Cosmic Wiplash From There and Then to Here and Now

JINA Workshop, April 2010

When Stars Attack! Supernova Nucleosynthesis Products in the Laboratory

Brian Fields

Astronomy & Physics, U Illinois

JINA Building Virtual Galaxies Workshop

April 29, 2010

Themis AthanassiadouArizona StateJohn EllisCERNLeslie LooneyIllinoisJohn TobinU Michigan

*** Nearby Supernovae**

a unique laboratory...and a unique threat

Nearby Supernovae

 a unique laboratory...and a unique threat

 The Smoking Gun

 supernova radioactivities on Earth

Nearby Supernovae

 a unique laboratory...and a unique threat

 The Smoking Gun

 supernova radioactivities on Earth

 Geological Signatures

sea sediments as telescopes

Nearby Supernovae

Cosmic WMD: Rates

How often? Depends on how far! Shklovskii 68

- \star Rate of Supernovae inside d:
 - Galactic supernova rate today: \mathcal{R}_{SN}
 - in homog. disk, scale height

- corrections: spiral arms, molecular clouds, exponential disk... Talbot & Newman 77
- multiple events < few pc in the last 4.5 Gyr!</p>

Cosmic WMD: Rates

How often? Depends on how far! Shklovskii 68

- \star Rate of Supernovae inside d:
 - Galactic supernova rate today: \mathcal{R}_{SN}
 - in homog. disk, scale height

- corrections: spiral arms, molecular clouds, exponential disk... Talbot & Newman 77
- multiple events < few pc in the last 4.5 Gyr!</p>

Cosmic WMD: Rates

How often? Depends on how far! Shklovskii 68

- \star Rate of Supernovae inside d:
 - Galactic supernova rate today: $\mathcal{R}_{\mathrm{SN}}$
 - in homog. disk, scale height

- corrections: spiral arms, molecular clouds, exponential disk... Talbot & Newman 77
- multiple events < few pc in the last 4.5 Gyr!

Ill efects of a supernova too close possible source of mass extinction

• Shklovskii; Russell & Tucker 71; Ruderman 74

Ill efects of a supernova too close possible source of mass extinction

• Shklovskii; Russell & Tucker 71; Ruderman 74

Ionizing radiation

- initial gamma, X, UV rays subsequent diffusive cosmic rays
- destroy ozone in atmosphere Ruderman 74; Ellis & Schramm 94
- solar UV kills bottom of food chain but true hazard unclear

Crutzen & Bruhl 96; Gehrels etal 03; Smith, Sclao, & Wheeler 04

Ill efects of a supernova too close possible source of mass extinction

• Shklovskii; Russell & Tucker 71; Ruderman 74

Ionizing radiation

- initial gamma, X, UV rays subsequent diffusive cosmic rays
- destroy ozone in atmosphere Ruderman 74; Ellis & Schramm 94
- solar UV kills bottom of food chain but true hazard unclear

Crutzen & Bruhl 96; Gehrels etal 03; Smith, Sclao, & Wheeler 04

Neutrinos

neutrino-nucleon elastic scattering:
 "linear energy transfer"

DNA damage

Collar 96, but see Karam 02

Ill efects of a supernova too close possible source of mass extinction

• Shklovskii; Russell & Tucker 71; Ruderman 74

Ionizing radiation

- initial gamma, X, UV rays subsequent diffusive cosmic rays
- destroy ozone in atmosphere Ruderman 74; Ellis & Schramm 94
- solar UV kills bottom of food chain but true hazard unclear

Crutzen & Bruhl 96; Gehrels etal 03; Smith, Sclao, & Wheeler 04

Neutrinos

neutrino-nucleon elastic
 "linear energy transfer"

The Smoking Gun

Ellis, BDF, & Schramm 1996

Ellis, BDF, & Schramm 1996

Explosion launched at ~few% c Slows as plows thru interstellar matter

Chandra

Ellis, BDF, & Schramm 1996

Explosion launched at ~few% c Slows as plows thru interstellar matter

Earth "shielded" by solar wind

Ellis, BDF, & Schramm 1996

Explosion launched at ~few% c Slows as plows thru interstellar matter

Earth "shielded" by solar wind

If blast close enough:

Ellis, BDF, & Schramm 1996

Explosion launched at ~few% c Slows as plows thru interstellar matter

Earth "shielded" by solar wind

If blast close enough:

- overwhelms solar wind
- SN material dumped on Earth
- Accumulates in natural "archives" sea sediments, ice cores

Ellis, BDF, & Schramm 1996

Explosion launched at ~few% c Slows as plows thru interstellar matter

Earth "shielded" by solar wind

If blast close enough:

- 🗸 🛛 overwhelms solar wind
- SN material dumped on Earth
- Accumulates in natural "archives" sea sediments, ice cores
- Q: How would we know?

Ellis, BDF, & Schramm 1996

Explosion launched at ~few% c Slows as plows thru interstellar matter

Earth "shielded" by solar wind

If blast close enough:

- 🗸 🛛 overwhelms solar wind
- SN material dumped on Earth
- Accumulates in natural "archives" sea sediments, ice cores

Q: How would we know? Need observable SN "fingerprint"

Nuclear Signature

Ellis, BDF, & Schramm 1996

Explosion launched at ~few% c Slows as plows thru interstellar matter

Earth "shielded" by solar wind

If blast close enough:

- overwhelms solar wind
- SN material dumped on Earth
- Accumulates in natural "archives" sea sediments, ice cores

Q: How would we know?

Need observable SN "fingerprint" Nuclear Signature

X Stable nuclides: don't know came from SN

Ellis, BDF, & Schramm 1996

Explosion launched at ~few% c Slows as plows thru interstellar matter

Earth "shielded" by solar wind

If blast close enough:

- overwhelms solar wind
- SN material dumped on Earth
- Accumulates in natural "archives" sea sediments, ice cores

Q: How would we know?

Need observable SN "fingerprint"

- Nuclear Signature
- X Stable nuclides: don't know came from SN
- Live radioactive isotopes: none left on Earth If found, must come from SN!

Supernova Blast Impact on the Solar System

BDF, Athanassiadou, & Johnson 2006

Supernova Blast Impact on the Solar System

BDF, Athanassiadou, & Johnson 2006

Supernova Blast Impact on the Solar System

BDF, Athanassiadou, & Johnson 2006

Geological Signatures

NA Building Virtual Galaxies Korks to charil 2010

Knie et al. (1999,2004) ferromanganese (FeMn) crust Pacific Ocean growth: ~ 1 mm/Myr

Knie et al. (1999,2004) ferromanganese (FeMn) crust Pacific Ocean growth: ~ 1 mm/Myr

Knie et al. (1999,2004) ferromanganese (FeMn) crust Pacific Ocean growth: ~ 1 mm/Myr

AMS $rightarrow 10^{60}$ Fe, $\tau = 2.2$ Myr !

Deep Ocean Crust

Knie et al. (1999,2004) ferromanganese (FeMn) crust Pacific Ocean growth: ~ 1 mm/Myr

Deep Ocean Crust

Knie et al. (1999,2004) ferromanganese (FeMn) crust Pacific Ocean growth: ~ 1 mm/Myr

JINA Building Virtual Galaxies Workshop, April 2010

Turn the problem around:

$$\begin{split} N_{\rm 60,obs} &\sim M_{\rm ej,60} e^{-t/\tau} \ / \ d^2 \\ d &\sim \sqrt{\frac{N_{\rm obs}}{M_{\rm 60}(M_{\rm SN})}} \end{split}$$

In principle:

In practice:

- Multiple isotopes SN mass practice: ⁶⁰Fe mass dependence non-monotonic, ip model-dependent
- **Need other isotopes**

For now

$$d({
m SN})\sim 20-100~{
m pc}$$

Turn the problem around:

$$\begin{split} N_{\rm 60,obs} &\sim M_{\rm ej,60} e^{-t/\tau} \ / \ d^2 \\ d &\sim \sqrt{\frac{N_{\rm obs}}{M_{\rm 60}(M_{\rm SN})}} \end{split}$$

In principle:

In practice:

- Multiple isotopes SN mass practice: ⁶⁰Fe mass dependence non-monotonic, ip model-dependent
- **Need other isotopes**

For now

$$d({
m SN})\sim 20-100~{
m pc}$$

Encouraging:

Turn the problem around:

$$\begin{split} N_{\rm 60,obs} &\sim M_{\rm ej,60} e^{-t/\tau} \ / \ d^2 \\ d &\sim \sqrt{\frac{N_{\rm obs}}{M_{\rm 60}(M_{\rm SN})}} \end{split}$$

In principle:

In practice:

- Multiple isotopes SN mass practice: ⁶⁰Fe mass dependence non-monotonic, ip model-dependent
- **Need other isotopes**

For now

$$d(\mathrm{SN})\sim 20-100~\mathrm{pc}$$

Encouraging: *astronomical distances not built in!

Turn the problem around:

$$\begin{split} N_{\rm 60,obs} &\sim M_{\rm ej,60} e^{-t/\tau} \; / \, d^2 \\ d &\sim \sqrt{\frac{N_{\rm obs}}{M_{\rm 60}(M_{\rm SN})}} \end{split}$$

In principle:

In practice:

- Multiple isotopes SN mass practice: ⁶⁰Fe mass dependence non-monotonic, ip model-dependent
- **Need other isotopes**

For now

$$d(\mathrm{SN}) \sim 20 - 100 \mathrm{\ pc}$$

Encouraging:

★astronomical distances not built in! ★ $d(^{60}\text{Fe}) \approx d(\text{SN} \rightarrow \text{Earth}) \approx d_{\text{SN}}(3 \text{ Myr})$

nontrivial consistency!

Sea Sludge as a Telescope

Given ⁶⁰Fe:

Other isotopes fixed by SN mass Indep of SN distance!

$$N_i = \frac{M_{\rm ej,i}(M_{\rm SN}) / A_i}{M_{\rm ej,60}(M_{\rm SN}) / 60} N_{60}$$

Probes SN mass, nucleosynthesis

Expect observable signals: ¹⁰Be, ²⁶Al, ⁵³Mn

If r-process made:

¹⁸²Hf, ²⁴⁴Pu

Wallner et al 2002: single ²⁴⁴Pu atom(!) If real: SN are r-process site!

Meteoritic Forensics of the Pre-Solar Supernova

fuggedaboutit

JINA Workshop, April 2010

★ Live radioactivity present at solar birth

- * Meteoritic evidence: Lee, Papanastassiou, & Wasserburg 1976 anomalies in daughter isotopes
- *** >10 radioisotope species present**
 - Lifetimes ~ 0.1-10 Myr: recent production
- *** Origin?**

★ Live radioactivity present at solar birth

- * Meteoritic evidence: Lee, Papanastassiou, & Wasserburg 1976 anomalies in daughter isotopes
- ***>10 radioisotope species present**
 - Lifetimes ~ 0.1-10 Myr: recent production

***Origin?**

- in situ: spallation by accelerated particles? Shu, Clayton
 - but ⁶⁰Fe observed: not enough targets (⁶⁰Ni & up)
- imported: supernova injection?

★ Live radioactivity present at solar birth

- * Meteoritic evidence: Lee, Papanastassiou, & Wasserburg 1976 anomalies in daughter isotopes
- *** >10 radioisotope species present**
 - Lifetimes ~ 0.1-10 Myr: recent production
- ***Origin?**
 - in situ: spallation by accelerated particles? Shu, Clayton
 - but ⁶⁰Fe observed: not enough targets (⁶⁰Ni & up)
 - imported: supernova injection?
 - if so, explosion nearly coincident with solar birth
 - did a supernova trigger Sun formation?

★ Live radioactivity present at solar birth

- * Meteoritic evidence: Lee, Papanastassiou, & Wasserburg 1976 anomalies in daughter isotopes
- ***>10 radioisotope species present**
 - Lifetimes ~ 0.1-10 Myr: recent production
- ***Origin?**
 - in situ: spallation by accelerated particles? Shu, Clayton
 - but ⁶⁰Fe observed: not enough targets (⁶⁰Ni & up)
 - imported: supernova injection?
 - if so, explosion nearly coincident with solar birth
 - did a supernova trigger Sun formation?
 - radioisotope survival: clock

★ Live radioactivity present at solar birth

- * Meteoritic evidence: Lee, Papanastassiou, & Wasserburg 1976 anomalies in daughter isotopes
- ***>10 radioisotope species present**
 - Lifetimes ~ 0.1-10 Myr: recent production
- ***Origin?**
 - in situ: spallation by accelerated particles? Shu, Clayton
 - but ⁶⁰Fe observed: not enough targets (⁶⁰Ni & up)
 - imported: supernova injection?
 - if so, explosion nearly coincident with solar birth
 - did a supernova trigger Sun formation?
 - radioisotope survival: clock
 - abundance: inverse square law = yardstick

JINA Workshop, April 2010

JINA Workshop, April 2010

★ Lengthscale:

Large presolar radioactive abundances

★ Lengthscale:

Large presolar radioactive abundances

+ if any from supernova, it had to be nearby! $D_{\rm SN} \leq 60 R_{\rm SS}\,$ = solar nebula size

★ Lengthscale:

Large presolar radioactive abundances

+ if any from supernova, it had to be nearby! $D_{\rm SN} \leq 60 R_{\rm SS}\,$ = solar nebula size

using observed protostellar sizes $D_{\rm SN} \approx 0.02 - 1.6 ~{\rm pc}$

★ Lengthscale:

Large presolar radioactive abundances

- if any from supernova, it had to be nearby! $D_{\rm SN} \leq 60 R_{\rm SS}$ = solar nebula size using observed protostellar sizes $D_{\rm SN} \approx 0.02 - 1.6 \ {\rm pc}$
- the Sun was born in a cluster!
 ...like most stars

★ Lengthscale:

Large presolar radioactive abundances

- ▶ if any from supernova, it had to be nearby! $D_{\rm SN} \leq 60R_{\rm SS} = \text{solar nebula size}$ using observed protostellar sizes $D_{\rm SN} \approx 0.02 1.6 \text{ pc}$
- the Sun was born in a cluster! ...like most stars

Timescale:

Short-lived isotopes present

• little time from production to rock! $t(SN \rightarrow meteorite) \leq 2 Myr$

not enough time to trigger collapse (?)

★ Lengthscale:

Large presolar radioactive abundances

- if any from supernova, it had to be nearby! $D_{\rm SN} \leq 60 R_{\rm SS}$ = solar nebula size using observed protostellar sizes $D_{\rm SN} \approx 0.02 - 1.6 \ {\rm pc}$
- the Sun was born in a cluster! ...like most stars

Timescale:

Short-lived isotopes present

• little time from production to rock! $t(SN \rightarrow meteorite) \leq 2 Myr$

not enough time to trigger collapse (?)

Supernova was a sibling, not parent!

JINA Workshop, April 2010

JINA Building Virtual Galaxies Workshop, April 2010

Summary and Conclusions

Live ⁶⁰Fe seen in several deep-ocean crusts

- ★ Signal isolated to ~2-3 Myr ago
- **★** Source of Local Bubble?

Summary and Conclusions

Live ⁶⁰Fe seen in several deep-ocean crusts

- ★ Signal isolated to ~2-3 Myr ago
- ★ Source of Local Bubble?

Birth of "Supernova Archaeology" Implications across disciplines: nucleosynthesis, stellar evolution, bio evolution, astrobiology Nuclear & particle physics central

Summary and Conclusions

Live ⁶⁰Fe seen in several deep-ocean crusts

- ★ Signal isolated to ~2-3 Myr ago
- ★ Source of Local Bubble?

Birth of "Supernova Archaeology" Implications across disciplines: nucleosynthesis, stellar evolution, bio evolution, astrobiology Nuclear & particle physics central

Summary and Conclusions

Live ⁶⁰Fe seen in several deep-ocean crusts

- ★ Signal isolated to ~2-3 Myr ago
- ★ Source of Local Bubble?

Birth of "Supernova Archaeology" Implications across disciplines: nucleosynthesis, stellar evolution, bio evolution, astrobiology Nuclear & particle physics central

Live radioactivities present in protosolar nebula * ~Myr liftimes: "just in time" injection

Summary and Conclusions

Live ⁶⁰Fe seen in several deep-ocean crusts

- ★ Signal isolated to ~2-3 Myr ago
- ★ Source of Local Bubble?

Birth of "Supernova Archaeology" Implications across disciplines: nucleosynthesis, stellar evolution, bio evolution, astrobiology Nuclear & particle physics central

- ***** ~Myr liftimes: "just in time" injection
- ★ abundances: SN distance < 1 pc</p>

Summary and Conclusions

Live ⁶⁰Fe seen in several deep-ocean crusts

- ★ Signal isolated to ~2-3 Myr ago
- ★ Source of Local Bubble?

Birth of "Supernova Archaeology" Implications across disciplines: nucleosynthesis, stellar evolution, bio evolution, astrobiology Nuclear & particle physics central

- ***** ~Myr liftimes: "just in time" injection
- ★ abundances: SN distance < 1 pc</p>
 - solar birth in cluster

Summary and Conclusions

Live ⁶⁰Fe seen in several deep-ocean crusts

- ★ Signal isolated to ~2-3 Myr ago
- ★ Source of Local Bubble?

Birth of "Supernova Archaeology" Implications across disciplines: nucleosynthesis, stellar evolution, bio evolution, astrobiology Nuclear & particle physics central

- ***** ~Myr liftimes: "just in time" injection
- ★ abundances: SN distance < 1 pc</p>
 - solar birth in cluster
 - supernova was "big sister" not "mother"

- ★ observables: radionuclides 1-100 Myr
 - ✓ ⁶⁰Fe, ²⁶Al, ¹⁰Be, ¹⁴⁶Sm, ¹⁸²Hf, ²⁴⁴Pu
 - ✓ sites: late core-collapse hydrostatic burning, r-process

- ★ observables: radionuclides 1-100 Myr
 - ✓ ⁶⁰Fe, ²⁶Al, ¹⁰Be, ¹⁴⁶Sm, ¹⁸²Hf, ²⁴⁴Pu
 - ✓ sites: late core-collapse hydrostatic burning, r-process
- *** nuclear** inputs: cross sections (n capture), lifetimes, and uncertainties!

- ★ observables: radionuclides 1-100 Myr
 - √ ⁶⁰Fe, ²⁶Al, ¹⁰Be, ¹⁴⁶Sm, ¹⁸²Hf, ²⁴⁴Pu
 - ✓ sites: late core-collapse hydrostatic burning, r-process
- *** nuclear** inputs: cross sections (n capture), lifetimes, and uncertainties!
- **theory inputs: improved SN nucleosynthesis and uncertainties!**

- ★ observables: radionuclides 1-100 Myr
 - √ ⁶⁰Fe, ²⁶Al, ¹⁰Be, ¹⁴⁶Sm, ¹⁸²Hf, ²⁴⁴Pu
 - ✓ sites: late core-collapse hydrostatic burning, r-process
- *** nuclear** inputs: cross sections (n capture), lifetimes, and uncertainties!
- *** theory inputs: improved SN nucleosynthesis and uncertainties!**
- ***** geological inputs: more, different samples of live species:
 - ✓ other isotopes
 - ✓ other media
 - ✓ other sites (lunar cores?)
Nearby Supernovae JINA and the Future

- ★ observables: radionuclides 1-100 Myr
 - √ ⁶⁰Fe, ²⁶Al, ¹⁰Be, ¹⁴⁶Sm, ¹⁸²Hf, ²⁴⁴Pu
 - ✓ sites: late core-collapse hydrostatic burning, r-process
- *** nuclear** inputs: cross sections (n capture), lifetimes, and uncertainties!
- *** theory inputs: improved SN nucleosynthesis and uncertainties!**
- ***** geological inputs: more, different samples of live species:
 - ✓ other isotopes
 - ✓ other media
 - ✓ other sites (lunar cores?)
- ***** astronomical inputs: cosmic SN rates, types, energies, environment Lien & BDF 2009

Nearby Supernovae JINA and the Future

- ★ observables: radionuclides 1-100 Myr
 - √ ⁶⁰Fe, ²⁶Al, ¹⁰Be, ¹⁴⁶Sm, ¹⁸²Hf, ²⁴⁴Pu
 - ✓ sites: late core-collapse hydrostatic burning, r-process
- *** nuclear** inputs: cross sections (n capture), lifetimes, and uncertainties!
- *** theory inputs: improved SN nucleosynthesis and uncertainties!**
- **geological** inputs: more, different samples of live species:
 - ✓ other isotopes
 - ✓ other media
 - ✓ other sites (lunar cores?)
- * astronomical inputs: cosmic SN rates, types, energies, environment Lien & BDF 2009 scanning sky surveys: Dark Energy Survey, LSST, PanSTARRS...
 - In the entire sky mapped to high sensitivity ~daily!
 - ✓ opens time domain Astronomy
 - ✓ ~10⁶ core-collapse events/year
 - ✓ a data-fueled revolution SN science!

Nearby Supernovae JINA and the Future

- ★ observables: radionuclides 1-100 Myr
 - ✓ ⁶⁰Fe, ²⁶Al, ¹⁰Be, ¹⁴⁶Sm, ¹⁸²Hf, ²⁴⁴Pu
 - ✓ sites: late core-collapse hydrostatic burning, r-process
- *** nuclear** inputs: cross sections (n capture), lifetimes, and uncertainties!
- *** theory inputs: improved SN nucleosynthesis and uncertainties!**
- **geological** inputs: more, different samples of live species:
 - other isotopes
 - ✓ other media
 - ✓ other sites (lunar cores?)
- * astronomical inputs: cosmic SN rates, types, energies, environment Lien & BDF 2009 scanning sky surveys: Dark Energy Survey, LSST, PanSTARRS...
 - entire sky mapped to high sensitivity ~daily!
 - opens time domain Astronomy
 - ✓ ~10⁶ core-collapse events/year
 - ✓ a data-fueled revolution SN science!

SN Legacy Survey ~4 month scan

JINA Building Virtual Galaxies Workshop, April 2010

Radioactive Supernova Tracking

Radioactive Supernova Tracking

JINA Workshop, April 2010

Radioactive Supernova Tracking

JINA Building Virtual Galaxies Workshop, April 2010

Hydrodynamic collision:

 Supernovae < few 10 pc penetrate inside ~few AU

Hydrodynamic collision:

- ✓ Supernovae < few 10 pc penetrate inside ~few AU
- ✓ Why? Happy(?) accident
 - → Ram pressures ρv^2 (SN, 10pc) = ρv^2 (SW, 1AU) = 2 nPa

Hydrodynamic collision:

- ✓ Supernovae < few 10 pc penetrate inside ~few AU
- Why? Happy(?) accident
 - → Ram pressures ρv^2 (SN, 10pc) = ρv^2 (SW, 1AU) = 2 nPa

Since $r_{\text{shock-Sun}} \sim 1 \text{AU}$ careful simulation warranted

- ions vs neutrals, dust, 3-D, B fields...
 - "vanilla" model is worst case: most effects "beneficial" for matter deposition

Hydrodynamic collision:

- ✓ Supernovae < few 10 pc penetrate inside ~few AU
- Why? Happy(?) accident
 - → Ram pressures ρv^2 (SN, 10pc) = ρv^2 (SW, 1AU) = 2 nPa

Since $r_{\text{shock-Sun}} \sim 1 \text{AU}$ careful simulation warranted

- ions vs neutrals, dust, 3-D, B fields...
 - "vanilla" model is worst case: most effects "beneficial" for matter deposition

For today:

Take seriously possibility of SN ejecta Earth
 Look for observable consequence

Aftermath: The Local Bubble?

★ The Sun lives in region of hot, rarefied gas

hot, rarefied gas

Aftermath: The Local Bubble?

- The Local Bubble
- hot cavity ~50 pc -> huge

The Sun lives in region of

 seen via foreground absorption in nearby starlight

JINA Building Virtual Galaxies Workshop, April 2010

Aftermath: The Local Bubble?

★ The Sun lives in region of hot, rarefied gas

- The Local Bubble
- hot cavity ~50 pc huge
- seen via foreground absorption in nearby starlight

*****Nearby SN needed

- we live inside SN remains
- bubble models require >> 1
 SN in past 10 Myr Smith & Cox 01
- ⁶⁰Fe event from nearest massive star cluster? Benitez et al 00

A Near Miss?

- $d > d_{kill} \sim 10 \text{ pc}$...but barely: "near miss"
- ¿ cosmic ray winter?
- ¿ bump in extinctions?

If true:

implications for astrobiology tightens Galactic habitable zone

Image: Mark Garlick <u>www.markgarlick.com</u>

Debris Delivery via Dust

Athanassiadou & BDF 08

What if $d_{\rm SN} > 10 \text{ pc} \Rightarrow r_{\rm shock} > 1 \text{ AU}$?

gas-phase SN debris excluded from Earth

JINA Building Virtual Galaxies Workshop, April 2010

Debris Delivery via Dust

Athanassiadou & BDF 08

What if $d_{SN} > 10 \text{ pc} \Rightarrow r_{shock} > 1 \text{ AU}$? • gas-phase SN debris excluded from Earth

But SN radioisotopes all are refractory elements -dust grains

- dust decouples from gas at shocks
- grains incident on heliosphere feel gravity, radiation pressure, magnetic fields

SN1987A dust: Bouchet, Dwek et al 06

Debris Delivery via Dust

Athanassiadou & BDF 08

What if $d_{\rm SN} > 10 \text{ pc} \Rightarrow r_{\rm shock} > 1 \text{ AU}$?

gas-phase SN debris excluded from Earth

But SN radioisotopes all are refractory elements -dust grains

- dust decouples from gas at shocks
- grains incident on heliosphere feel gravity, radiation pressure, magnetic fields

SN dust penetrates to 1 AU even if gas does not

- for $v_{\rm dust} > 100 \ {\rm km \ s^{-1}} \gg v_{\rm esc}$ nearly ballistic trajectory
- radioisotope delivery efficiency set by dust survival fraction

SN1987A dust: Bouchet, Dwek et al 06

Terrestrial Signatures of Nearby SNe Ellis, BDF, Schramm 96

Observables

- Signature: Isotope Anomalies
- Medium: Gelogical Sediments "Natural Archives" Ice Cores
 - Sea Sediments
- Measure: Specific concentration

$$\frac{n_i}{\rho_{\rm sed}} \sim \frac{M_{\rm SNeject,i}/d^2}{(\text{sed rate})\Delta t_{\rm dep}}$$
$$= 5 \times 10^7 \text{ atoms g}^{-1} \left(\frac{X_{ej,i}}{10^{-5}}\right) \left(\frac{1 \text{ kyr}}{\Delta t_{\rm dep}}\right) \left(\frac{10 \text{ pc}}{d}\right)^2$$

The Future: Supernova Tsunami

Lien & BDF

- By LSST: ~1,000,000 core-collapse events each year!
- **★** Cosmic Supernova Rate by *direct counting*

rate measured to 10% out to z~1 tradeoff: redshift range (scan depth) vs SN counts (sky coverage) largest uncertainty: dust obscuration

★ Core-collapse come for free!

survey characteristics tuned to SN Ia automatically well-suited for SN II

