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Why pursue the fossil record?

Education
Pose the problem and survey three basic approaches.

lllustration
Three case studies that mix progress and ighorance.

Imagination
Where we need to go from here.
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Why Pursue the Fossil Record?

We want “to understand how the first stars and galaxies formed, and
how they change over time into the objects recognized in the present
Universe.” (NASA Strategic Research Objective 3D.2)

For many astronomers, this means “deep fields” to study galaxy light at
high redshift, and to examine their luminosity, mass, star formation
history, and other properties of the population.

This frontier was recently advanced to z ~ 8 by Hubble’s new Wide Field
Camera 3, giving a small taste of what JWST offers.
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Won’t JWST See the First Stars?

First Light and Retonization :
open questions in the post-JWST era
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Won’t JWST See the First Stars?

Isolated Population IIT stars will also be relatively faint in the non-
ionizing continuum (AB~38.5-40 at z=10-25. compared to AB~31 achievable in 10° s
exposures by JWST). because most of their energy output 1s in the ionizing continuum
(Bromm et al. 2001b. Tumlinson et al. 2003) which is efficiently absorbed by the IGM.
Thus. they will be impossible to detect directly with JWST.

7. Summary

The above discussion suggests that two very difficult and important questions pertaining
to the First light and reionization epoch will still need to be answered in the post-JWST
era: 1) When and how did the first stars form? And 11) When and how did the active
galactic nucle1 form? This should be this field active and exciting even in the next
decade. Conversely we expect that progress in our understanding of the first galaxies and
reionization will be major and such that at this stage 1t would be hard to predict what
further studies. if any. might be required.
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MW progenitors visible to z ~ 6 - 8 in JWST deep fields (~dust).
Each one deposits some stars into the MW halo - how do the low-z
stars and the high-z visibility relate?
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The High-Redshift Visibility vs. Metallicity

“Fossil record”
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[Fe/H] Okrochkov & Tumlinson, ApJL, in press

Now: there are two kinds of stars that survive in the MWV halo.
|) Those that formed in progenitors NIRCam can see: [Fe/H] = -2

2) Those that formed in progenitors NIRCam see: [Fe/H] = -2

This is the ultimate reason to pursue the fossil record:
to study galaxies we otherwise will not see!
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The Problem

Observable quantities (stellar parameters, [ X/Fe], orbit)
are complex, emergent, stochastic functions of many
coupled physical processes.
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We will examine three basic approaches to this problem:
the , the , and the .
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Education|] Three Basic Approaches
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Education|] Three Basic Approaches

Oldest form, dating from 1960s
and 70s in mature form (Tinsley,
Cameron, Truran, many others).
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various chemical elements;
simple set of differential equations
with yields as inputs;
allow “inflow” and “outflow” from
reservoir as needed.
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Oldest form, dating from 1960s
and 70s in mature form (Tinsley,
Cameron, Truran, many others).

Study mass budgets in gas and
various chemical elements;
simple set of differential equations
with yields as inputs;
allow “inflow” and “outflow” from
reservoir as needed.

1. Simple mathematics
2. Simple parameterizations
3. Easy to understand results
4. Good for “bulk” chemical
evolution (like SNIla/ll or r/s
balance), on >kpc / galaxy scales.

1. Poor “spatial resolution”
2. Not easy to make hierarchical
3. Not really stochastic either.
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Analytic Models for Galactic Disks

Chemical evolution models for spiral disks: the Milky Way, M31 and

M33
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2. The chemical evolution model

In order to reproduce the chemical evolution of the thin-disk,
we adopted an updated one-infall version of the chemical evo-
lution model presented by Chiappm et al. (2001) (hereafter
CMR2001). In this model, the galactic disk is divided into sev-
eral concentric rings which evolve independently without ex-
change of matter.

The disk is built up in an “inside-out™ scenario which is
necessary condition to reproduce the radial abundance °rad1ents
(Colavitti et al. 2008). The infall law for the thin-disk i1s defined
as:

dii(R. 1)
dt

U=trmgg)

= B(R)e™ % (1)

where ;(R, ) 1s the gas surface density of the mnfall, £, 1s
the time of maximum gas accretion in the disk, set equal to 1
Gyr, coincident with the end of halo /thick disk phase and 7p 1s
the timescale for the infalling gas into the thin-disk. To have an
mside-out formation in the disk, the timescale for the mass ac-
cretion is assumed to increase with the Galactic radius following
a simple linear relation. In particular, we tested different linear
relations, as we will see in table 1. The coefficient B(R) 1s de-
rived from the condition that the total mass surface density at
the present time n the disk 1s reproduced.

In order to make the program as simple and generalized as
possible, we used a SFR proportional to a Schmidt law:
Y(r, O

o VL

;fa:(r. 1)) (2)

where v is the efficiency in the star formation process and
the surface gas density 1s represented by Z,..(r. f) while the ex-
ponent & 1s equal to 1.5 (see Kennicutt 1998 and Chiappini et

Fig.1. Distribution of dwarf stars in the solar vicinity obtained
by using different IMFs. Scalo 1986 (dotted line) and Kroupa et
al. (19931 (dashed line) compared to the observational data from
Holmberg et al. 2007 (sohd line). The label “New tau” indicates
that we have used the T(R) law of this paper shown m Table 1.

According to recent studies (e.g. Romano et al. 2005) the
IMF and the stellar hifetimes are responsable for the uncertanties
mn the chemical evolution models for the Milky Way. In this work
we assumed an IMF constant in space and time and adopted the
prescription from Kroupa (1993), instead of a two-slope approx-
mmation of Scalo (1986) used by CMR2001. The total surface
mass density distribution for the Galactic disk was assumed to
be exponential with scale length Rp = 3.5 kpc normalized to
Ep(Ro. ton) = 54Mopc - (Romano et al. 2000)

Ip(R.tga) = L0, ¢ e~ %o (3)

Apart from the IMF, this model differs from the one of
the CMR2001 model in: (1) the oxygen yields for massive
stars that are supposed to be metalhcm -dependent and taken
from Woosley & Weaver (1995), as suggested in Francois et al.
(2004); (2) the stellar lifetimes of Schaller etal (1992) mstead of
the Maeder & Meynet (1989); and (3) the solar abundances are
those from Asplund et al. (2009).

2.1. The Milky Way

We computed the model for the Milky Way several imes with
star formation efficiency of 1Gyr~! and different time scales for
the infalling gas into the disk (7). Table 1 shows the coeffi-
cients for the linear equations adopted for m(R). Figure 1 con-
tains the predictions for the dwarf metallicity distribution in the
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2. The chemical evolution model

In order to reproduce the chemical evolution of the thin-disk,
we adopted an updated one-infall version of the chemical evo-
lution model presented by Chiappm et al. (2001) (hereafter
CMR2001). In this model, the galactic disk is divided into sev-
eral concentric rings which evolve independently without ex-
change of matter.

The disk is built up in an “inside-out™ scenario which is
necessary condition to reproduce the radial abundance °rad1ents
(Colavitti et al. 2008). The infall law for the thin-disk i1s defined
as:

dii(R. 1)
dt

U=trmgg)

= B(R)e™ % (1)

where ;(R, ) 1s the gas surface density of the mnfall, £, 1s
the time of maximum gas accretion in the disk, set equal to 1
Gyr, coincident with the end of halo /thick disk phase and 7p 1s
the timescale for the infalling gas into the thin-disk. To have an
mside-out formation in the disk, the timescale for the mass ac-
cretion is assumed to increase with the Galactic radius following
a simple linear relation. In particular, we tested different linear
relations, as we will see in table 1. The coefficient B(R) 1s de-
rived from the condition that the total mass surface density at
the present time n the disk 1s reproduced.

In order to make the program as simple and generalized as
possible, we used a SFR proportional to a Schmidt law:
W(r.f) e \Sm (r.1) (2)

where v is the efficiency in the star formation process and
the surface gas density 1s represented by Z,..(r. ) while the ex-
ponent & 1s equal to 1.5 (see Kennicutt 1998 and Chiappini et

Fig.1. Distribution of dwarf stars in the solar vicinity obtained
by using different IMFs. Scalo 1986 (dotted line) and Kroupa et
al. (19931 (dashed line) compared to the observational data from
Holmberg et al. 2007 (sohd line). The label “New tau” indicates
that we have used the T(R) law of this paper shown m Table 1.

According to recent studies (e.g. Romano et al. 2005) the
IMF and the stellar hifetimes are responsable for the uncertanties
mn the chemical evolution models for the Milky Way. In this work
we assumed an IMF constant in space and time and adopted the
prescription from Kroupa (1993), instead of a two-slope approx-
mmation of Scalo (1986) used by CMR2001. The total surface
mass density distribution for the Galactic disk was assumed to
be exponential with scale length Rp = 3.5 kpc normalized to
Ep(Ro. ton) = 54Mopc - (Romano et al. 2000)

Ip(R. tga) = To(0, tear)e /Ro (3)

Apart from the IMF, this model differs from the one of
the CMR2001 model in: (1) the oxygen yields for massive
stars that are supposed to be metalhcm -dependent and taken
from Woosley & Weaver (1995), as suggested in Francois et al.
(2004); (2) the stellar lifetimes of Schaller etal (1992) mstead of
the Maeder & Meynet (1989); and (3) the solar abundances are
those from Asplund et al. (2009).

2.1. The Milky Way

We computed the model for the Milky Way several imes with
star formation efficiency of 1Gyr~! and different time scales for
the infalling gas into the disk (7). Table 1 shows the coeffi-
cients for the linear equations adopted for m(R). Figure 1 con-
tains the predictions for the dwarf metallicity distribution in the
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shows that these models are good for large gas budgets,
long timescales, and no hierarchy.
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A Key Victory for Semi-Analytics

L @surviving satellites ‘ FOnt et al. (2006; 2008)
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Johnston et al. (2008)
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Hierarchical, Stochastic Models and the MW
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Semi-Analytics and the First Galaxies

' ' stars formed z> 10

- [Fe/H] < -2.0

[Fe/H] < -3.5

Chronologically older stars are more
centrally concentrated.

Education
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A Late-Breaking Example from GASOLINE

Zolot}c_))./__e_; al. (2010), astroph/1004.3789
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Black: “Accreted” stars from disrupted dwarf galaxies.
The two populations are chemically distinct because the later-merging subhalos
form stars for longer and evolve more toward AGB / SN la yields (just as Font
showed for dwarf galaxies).

+ Can track “in situ stars”
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lllustration

Case Studies Weigh Progress and Ignorance

What have we already
done to extract info
from the fossil record,
and what are Its
limitations?
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Case Study 1: r-process, iron peak and the first stars
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Case Study 1: r-process, iron peak and the first stars
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lllustration

Too many “True” Pop Il stars. Tumlinson (2006)

Too much Fe from PISNe
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Too little r-process
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/0% lgnorance: But what are the mass yields really,
and how many parameters do the yields have (M, Esy,

fallback, mixing, phase of moon).
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I"UStration Too many “True” Pop lll stars.

Lai et al. (2008) Too much Fe from PISNe
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Ar Ca Ti Cr Fe Ni Zn IIIUStration
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The origins of the HMP stars
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Case Study 3: CEMP Zoo and AGB Nucleosynthesis
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Case Study 1:
We can constrain the primordial IMF using r-process
and iron-peak elements, but we need to know the yields
of these elements as a function of mass, etc.

Case Study 2:
We can reproduce the abundance patterns seen in the
“HMP Stars”, with too many non-unique and poorly
understood mechanisms.

Case Study 3:
We can make CEMP stars with AGB mass transfer, but
we can’t make every animal in the zoo in the correct
proportions. Implications for IMF depend on it.
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Elements of a Good Chemical Evolution Model

It must be:
1) Hierarchical, because that’s how the early Galaxy formed.

2) Stochastic, because that’s how early chemical evolution unfolded.

3) Able to generate fully synthetic abundance patterns that look like data
in~12 - 15 elements from all important nucleosynthetic groups (¢, Fe, r, s).

4) Based on a self-consistent, homogeneous, well-sampled grid of stellar
evolution models and chemical yields.

5) Able to track the mixing and dispersal of chemical elements.
(Whether accurately or not, and also stochastically).

6) Able to perform statistical comparisons against data and adjust itself
for optimal fits.

7) Able to provide unique answers to questions of star formation history
and IMF.
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Concrete Steps to Move the Ball on Three Fronts

1) Unification of semi-analytic and numerical modeling.

2) Ever-improving yields and mapping to initial mass.

3) Leveraging related community initiatives.
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1) Unifying SAM and Numerical Models

Numerical simulations will gradually get better and more
detailed, and will advance the frontier, but the state-of-
the-art ones will always be expensive by definition.

So SAMs still have a role, since for certain applications

they can be calculated “on the fly”, and used to supply

realistic stellar populations for much higher resolution
Nbody simulations.

Next important step: implement a homogeneous set of
yields identically in both SAMs and hydrosims, then use
sims to run “anchor point” simulations and SAMs to
explore parameter space.
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An example from cosmology:
5-year WMAP cosmological parameters
Dunkley et al. (2009)
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We would like to use robust and distinct signatures of
stellar mass to diagnose IMF.
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But IMF diagnostics are only as good as the yields on
which they are based.



We would like to use robust and distinct signhatures of
stellar mass to diagnose IMF.
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We would like to use robust and distinct signhatures of
stellar mass to diagnose IMF.
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We would like to use robust and distinct signhatures of
stellar mass to diagnose IMF.

Other specific needs from nuclear

H hvsics / stell luts
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3) Leveraging Related Community Efforts

http://www.us-vo.org/ NV‘s

NATIONAL VIRTUAL OBSERVATORY

...the Universe at your fingertips

Welcome to the New NVO Home Pagel We welcome your feedback on the new site.

Discover, retrieve, and analyze astronomical data from archives and data

centers around the world.

© &

Need help? Not sure how to Collect all data at a given

start? ) position.
27 Getting Started with NVO > DataScope

1: @)

Query databases and Find data collections and
cross-match object lists catalogs by searching their
22 Open SkyQuery descriptions.

22 Directory

Query the VO from the Convert text tables to the
command line. VOTable format used by VO
22 VO-CLI applications.

22 Table Tools

0N

Count matches between
catalog entries and given
positions.

22 Inventory

/
Integrate data from multiple

positions and datasets.
272 VIM

N

Do more with NVO.
Data Analysis & More

The Virtual Astronomical Observatory (VAQO):

- software that conforms to internationally defined
standards and interfaces that allow astronomers to find,
retrieve, analyze, integrate, and understand data from
telescopes and theoretical simulations around the world.

- funded for $27.5M over 5 years (75% NSF, 25% NASA)

- interested in collaborations with the research community
to support data-intensive studies.

- able to supply infrastructure for integration of relevant
observational data and theoretical simulations, in
exchange for advice on science requirements and
feedback.

The Milky Way Laboratory (MWL, SantaCruz + Johns Hopkins):

- a pending NSF Proposal to use cosmology simulations as an
immersive laboratory for general users

- use Via Lactea-ll (20TB) as prototype, then Silver River (500TB+)
as production (15M CPU hours, 10K high-res snapshots)

- Users insert test particles (dwarf galaxies) into system and follow
trajectories in pre-computed simulation

- Realistic “streams” from tidal disruption
- Users interact remotely with 0.5PB in ‘real time’

P. Madau, A. Szalay, R. Wyse, C. Rockosi, G. Lemson .

This material is courtesy of VAO Director Bob Hanisch (STScl) and Alex Szalay (JHU).
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http://www.us-vao.org
http://www.us-vao.org

Are you Lonely

Workin g On Your Owny

HATE MAKING DECISIONS?
HOLD A MEETING

YOU CAN

MEETINGS

THE PRACTICAL ALTERNATIVE T0 WOIZK

Thursday, April 29, 2010

There is something to be said
for just getting people talking.

Though, with the “First Stars”
series, last month’s Austin
First Galaxies Conference,
Nuclei in the Cosmos, and

others, “just another meeting”

won’t help.

Any further workshops need
to be targeted and organized
to be effective.



Parting Thoughts and Issues for Discussion

Just as

are themselves major research efforts. ..
. . . How to integrate and synthesize them is itself a
research problem. | know because | have tried this for 5

years and not made as much progress as | would like!

This is the problem to which we should address ourselves.

Why?

We are not likely to get at the first stars any other way.
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