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Carleen A. Markey1, Benoit Côté2, Brian W. O’Shea2 DISCUSSION
- The life cycles of stars and the evolution and recycling of 

heavy elements (metals)  in galaxies is referred to as 
galactic chemical evolution. 

- Galaxy Assembly with Merger Trees for Modeling 
Abundances (GAMMA) is an existing computational 
model of this process. It orchestrates the generation and 
combination of chemical evolution models of stellar 
populations to reproduce galactic chemical abundances 
based on merger trees provided by cosmological dark 
matter simulations (Côté et al. 2018).

- Newly available chemical abundance observations for 
the Milky Way and its satellites have the potential to give 
insight to the murky chemical evolution history of the 
Milky Way and its satellite galaxies (Abolfathi et al. 
2018, McConnachie et al. 2012).

- We aim to obtain a set of GAMMA input parameters 
that produce the best model fit to this new 
observational data. 

- GAMMA’s computation time is too large to efficiently 
search the model’s parameter space for a set of best-fit 
parameters.

- Gaussian Process regression was used to create model 
emulators for GAMMA, trained on two sparsely 
sampled sets of input parameters across two model 
emulator generations.

- An affine-invariant ensemble sampler for Markov chain 
Monte Carlo was used to explore the parameter space to 
find probabilities for best-fit variable values to the 
observational data (Foreman-Mackey et al. 2013).

H He

Time

D Li

MoreLess Metallicity

H He

D Li

+ Energy

+ Energy

Thanks to Meg Davis for APOGEE data reduction.
We also acknowledge support from the MSU ACRES REU 
program, which is supported by 
the National Science 
Foundation through grant 
OAC1560168.

1Purdue University, 2Michigan State University

Figure (1): A representation of how GAMMA models galactic chemical evolution over 
time. Galaxy image credit: NASA - The Hubble Heritage Team (AURA/STScI/NASA)

- The model emulators cut computation time by 3000x 
(50 hours to 60 seconds for 10000 GAMMA samples)

- The peaks in the probability density function of certain 
model parameters (see Fig. (2) and caption) indicate 
values of that parameter that have a high probability of 
being the best value to shape the stellar mass-metallicity 
distribution to reflect the observations.

- The varying number of Type 1a supernovae per stellar 
mass was not included in the GAMMA calculations, 
which is why a flat probability density function is 
produced. This works as a consistency check to verify 
whether the MCMC simulations were correctly run,  
because it suggests the parameter values have a negligible 
impact on shaping the modelled distribution. 

- The multiple peaks in the probability density function 
of the GIR coefficient show multiple best-fit values for 
the parameter. Further investigation is needed to 
determine if the PDF is truly multi-modal.

Figure (2): Diagonal plots represent the probability density functions of each parameter of GAMMA that is labelled along the x-axis, with 
all other parameters marginalized. All other plots represent two-dimensional projections of parameter space between two independent 

variables, and they display confidence intervals of where the best fit value is located in that section of parameter space.

FUTURE WORK

Probability Densities of GAMMA Parameters

- Additional Markov Chain Monte Carlo simulations 
comparing to other observational values, such as the 
stellar mass versus dark matter mass relationship.

- Integrate the many cosmological dark matter 
simulations from the Caterpillar Project 
(www.caterpillarproject.org) as an additional parameter.
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We have identified the likely 
conditions under which the chemical 
composition of the Milky Way and 

its satellite galaxies evolved.

GAMMA-EM:
Emulating Galactic Chemical Evolution Models to

Explore the Galactic Origins of the Elements
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Figure (3): A plot of the observations  GAMMA’s results 
using set of the best-fit parameters found through the 

probability densities. Host galaxy not shown because it 
was not used in finding best-fit parameters.
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