codes is the amount of computational resources they
require to solve a given problem. Of primary importance are the total amount of memory
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and the CPU time that is needed. However, it is not always easy to arrive at a meaningful
comparison, particularly for very different methods such as AMR and SPH. For example,
the variable number of grid cells owing to the adaptive nature of AMR is an important
complication, making the number of resolution elements change over time, while the par-
ticle number stays constant in the SPH method. An additional layer of complexity is
added when considering parallel codes. The parallelization strategies that are used for
AMR applications can be significantly different than those used in SPH codes, and the
performance of an individual simulation code can heavily depend on the specific com-
puter architecture and implementation of MPI (or other software used for parallelization)
chosen. Therefore we caution the readers to take all of the timing information discussed
in this section as results for a particular problem setup and machine architecture, and not
to extrapolate directly to different types of cosmological simulations (e.g., with cooling
and star formation) and machines.

3.8.1 Initial comparison on a distributed memory machine

When we started this project, we initially performed our comparison runs on the IA-64
Linux cluster Titan at the National Center for Supercomputing Applications (NCSA). It
had 134 dual processor nodes with 800 MHz Intel Itanium 1 chips, 2.5 GB memory per
node, and Myrinet 2000 network interconnect. Our initial comparison on Titan showed
that the GADGET code was faster than Enzo by a factor of 40 (15) for a 643 (1283) particle
DM-only run when Enzo was using a low overdensity criteria for grid refinement. The low
overdensity refinement criterion was required for Enzo in order to obtain a DM halo mass
function comparable to that of GADGET at low-mass end. GADGET used a factor of
18 (4) less amount of memory than Enzo for a 643 (1283) particle DM-only run. For the
adiabatic runs, GADGET was faster than Enzo by a factor of 2.5 for a 643 DM particles
and 643 gas particles (a 643 root grid for Enzo). A GADGET run with 1283 dark matter
and gas particles completed 8 times faster than an Enzo simulation with a 1283 root
grid and 643 DM particles. These performance results were gathered using Linux-based
Beowulf-style clusters with relatively slow inter-node communication networks. Since the
AMR code performs load balancing by passing grids between processors, it was expected
that the performance of Enzo would improve on a large shared-memory machine. The
disparity is most significant for DM-only simulations, so improvement of the Enzo N-body
solver could significantly increase the performance of the AMR code.

3.8.2 More recent comparison on a shared memory machine

During the course of this comparison study, both GADGET and Enzo evolved, and the
performance of both codes have greatly improved. Therefore, we repeated the perfor-
mance comparison with our updated codes using the IBM DataStar machine at the San
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Diego Supercomputing Center.3 The portion of the machine used for these timing tests is
composed of 176 IBM p655 compute nodes, each of which has eight 1.5 GHz IBM Power4
processors. These processors are super-scalar, pipelined 64 bit chips which can execute
up to 8 instructions per clock cycle and up to four floating point operations per clock
cycle, with a theoretical peak performance of 6.0 GFlop per chip. Processors in a single
node share a total of 16 GB of memory. All nodes are connected by an IBM Federation
switch, which provides processor-to-processor bandwidth of approximately 1.4 GB/s with
8 microsecond latency when using IBM’s MPI library. Each node is directly connected
to a parallel filesystem through a Fibre Channel link.

We first compare the series of dark matter-only runs discussed in Section 3.5. A GAD-
GET simulation with 643 dark matter particles takes total wall-clock time of 225 seconds
on 8 cpus (total 1800 seconds CPU time) and requires 270 MB of memory. 24% of the
total computational time was spent doing interprocessor message-passing. The corre-
sponding Enzo simulation with 643 particles and a 643 root grid requires 1053 seconds on
8 cpus (total 8424 seconds CPU time) when refining on a dark matter overdensity of 2.0,
and requires 1.21 GB of memory total. 34% of the total computational time was spent
in interprocessor communication. This is a factor of 4.7 slower than the corresponding
GADGET simulation, and requires roughly 4.5 times more memory. Raising the refine-
ment criteria to a dark matter overdensity of 4.0 (at a cost of losing low-mass DM halos)
reduces the wall clock time to 261 seconds on 8 processors (total 2088 seconds CPU time)
and decreases the total amount of memory needed to 540 MB, which is comparable to
the GADGET simulation. A 1283 DM particle GADGET adiabatic run takes a total of
2871 seconds to run on 8 cpus (total 22,968 seconds CPU time) and requires 1.73 GB
of memory. An Enzo simulation with 1283 particles and a 1283 root grid that refines
on a dark matter overdensity of 2.0 needs approximately 34,028 seconds on 8 proces-
sors (total 272,224 CPU seconds) and 5.6 GB of memory. This is a factor of 12 slower
and 3.2 times more memory than the equivalent GADGET run. The same calculation
run with refinement overdensities of 4.0 or 8.0 completes in 13,960 and 3839 seconds,
respectively, which are factors of 4.9 and 1.3 slower than the equivalent GADGET run.
The reason for the huge change in computational speeds is due to the low overdensity
threshold used in the first simulation, which results in a huge number of grids to be
instantiated and a great deal of time to be spent regridding the simulation. Raising the
overdensity criteria suppresses the formation of halos at the low mass end of the mass
function, though higher-mass halos are unaffected. This timing comparison suggests that
if one is interested in simulating the full spectrum of dark matter halos at a reasonable
computational cost, GADGET would be a wiser choice than Enzo for this application.
If one was interested in only the high-mass end of the mass function, the codes have
comparable performance.

Comparison of the adiabatic gas + N-body cosmological simulations in Section 3.6

3http : //www.sdsc.edu/user services/datastar/
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is also quite informative. The 643 dark matter particle/643 gas particle GADGET calcu-
lation takes 1839 seconds to run on 8 processors (total 14,712 seconds CPU time) and
requires 511 MB of memory. The equivalent Enzo simulation with 643 particles and a
643 root grid using the low overdensity refinement criteria (refining on a baryon overden-
sity of 4.0 and a dark matter overdensity of 2.0) requires 6895 seconds on 8 processors
(55,160 seconds total) and 2.5 GB of memory. This is 3.7 times slower and 4.9 times
more memory than the corresponding GADGET run. Raising the overdensity thresholds
by a factor of two decreases the computational time to 2168 seconds on 8 processors and
the memory required to 1.28 GB. The GADGET calculation with 1283 dark matter and
baryon particles requires 35,879 seconds on 8 cpus (287032 seconds total CPU time) and
5.4 GB of memory, and an Enzo calculation with 1283 particles on a 1283 root grid which
refines on a baryon overdensity of 8.0 and a dark matter overdensity of 4.0 requires 64,812
seconds and 8 GB of memory. Enzo simulations using the PPM and Zeus hydro methods
require comparable amounts of simulation time.

3.8.3 Mass resolution in Enzo and GADGET

It is clear from Sections 3.8.1 and 3.8.2 that Enzo, at present, is significantly slower and
requires more memory than GADGET when one demands convergence on all scales for a
simulation of a given size. If one requires convergence only at the high-mass end of the
mass function the relative performance of the two codes becomes much more comparable.
However, it is unclear that raw computational time and memory is a fair assessment of
the performance of the two codes. As discussed previously, the number of dark matter
and gas particles in the GADGET simulations remain constant always. In the AMR
simulations, the number of dark matter particles is fixed, but the adaptive nature of the
code adds more cells in areas of high overdensity, so that the number of root grid cells
(Ngrid in Table 3.2) is a lower bound for the total number Nrez of cells used to solve the
hydrodynamics in an Enzo simulation, which becomes typically larger than the number
of root grid cells by a factor of at least a few once structure has developed.

Note in this context that the refinement criterion presently used in Enzo tries to
roughly keep the baryonic mass per cell constant, which is in principle similar to the
Lagrangian behavior of GADGET, where a constant mass resolution is imprinted by
construction. This is seen more clearly in Figure 3.18, where the mean gas mass in cells
in Enzo simulations is shown as a function of gas overdensity. The AMR simulations show
a nearly flat behavior for a broad range of densities, i.e. by and large they distribute their
resolution elements similarly as a function of density, except at very high and low density.
At low densities, the baryonic mass resolution tends to become better compared with a
purely Lagrangian code, the prime reason being that the root grid never becomes coarser.
In contrast, the mass resolution tends to become worse for high densities, because the
imposed limit on the maximum level of refinements prevents the placing of additional
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refinements. Note however that one conceptual strength of AMR is that the refinement
criteria are flexible, and that they do not necessarily have to mimic Lagrangian behavior
as has been the case here. The SPH particle masses are shown as horizontal short-dashed
lines in this figure. It can be clearly seen that the mean gas mass resolved in a single
cell in the Enzo calculations is roughly a factor of 8 better than the equivalent GADGET
calculation (i.e. when comparing simulations with the same root grid size as number of
particles).

Another way of looking at this is to examine the distribution of baryon masses in cells
in the Enzo calculations. Figure 3.19 shows a plot of the number of cells (per mass bin) as
a function of cell baryon mass. The (fixed) baryon particle masses for the GADGET calcu-
lations are shown as vertical arrows. This plot shows that, for simulations with the same
root grid size/number of baryon particles, the median cell mass in the Enzo calculations
are approximately an order of magnitude less than the corresponding GADGET runs,
and that the “low overdensity” Enzo simulations have a median mass resolution that is
roughly a factor of 2−−3 better than the corresponding “high overdensity” calculation.
This is unsurprising, considering that a low overdensity threshold for refinement directly
translates into a lower cell mass. Given that the mean cell mass stays relatively constant
as a function of overdensity (as shown in Figure 3.18), this implies that there is a large
amount of scatter in the baryon mass contained in cells at a given spatial resolution or
overdensity.

Another interesting comparison that can be made between the Enzo and GADGET cal-
culations concerns the total number of unique resolution elements and their distribution
as a function of overdensity (which is directly related to spatial resolution). Figure 3.20
shows the distribution of unique resolution elements as a function of overdensity for both
Enzo and GADGET simulations. The curves shown in this figure are not normalized,
meaning that integrating the area under the curve gives the total number of resolution
elements. For a given simulation size, the Enzo calculations have at least a factor of three
more resolution elements overall than the corresponding GADGET simulation, with the
“low overdensity” calculations having roughly an order of magnitude more unique reso-
lution elements overall. The overall distributions of resolution elements are comparable
between the two different codes, though there is a peak at low overdensities in the Enzo

simulations, which is due to the root grid, which has a fixed (and large) number of grid
cells. In terms of overall resolution of baryons as a function of overdensity, the Enzo 643

“low overdensity” simulation has a comparable number of resolution elements to the 1283

GADGET run at overdensities greater than one, and the 1283 Enzo low overdensity run
is comparable to the 2563 GADGET calculation, with the caveat in both cases that the
GADGET calculations resolve to slightly higher overdensities overall. There are very few
resolution elements at the highest densities, so the significance of this is unclear.

Though it seems that a given Enzo calculation has much better overall baryon mass
resolution than the equivalent GADGET simulation, the significance of this is unknown.
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Figure 3.18: Mean cell mass as a function of overdensity for four representative Enzo
calculations. All simulations use the PPM hydro algorithm – calculations done with the
ZEUS algorithm are essentially the same as the corresponding PPM simulation. We show
results for the 643 and 1283 root grid Enzo calculations (black and red lines, respectively),
and use only simulations that have the same number of dark matter particles as root
grid cells. Results for both high and low-overdensity calculations are shown. The baryon
particle mass for the equivalent GADGET simulations are shown as horizontal black
dashed lines corresponding to (from top to bottom) the 643, 1283 and 2563 particle
GADGET simulations.
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Figure 3.19: Number of cells as a function of cell baryon mass for four representative
Enzo simulations. All simulations use the PPM hydro algorithm – calculations done with
the ZEUS algorithm are essentially the same as the corresponding PPM simulation. We
show results for the 643 and 1283 root grid Enzo calculations (black and red lines, respec-
tively), and use only simulations that have the same number of dark matter particles as
root grid cells. Results for both high and low-overdensity calculations are shown. The
baryon particle mass for the equivalent GADGET simulations are shown as vertical arrows
corresponding to (left to right) the 2563, 1283 and 643 particle GADGET simulations.
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Figure 3.20: Number of resolution elements as a function of baryon overdensity for rep-
resentative Enzo and GADGET calculations. All Enzo simulations use the PPM hydro
algorithm – calculations done with the ZEUS algorithm are essentially the same as the
corresponding PPM simulation. We show results for the 643 and 1283 root grid Enzo

calculations (blue and red lines, respectively), and use only simulations that have the
same number of dark matter particles as root grid cells. Results for both high and low-
overdensity calculations are shown. Resolution element distributions for the GADGET

simulations with 643, 1283 and 2563 particles are shown as black lines (with the total
number of particles increasing from bottom to top).
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Given that the dark matter particle masses in the Enzo calculations are fixed (and the
same as in the corresponding GADGET simulation), the difference in baryon resolution
will have essentially no effect on the large scale structure in the simulation. However,
within a given halo better baryon mass resolution implies that shocks and the internal
dynamics of the halo are more highly resolved, which may become important in simula-
tions with more complicated physics, such as radiative cooling and star formation and
feedback.

3.9 Discussion and conclusions

This chapter presents initial results of a comparison of two state-of-the-art cosmological
hydrodynamic codes: Enzo, an Eulerian adaptive mesh refinement code, and GADGET,
a Lagrangian smoothed particle hydrodynamics code. These codes differ substantially in
the way they compute gravitational forces and even more radically in the way they treat
gas dynamics. In cosmological applications structure formation is driven primarily by
gravity, so a comparison of the hydrodynamical methods necessarily involves an implicit
comparison of the gravitational solvers as well. In order to at least partially disentangle
these two aspects we have performed both a series of dark matter-only simulations and a
set of simulations that followed both a dark matter and an adiabatic gaseous component.

Our comparison of the dark matter results showed good agreement in general pro-
vided we chose a root grid resolution in Enzo at least twice that of the mean interparticle
separation of dark matter particles together with a relatively conservative AMR refine-
ment criterion of dark matter overdensity of 2. If less stringent settings are adopted, the
AMR code shows a significant deficit of low mass halos. This behavior can be readily
understood as a consequence of the hierarchical particle-mesh algorithm used by Enzo
for computing gravitational forces, which softens forces on the scale of the mesh size.
Sufficiently small mesh cells are hence required to compete with the high force-resolution
tree-algorithm of GADGET. In general, we find excellent agreement with the results of
Heitmann et al.[202], particularly with regards to systematic differences in the power
spectrum and low-mass end of the halo mass function between mesh and tree codes. Our
results are complementary in several ways – Heitmann et al. use simulations run with
the “standard” parameters for many codes (using the same initial conditions) and then
compare results without any attempt to improve the quality of agreement, whereas we
examine only two codes, but systematically vary parameters in order to understand how
the codes can be made to agree to very high precision.

Examination of the dark matter substructure in the two most massive halos in our
1283 particle dark matter-only calculations shows that while both codes appear to resolve
substructure (and obtain substructure mass functions that are comparable) there are
some differences in the number and the spatial distribution of subhalos between the
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two codes. While the origin of these differences are not fully clear, it may be due to
a lack of spatial (i.e. force) or dark matter mass resolution, or possible due in part
to systematics in the grouping algorithm used to detect substructure. The observed
differences in substructure are not surprising when one considers how dissimilar the
algorithms that Enzo and GADGET use to calculate gravitational accelerations on small
scales are, and a further study with much higher resolution is necessary.

We also found broad agreement in most gas quantities we examined in simulations
which include adiabatic gas evolution, but there were also some interesting discrepancies
between the different codes and different hydrodynamical methods. While the distribu-
tions of temperature, density, and entropy of the gas evolved qualitatively similarly over
time, and reassuringly converged to the same mean temperature and entropy values at
late times, there were clearly some noticeable differences in the early evolution of the gas
and in the properties of intermediate density gas.

In particular, in the Enzo/ZEUS simulations we found an early heating of collapsing
or compressed gas, caused by injection of entropy by the artificial viscosity in this code.
This resulted in substantial pre-shock entropy generation in the Enzo/ZEUS runs. While
GADGET also uses an artificial viscosity to capture shocks, effects of pre-shock entropy
generation are substantially weaker in this code. This reflects its different parameter-
ization of artificial viscosity, which better targets the entropy production to shocked
regions.

Considering the entropy-density distribution in more detail, we found that Enzo/PPM

calculations show a marked trend towards a segregation of gas into a low-entropy reservoir
of unshocked low density gas and a pool of gas that has been shocked and accumulated
high entropy when it reached higher density regions. Such a bimodality is not apparent in
the Enzo/ZEUS and GADGET runs at z = 3. Instead, there is a smoother transition from
low- to high-entropy material; i.e. more gas of intermediate entropy exists. It is possible
that this intermediate-entropy gas is produced by the artificial viscosity in pre-shock
regions, where entropy generation should not yet take place. Some supporting evidence
for this interpretation is provided by the fact that the distributions of temperature and
entropy of Enzo/ZEUS become somewhat more similar to those of Enzo/PPM when we
reduce the strength of the artificial viscosity.

Perhaps the most interesting difference we found between the two methods lies in the
baryon fraction inside the virial radius of the halos at z = 3. For well-resolved halos Enzo
results asymptote to slightly higher than 100% of the cosmic baryon fraction, independent
of the resolution and hydro method used (though note that the results using the ZEUS
method appear to converge to a marginally higher value than the PPM results). This
also shows up as an overestimate of gas mass function Mgas > 108 h−1 M" compared to
the Sheth & Tormen function multiplied by (Ωb/ΩM). In contrast, GADGET halos at
all resolutions only reach ∼ 90% of the cosmic baryon fraction. This result is not easily
understood in terms of effects due to artificial viscosity since the ZEUS method used in
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Enzo produces more artificial viscosity than either of the other methods, yet the results
for the two hydro methods in Enzo agree quite well. The systematic difference between
Enzo and GADGET results in this regime provides an interesting comparison to Kravtsov
et al. [201], who examine the enclosed gas mass fraction at z = 0 as a function of radius
of eight galaxy clusters in adiabatic gas simulations done with the ART and GADGET
codes. They see that at small radii there are significant differences in enclosed gas mass
fraction, but at distances comparable to the virial radius of the cluster the mass fractions
converge to within a few percent and are overall approximately 95% of the universal
mass fraction. It is interesting to note that the enclosed gas mass fraction at the virial
radius produced by the ART code is higher than that of GADGET by a few percent, and
the ART gas mass fraction result would be bracketed by the Enzo and GADGET results,
overall. This suggests that it is not clear that a universal baryon fraction of ∼ 100% is
predicted by AMR codes, though there seems to be a clear trend of AMR codes having
higher overall baryon mass fractions in halos than SPH codes to, which agrees with the
results of Frenk et al. [172]

It is unclear why our results with the GADGET code differ from those seen in Kravtsov
et al. (with the net gas fraction in our calculations being approximately 5% lower at
the virial radius), though it may be due entirely to the difference in regime – we are
examining galaxy-sized halos with masses of ∼ 109 − 1010M" at z = 3, whereas they
model ∼ 1013 − 1014M" galaxy clusters at z = 0. Regardless, the observed differences
between the codes are significant and will be examined in more detail in future work.

It should be noted that the hydrodynamic results obtained for the GADGET SPH
code are typically found to be bracketed by the two different hydrodynamic formulations
implemented in the AMR code. This suggests that there is no principle systematic dif-
ference between the techniques which would cause widely differing results. Instead, the
systematic uncertainties within each technique, for example with respect to the choice
of shock-capturing algorithm, appear to be larger than the intrinsic differences between
SPH and AMR for the quantities of interest in this paper. We also note that some of
the differences we find in bulk simulation properties are likely to be of little relevance for
actual simulations of galaxy formation. For example, in simulations including more real-
istic physics, specifically a UV background, the low temperature gas that is affected most
strongly by artificial early heating in Enzo/ZEUS will be photoionized and thus heated
uniformly to approximately 104 K, so that many of the differences in temperature and
entropy at low overdensity owing to the choice of hydrodynamical method will disappear.
We will investigate such effects of additional physics in the future.

We have also examined the relative computational performance of the codes studied
here, using metrics such as the total CPU time and memory consumption. If one simply
compares simulations which have the same number of particles and grid cells at the start
of the simulation, GADGET performs better; i.e. it finishes faster, uses less memory, and
is more accurate at the low-mass end of the halo mass function. However, much of this
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difference is caused by the slowly increasing number of cells used by the AMR code to
represent the gas, while the Lagrangian code keeps the number of SPH particles constant.
If the consumed resources are normalized to the number of resolution elements used to
represent the gas (cells or particles), they are roughly comparable. Unfortunately, the
lower gravitational force-resolution of the hierarchical particle-mesh algorithm of Enzo
will usually require the use of twice as many root grid cells as particles per dimension for
high-accuracy results at the low-mass end of the mass function, which then induces an
additional boost of the number of needed cells by nearly an order of magnitude with a
corresponding impact on the required computational resources. As a consequence of this,
the gas will be represented more accurately, and this is hence not necessarily a wasted
effort. However given that the dark matter mass resolution is not also improved at the
same time (unless the DM particle number is also increased), it is probably of little help
to make progress in the galaxy formation problem, where the self-gravity of dark matter
is of fundamental importance. It is also true that the relative performance of the codes
is dependent upon the memory architecture and interprocessor communication network
of the computer used to perform the comparison as we discussed in Section 3.8.

It is encouraging that, with enough computational effort, it is possible to achieve
the same results using both the Enzo and GADGET codes. In principle both codes are
equally well-suited to performing dark matter-only calculations (in terms of their ability
to obtain results that both match analytical estimates and also agree with output from
the other code), but practically speaking the slower speed of the AMR code makes it
undesirable as a tool for doing large, high-resolution N-body calculations at the present
day. It should be noted that solving Poisson’s equation on an adaptive mesh grid is
a relatively new technique, particularly compared to doing N-body calculations using
tree and PM codes, and much can be done to speed up the Enzo Poisson solver and
decrease its memory consumption. The GADGET N-body solver is already very highly
optimized. If the speed of the Enzo N-body solver can be increased by a factor of a few,
an improvement which is quite reasonable to expect in the near future, the overall speed
that the codes require to achieve solutions with similar dark matter force resolutions and
mass functions will be comparable.

In future work it will be important to understand the origin of the small but finite dif-
ferences between Enzo/ZEUS, Enzo/PPM, and SPH at a more fundamental level. These
differences will most likely be seen (and the reasons for the differences identified) when
making direct comparisons of the formation and evolution of individual dark matter halos
and the gas within them. Additionally, isolated idealized cases such as the Bertschinger
adiabatic infall solution [203] will provide useful tests to isolate numerical issues. Ex-
amination of individual halos may also point the way to improved parameterizations of
artificial viscosity (and/or diffusivity) which would then also be beneficial for the SPH
method. Simultaneously, we plan to investigate the differences of the current generation
of codes when additional physical effects are modeled.
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