

The Joint Institute for Nuclear Astrophysics

JINA goals

Address open questions

by working on the nuclear physics and the astrophysics

JINA workshop goals

(as these would likely not be done without cross field collaboration)

Approach 1:

- Identify key problems in GCE
- Identify among these critical nuclear physics problems
 - Think about nuclear physics analysis/sensitivity studies
- See where nuclear physics progress would be feasible
 --> trigger new nuclear physics efforts

Approach 2:

This talk

Look at ongoing and planned nuclear physics efforts

(which processes see advances, which nuclei are affected) (note that feasibility is a big factor - so what can be done likely is done)

 Identify the interesting GCE problems where one can take advantage of improvements in nuclear physics
 --> trigger new astrophysics efforts

Example: impact of improved nuclear physics

Can calculate relative pattern of ⁷⁸Se, ⁷⁹Br, ⁸⁰Se produced in a cassical r-process based on experimental nuclear data

JINA Efforts (Timmes, Wiescher, et al.)

- improved reaction rates for ⁴⁴Ti production: ⁴⁰Ca(α , γ)
- improved reaction rates for ⁶⁰Fe production: ^{59,60}Fe(n, γ)
- supernova model calculations for ⁴⁴Ti and ⁶⁰Fe production

Change of ejecta composition in SN la model when using different sets of electron capture rates

Affected are n-rich isotopes: ⁴⁸Ca, ⁵⁰Ti, ⁵⁴Cr, ^{54,58}Fe, and ⁵⁸Ni

JIIN

Area 5: neutron sources in the s-process

Experimental efforts (Wiescher, Best, Falahat et al.): (α ,n) rates on ²²Ne, ¹⁷O, ¹⁸O, ²⁵Mg, ²⁶Mg (and on α , γ competition)

--> main impact on weak s-process in massive stars

JINA reaclib database

- Reaction rates (no uncertainties)
- Goal: provide best rates available in literature at any given time
- Continuous rapid updates
- Only modest evaluation for quality control (ensure new version is improvement)
- Include published evaluations (including evaluations by reaclib group)

http://groups.nscl.msu.edu/jina/reaclib/db/

- stellar evolution affected by 3-alpha (talk by Sam Austin)
- p-process ? (New program by Artemis Spyrou)
- •r-process <Pd (LEPP, vp-process, s-process) and around A=130
- ⁴⁴Ti and ⁶⁰Fe
- iron group in Sn Ia (⁴⁸Ca, ⁵⁰Ti, ⁵⁴Cr, ^{54,58}Fe, and ⁵⁸Ni))
- s-process: ²²Ne(α ,n) and weak s-process
- vp-process (n-deficient isotopes up to A~100?)
 (Talk by Carla Fröhlich)

The Joint Institute for Nuclear Astrophysics

The r-process at A=80

Z

JINA

Baruah et al. 2008

 > Unique region where main nuclear physics
 for the r-process is now
 experimentally constrained