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The first generation of stars to form in the universe have a profound impact on their

environment. These stars are responsible for beginning the universe’s transition from

a “cosmic dark age” where no sources of visible light existed, to the bright universe

seen today. Additionally, these stars were believed to be the first sources of all elements

heavier than lithium, which strongly affected the ability of gas to cool and permanently

changed how star formation occurred.

In this dissertation I present results from numerical simulations of the formation of the

first generation of stars to form in the universe (“Population III” stars) and their effects

on later structure formation. I compare Enzo, the adaptive mesh refinement cosmology

code used to perform all of the simulations in this work, to GADGET, a smoothed

particle hydrodynamics cosmology code. Nearly identical results can be obtained when

using two extremely different numerical methods, which helps to verify the correctness

of both codes and strengthen the confidence of predictions made with these tools.

I perform high dynamical range calculations of the formation of an ensemble of Pop-

ulation III stars, varying multiple simulation parameters, in a standard cold dark matter

cosmology as well as with a soft ultraviolet background and in a generic warm dark matter
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cosmology. I find that the accretion rates of primordial protostars have been systemat-

ically overestimated by previously published work, which has profound implications for

later structure formation and the reionization of the universe. Additionally, the presence

of a soft ultraviolet background and warm dark matter serves to delay the onset of star

formation. I propose limits on the possible mass of a warm dark matter particle.

I also present results of simulations which demonstrate the effects of the HII regions

and metal enrichment from Population III stars. It appears that HII regions from these

stars may hasten the formation of later generations of stars, and even the weakest su-

pernova can spread material over large distances. Further calculations indicate that even

with the most optimistic assumptions these stars cannot be responsible for the metals

observed at low densities in the Lyman-Alpha forest.
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Chapter 1

Introduction

Cosmology is defined as “The study of the physical universe considered as a totality
of phenomena in time and space.”[5] As one might expect from this lofty definition, the
exploration of the nature of the universe has long been the province of poets, philosophers
and religious thinkers – indeed, for the majority of the history of humanity, the field
of cosmology has been dominated by the attempt to understand mankind’s role in the
universe and his relationship with a god or gods. Most religions have some sort of creation
myth that explain how the earth and the universe came to be and how all forms of life
appeared. Typically these myths describe the universe as being created by a deity of
some sort, who is also responsible for the creation of the earth and of mankind. These
myths often foretell the end of the universe in great (and often gory) detail.

In the past century, physics has come to play a central role in shaping our under-
standing of the universe (though not necessarily our place in it). The development of
the field of “physical cosmology” has been driven almost entirely by the improvement in
technology used in astronomical observations and by Einstein’s theory of general rela-
tivity. The theory of “Big Bang” cosmology (described in Section 1.1) was proposed by
Georges Lemâıtre, building upon Einstein’s ideas, and was later confirmed by Hubble’s
observations of the recession of distant galaxies in 1924 [6] and by the discovery of the
cosmic microwave background (CMB) by Penzias and Wilson in 1964 [7, 8].

Despite these advances, the field of cosmology was starved for data until quite recently.
In the past decade, massive statistical surveys of galaxies and large-scale structure such as
the Two-Degree Field (2dF) survey and the Sloan Digital Sky Survey (SDSS), combined
with high-resolution observations of the cosmic microwave background by the Wilkinson
Microwave Anisotropy Probe (WMAP) satellite and of distant supernovae, have allowed
us to constrain essentially all of the cosmological parameters, such as the amount of
matter in the universe, the rate of expansion, and the existence and rough properties of
a cosmological constant, to within a few percent.

This new epoch of “precision cosmology” has also fostered a renaissance in compu-
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tational structure formation. In the past, numerical simulations of large-scale structure
(such as galaxies and clusters of galaxies) have been primarily used to constrain cos-
mological parameters and to rule out ideas such as the concept of “hot dark matter.”
However, with the rapid advances in observations and the corresponding constraint of
the basic cosmological parameters, numerical simulations of large-scale structure forma-
tion can now be used in a predictive sense, to study the formation of distant and highly
nonlinear objects which are too complicated to approach purely analytically.

My thesis presents the results of high-resolution numerical simulations of structure
formation in the early universe. In order to verify that Enzo, the cosmology simulation
code used for the work presented here, is working correctly, I perform a comparison
between it and the SPH code GADGET. I then predict properties of the first generations
of stars in both the fiducial cold dark matter cosmology and also in a universe with a
generic “warm dark matter” cosmology. I also show how the first generation of stars
in the universe affects following generations of star formation, and present constraints
on how much of an impact these “first stars” can have on the feedback of metals into
the low-density intergalactic medium. In this chapter, I will review the basic principles
of cosmology and cosmological structure formation, and also discuss the current state of
literature on the formation of the first generation of stars and their effects on the universe
via feedback processes.

1.1 Big-Bang cosmology and the FRW universe

The Big Bang theory of cosmology rests on two theoretical pillars: Einstein’s theory of
General Relativity and what is known as the Cosmological Principle. Einstein’s theory
provides a mathematical framework for describing gravity as a distortion of space and
time and is a generalization of Newton’s theory of gravity. The Cosmological Principle
assumes that, on very large scales, the universe is homogeneous and isotropic – there is no
preferred reference frame, and the universe looks the same no matter where an observer
is within it. Additionally, it is generally assumed that the laws of physics are the same
at all places and at all times.

The content of the universe is described by the “standard model” of particle physics.
This model, coupled with the understanding of how the universe expands from general
relativity, provides predictions of the primordial composition of the universe (via Big
Bang Nucleosynthesis, or BBN) and has been observationally confirmed to very high
precision. Observations indicate that the universe is mostly composed of some sort of
vacuum energy (“dark energy”), and a form of matter that only appears to interact with
baryonic matter via gravitational coupling (“dark matter”). These observations indicate
that at the present epoch baryons comprise approximately 4% of the total energy density
of the universe, dark matter comprises approximately 23%, and vacuum energy comprises
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roughly 73% of the total. The total energy density adds up to a “critical density” which
suggests that the universe is geometrically flat (as discussed below).

This combination of theory and observations forms the entire theoretical basis of Big
Bang cosmology, and produces very specific predictions for observable properties of the
universe. These predictions have been heavily tested and appear to be accurate, sug-
gesting that the Big Bang cosmological model is an accurate description of the universe.
Given this model of the universe as a starting point, we can then make predictions about
the nonlinear processes that follow, such as the formation of large-scale structure.

In principle one can use the theory of general relativity to predict the properties of
any kind of universe. However, when one assumes that the universe is isotropic and
homogeneous, the only sort of movement that is allowed is a uniform expansion of the
universe as a whole. Under these assumptions, Einstein’s field equations reduce to the
following pair of independent equations:

(

ȧ

a

)2

− 8πG

3
ρ = −kc

2

a2
+

Λc2

3
(1.1)

ä

a
= − 4πG

3

(

ρ+
3p

c2

)

+
Λc2

3
(1.2)

where a is the cosmological expansion parameter, G is the gravitational constant,
ρ and p are the mass-energy density and pressure of the universe, c is the speed of
light, k is the curvature constant, and Λ is the cosmological constant. Equation 1.1 is
commonly referred to as Friedmann’s equation, and has the general form of an energy
equation. Equation 1.2 has the form of a force equation, and is sometimes referred to as
Friedmann’s acceleration equation.

These equations bear further examination. The first and second terms on the left hand
side of Equation 1.1 look like kinetic and gravitational potential energies, respectively,
and the right hand side is effectively a total energy. Before continuing further, it is useful
to define the “Hubble parameter,” H ≡ ȧ/a, which has the value H0 at the present epoch.
Similarly, we define a “critical density,” which is the matter density at the present epoch
in a universe with k = 0 (a geometrically flat universe), and is defined as ρc ≡ 3H2

0/8πG
(with a cgs value at the present day of 1.8788× 10−29 h2 g cm−3, where h is the Hubble
parameter in units of 100 km/s/megaparsec), and relative densities Ωi ≡ ρi/ρc. At the
present epoch (a = 1 and ȧ = H0) with Λ = 0 and ρ ≡ Ωρc/a

3, we get H2
0 = ΩH2

0 − kc2,
or k = H2

0/c
2(Ω − 1). This provides a clear relationship between the curvature of the

universe and the total mass-energy density of the universe: if k = 0, Ω = 1. Likewise, if
k < 0, Ω < 1 and if k > 0, Ω > 1. Also, it can be shown that for large values of the scale
factor (a→ ∞) Equation 1.1 reduces to:

ȧ2 =
H2

0

c2
(1 − Ω) (1.3)
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In the absence of a cosmological constant, the curvature parameter k determines
whether the universe has a net positive, negative or zero energy. If k = +1 (Ω > 1)
the universe is said to have “positive curvature,” meaning that the universe is effectively
closed – the kinetic energy term is always dominated by the potential energy term.
Practically speaking, this results in a universe that expands, attains some maximum
size, and then contracts again to a point, or a “Big Crunch.” If k = −1 (Ω < 1), the
universe is said to have “negative curvature” and the kinetic energy term on the left
hand side of Equation 1.1 always dominates. This means, effectively, that the universe
will expand forever with some positive kinetic energy. This is referred to as an “open”
universe. If k = 0 the universe is geometrically flat and (from a strict interpretation of
Equations 1.1 and 1.3) its expansion will coast to a halt as a→ ∞.

The addition of a cosmological constant (Λ term) complicates matters somewhat. Ein-
stein originally added this constant to maintain a steady-state universe. However, with
Hubble’s announcement of the observation of an expanding universe, Einstein abandoned
the idea of a cosmological constant, referring to it as “the greatest blunder of my life.”
[9]. However, current observations suggest that roughly 70% of the energy density of the
universe at the present epoch is due to a mysterious “dark energy” that behaves like a
positive cosmological constant, making the cosmological constant an issue once again.

Examination of Equation 1.2 shows that, even in the absence of any other source of
mass-energy (e.g. ρ = p = 0), the existence of a positive cosmological constant indicates
that the expansion of the universe is accelerating – essentially, the vacuum energy is
acting as a repulsive force. Also, if k = 0, Equations 1.1 and 1.2 can be reworked to
show that at the present epoch Ωtot = 1.0, where Ωtot = Ωm + Ωrad + ΩΛ, the sum of
all of the constituents of the mass-energy density of the universe. Here Ωm is the total
matter content of the universe, Ωrad is the total relativistic particle content (including
photons), and ΩΛ is the energy density of the cosmological constant, all in units of
the critical density. At the present epoch the approximate values of Ωrad,Ωm and ΩΛ

are ∼ 10−4, 0.27 and 0.73, respectively (with Ωm = Ωb + Ωdm, where Ωb = 0.04 and
Ωdm = 0.23).

For the purposes of clarity, we can simplify Equation 1.1 to be in terms of the com-
ponents of the mass-energy contents of the universe at the present epoch. The proper
energy density of matter scales with the cosmological constant as a−3 due to pure geomet-
rical dilution. The proper energy density of relativistic particles such as photons scales
as a−4 – a factor of a−3 due to geometric dilution and an additional factor of 1/a due to
the redshifting of a particle’s momentum. The proper energy density of the cosmological
constant is unchanged at all times, by definition. Refactoring Equation 1.1 gives us:

(

ȧ

a

)2

+
kc2

a2
= H2

0

(

Ωrad

a4
+

Ωm

a3
+ ΩΛ

)

(1.4)

The different scaling factors for each of the terms on the right hand side suggest that
each one dominates at different epochs, with radiation dominating first (at very small
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a), then matter, then finally the cosmological constant at late times (the epoch that we
are currently entering into). The universe expands as a(t) ∼ t1/2 during the radiation-
dominated epoch, a(t) ∼ t2/3 during the matter-dominated epoch, and a(t) ∼ et during
the cosmological constant-dominated epoch.

For more detailed discussion of general relativity, big bang nucleosynthesis and related
topics, the following references may be of use: [10, 11, 12, 13, 14].

1.2 Cosmological structure formation

The current paradigm describing the formation of large-scale structure is referred to as
“hierarchical structure formation.” During the epoch of inflation, quantum mechanical
effects manifested themselves as very tiny density perturbations in an otherwise homo-
geneous universe. As the universe expanded these perturbations grew via gravitational
instability and eventually became gravitationally bound halos, which grew by a sequence
of mergers into the galaxies and other large scale structure observed today.

This scenario is demonstrated analytically by the Press-Schechter (PS) formalism
[15, 16, 17]. The PS formalism very accurately describes many properties of the dark
halo population in the ΛCDM cosmology, and has been verified both observationally and
numerically to be accurate on large scales. An example of the use of the PS formalism
to describe the growth of large-scale structure is shown in Figure 1.1. This is a plot of
cumulative dark matter halo mass functions for several redshifts. At very early times
the universe is sparsely populated with gravitationally bound objects. As time goes by
(redshift decreases), dark matter halos grow more numerous and the maximum halo mass
increases via merger of smaller halos. It is intriguing to note that at the current epoch
(z = 0) there are actually fewer low mass halos than at higher redshifts (earlier times).
This supports the idea of hierarchical mergers of dark matter halos.

Though the PS formalism provides a good description of the dark matter halo proper-
ties in a ΛCDM cosmology, it only tells the simplest part of the story, and only in a purely
statistical sense. Also, by definition dark matter is not directly observable. Baryons in
stellar and gaseous form comprise all of the visible matter in the universe, and are much
more complicated to model. It is difficult, if not impossible, to analytically model the
effects that halo mergers would have on the properties of the baryons that are gravita-
tionally bound to the dark matter halos. The range of physics that is involved – radiative
cooling, star formation, the feedback of radiation and metals – combine together with the
unique merger histories of individual halos to produce the galaxies, groups and clusters
that are observed in the universe today.

It is for this reason that three-dimensional numerical simulations of the formation
and evolution of large scale structure are exceedingly useful. Essentially all of the baryon
physics described above can be modeled, either from first principles or through con-
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65 50 35 20 10 3 0

Figure 1.1: Cumulative halo dark matter mass function calculated using the Press-
Schechter formalism for a cosmology with fiducial cosmological parameters (Ωm =
0.3,ΩΛ = 0.7, h = 0.7, σ8 = 0.9, n = 1). Plot is of comoving number density of ha-
los greater than a given mass M vs. mass for several redshifts. The number to the right
of each line indicates the redshift at which the mass function is calculated.
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strained phenomenological models, within a cosmological framework. The entire scope
of cosmological structure formation simulations is vast and continually expanding with
increases in computing power and the creation of new simulation techniques. For a
somewhat dated review, see the 1998 Bertschinger Annual Reviews article [18].

1.3 Formation of the first generation of stars

The first generation of stars (also known as Population III stars or Pop III stars) formed in
a very different, and far simpler, physical environment than present-day stars. According
to BBN, the primordial gas consisted of primarily hydrogen and helium (76.2%/23.8% by
mass, respectively) and trace amounts of deuterium and lithium - an extremely simple
mix of elements with well-understood and easily modeled gas chemistry! [19]. Unlike the
present-day universe, there were no metals or dust grains - two factors which complicate
the solution of the modern-day star formation problem tremendously. The main source
of cooling in the early universe was molecular hydrogen, which is inefficient below 200
K, as opposed to current star formation, where cooling via the heavier elements allows
temperatures in the molecular clouds where star formation takes place to drop to ' 10
K [20, 21].

The universe during the epoch of formation of the first stars was a very dull place. By
definition, there were no other stars – meaning that there were no sources of radiation,
winds or supernovae that could affect star formation in any way. Significantly, this also
means that there were no sources of intense ultraviolet radiation to disrupt the formation
of molecular hydrogen and no cosmic rays to ionize hydrogen. Also, there were no sources
to sustain turbulent motion, as long as the density perturbations remained linear. Only
after the explosion of the first supernovae, and the associated input of mechanical and
thermal energy, was this state of quiescence bound to change [22, 23].

1.3.1 A brief history of research regarding the first stars

The history of research regarding the first generation of stars is long and full of conflicting
results. Peebles & Dicke [24] were among the pioneers in the field. They suggested in 1968
that globular clusters may have originated as gravitationally bound gas clouds before the
galaxies form. Their idea follows from what was then called the primitive-fireball picture
(and is now referred to as the Big Bang theory) and they showed that the first bound
systems to have formed in the expanding universe were gas clouds with mass and shape
similar to the globular star clusters observed around the Milky Way and nearby galaxies.
They also argued that only a small fraction of the total cloud mass would fragment
into stars and they also discussed the influence of molecular hydrogen on cooling and
fragmentation. A year later, Hirasawa [25] performed similar calculations but claimed
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that his results suggested that collapsing hydrogen clouds would result in supermassive
black holes.

Palla, Salpeter & Stahler published an important work in 1983 discussing the role of
molecular hydrogen (H2) in star formation [20]. They discuss (as I will in Section 1.3.2)
the cooling of a collapsing cloud of hydrogen gas via molecular hydrogen (H2) formation
and explore the importance of the three-body reaction for creating H2. They also suggest
that the Jeans mass is higher for stars without metals to cool them but argue that cooling
leads to a rapidly dropping Jeans mass, resulting in fragmentation which would lead
to low-mass stars regardless. In the same year, Silk published a work on Population
III stars showing that large density fluctuations of ∼ 0.1 M� (M� = “solar mass”)
arise in any collapsing cloud with extremely low metallicity (Zcloud ≤ 10−3Z�) [26].
Gravitational instability ensures that many of the clumps coagulate to form protostars
of masses extending up to the Jeans mass at the time when the fluctuations start to
develop, roughly ∼ 100 M�. He argues that the primordial IMF would have spanned
the mass range from ∼0.1-100 M� but could have been dominated by the more massive
stars.

This disagreement in theoretical studies seems quite surprising. However, the first
bound objects in the universe formed via the gravitational collapse of a thermally unstable
reactive medium, which naturally makes conclusive analytical calculations difficult.

1.3.2 The role of molecular hydrogen

Molecular hydrogen (H2) in primordial gas clouds is produced at low densities primarily
by these coupled gas-phase reactions:

H + e− → H− + γ (1.5)

H− +H → H2 + e− (1.6)

This pair of reactions depends on free electrons to act as a catalyst, and even a small
mass fraction of molecular hydrogen (fH2 ∼ 10−3) can contribute significantly to the
cooling of a cloud via the rotational and vibrational transitions of the hydrogen molecule,
allowing primordial gas to cool efficiently below ∼ 104 K, which is the lowest temperature
gas can radiatively cool to due to atomic hydrogen line transitions. Significant amounts of
molecular hydrogen can cool gas down to ' 200 K. Below this temperature it is relatively
ineffective as a coolant, as can be seen from Figure 1.2, which shows the molecular
hydrogen cooling function for gas at three different densities. At all densities, the cooling
rate of a gas of primordial composition decreases sharply below ' 200 K. Metal-enriched
gas can cool to much lower temperatures efficiently, due to the presence of many closely-
spaced line transitions in the various molecules and dust grains that exist.
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At high densities in primordial gas (n ≥ 108 cm−3) the 3-body reaction for the
formation of molecular hydrogen becomes dominant:

H +H +H → H2 +H (1.7)

H +H +H2 → H2 +H2 (1.8)

and is so efficient that virtually all of the atomic hydrogen at that density or above
can be converted to molecular hydrogen before it is dissociated, allowing rapid cooling
and contraction of the gas cloud [20, 21].

The properties of the hydrogen molecule are extremely important in studying the
formation of the first stars. In the absence of metals, the properties of H2 completely
control the size and formation times of the first objects. Therefore, it is extremely
important to include the effects of H2 formation in simulations of the formation of the
first stars.

For an excellent review of the chemistry of the early universe (including all deuterium
and lithium chemistry, which we have ignored here) see the paper by Galli & Palla [27],
and for analysis of the effects of H2 cooling on structure formation, see Tegmark et al. [28].

1.3.3 The role of magnetic fields

It is believed that the magnetic fields that existed at the epoch of first star formation
were dynamically unimportant at large scales (though they may be relevant to angular
momentum transport in primordial protostars). This stands in sharp contrast to the local
universe, where magnetic fields play a critical role in star formation. Observations of the
cosmic microwave background (CMB) provide a strong upper limit of B ≤ 3 x 10−8 G
(as measured at the present epoch) for large-scale (megaparsec) coherent magnetic fields
at the time of recombination [29], with theory suggesting that limits could be obtained
which are as stringent as ∼ 1 nG [30]. This limit is poor enough that it does not
disprove that magnetic fields are dynamically important at the epoch of Population III
star formation – see Section 4.5 for more discussion of this issue. An examination of the
possible (known) sources of magnetic fields in the pre-structure formation era provides
two likely candidates. A discontinuous (i.e., first order) phase transition at the time
of the QCD or electroweak phase transitions could create significant coherent magnetic
fields before recombination. However, the mechanisms involved are highly speculative
and predictions of the possible magnetic field strengths are unreliable [31]. Intriguingly,
the standard picture of cosmology predicts that large-scale magnetic fields were created
at recombination due to Thompson scattering differentially accelerating electrons and
ions. However, the strengths of the resulting fields are on the order of 10−20 G [32]. More
recent work was done by Matarrese et al. [33], who derive the minimum magnetic field
that invariably arises prior to recombination. They show that a weak magnetic field is
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Figure 1.2: Molecular hydrogen cooling rate as a function of temperature for gas at three
different densities. Black line: n = 1 cm−3 (proper). Red line: n = 104 cm−3 (proper).
Blue line: n = 108 cm−3 (proper).
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generated in the radiation dominated era by Harrison’s mechanism [124], which occurs
in regions of non-vanishing vorticity. They show that this vorticity is generated by the
2nd order nonlinear coupling of primordial density fluctuations, resulting in a differential
rotational velocity between ions and electrons that produces a small magnetic field. The
power spectrum of this field is determined entirely by the power spectrum of primordial
density perturbations. The RMS amplitude of this field at recombination is predicted
to be B ' 10−23 (λ/Mpc)−2 G on comoving scales λ ≥ 1 Mpc. The magnetic fields are
suppressed at smaller scales via Silk damping, which is simply diffusion of photons on
sub-horizon scales from high density regions to low density regions prior to recombination.
Electrons are “dragged” with the photons via Compton interactions and then proceed
to carry protons along with them via the Coulomb interaction. This smoothes out the
matter density at small scales, which has the effect of damping out CMB fluctuations (and
thus B-field creation) on those scales. The estimated B-fields, while not strong enough to
be dynamically important in the formation of the first stars, could be amplified via the
dynamo effect during protogalaxy formation to strengths that are significant today [35].

There is no observational evidence against strong magnetic fields at the time of re-
combination (only strong upper limits), but there are also no theoretical arguments
demanding strong fields, so it seems reasonable to assume that magnetic fields are neg-
ligible for the first treatment of the problem. As a side note, I would direct the reader
who is interested in speculations of the origin of the magnetic fields that are of such
great importance in present day star formation to a paper by Kulsrud et al. [36], who
discuss one possible scenario for the creation and amplification of dynamically impor-
tant magnetic fields during the epoch of protogalaxy formation. In addition, Gnedin et
al. [37] discuss the generation of magnetic fields by the Biermann battery mechanism in
cosmological ionization fronts propagating through a dense, irregular medium. Though
their estimates suggest that the magnetic fields generated are small (∼ 10−19 −10−18 G),
this is a lower bound and could be amplified significantly during the following epochs of
structure formation. Similar work by Langer et al. [38] presents a model of magnetic field
generation based on local charge separation provide by an anisotropic, inhomogeneous
radiation pressure. This process would also take place during reionization (z ≥ 7), and
would produce fields on the order of ∼ 10−12 − 10−11 G. They also show that these fields
are generated preferentially on large (> 1 kpc) scales, and strongly suppress coherent B-
fields on smaller scales. Though this is interesting, and a reasonable seed mechanism for
galactic magnetic fields, it occurs at far too late of an epoch to be useful for Population
III stars.

1.3.4 Numerical simulations of Pop III star formation

The most detailed ab initio simulations to date have been done by Abel, Bryan & Nor-
man, henceforth referred to as ABN [39]. They perform a cosmological simulation of
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the collapse of a cosmological density perturbation into a protostellar core utilizing the
adaptive mesh refinement (AMR) technique to obtain very high dynamical range. They
discover that the collapsing halo is initially characterized by a period of rapid cooling
and infall. This corresponds to an increase in H2 mass fraction in the center of the halo
to ∼ 0.1%, which is sufficient to rapidly cool the gas down to ∼ 200 K. Following this,
the central density of the halo increases to 104 cm−3 and, at which point the cooling time
becomes density-independent, so the temperature again increases coupled with a rise in
the cooling rate. This causes an increase in inflow velocities, and by z ' 18.5, the central
100 M� of gas exceeds the Bonnor-Ebert critical mass at that radius, which is indicative
of unstable collapse [40, 41]. Interestingly enough, it is found that the collapsing cloud
does not fragment into multiple cores, which is the result expected by analytical treat-
ment. [26, 20] Instead, they find that a single protostar of ∼ 1 M�, made completely
of molecular hydrogen, forms at the center of the 100 M� core. In addition, the core is
not rotationally supported, meaning that it will collapse on a timescale determined by
the cooling processes of the gas. The final mass of the star remains unclear, since the
simulations lack the necessary physics to compute how much of the available cool mate-
rial surrounding the protostar will accrete or at what point feedback from the protostar
will limit further accretion. At the rate of infall when the simulation stopped, roughly
70 M� of matter would be accreted in the following 104 years, with a maximum of 600
M� in the following 5 x 106 years. Though the maximum value of 600 M� is exceedingly
unlikely (the main-sequence lifetime of a star weighing ∼ 100 M� is much less than 5 x
106 years), this does point towards a top-heavy initial mass function for Population III
stars.

Bromm, Coppi & Larson [42] pursue the same avenue of research with a complemen-
tary method (smoothed particle hydrodynamics) and find somewhat different results.
They initialize their simulations with a top-hat overdensity using similar cosmological
parameters to ABN, and set this initial top-hat configuration into rigid-body rotation
with a given angular velocity in order to simulate tidal interactions with nearby clumps.
They find that their gas clumps evolve similarly to those of ABN, which is unsurpris-
ing as the dynamics of the halo collapse is dominated by the physics of H2 formation
and cooling. However, they find that their halo develops a very lumpy, filamentary sub-
structure with several sub-clumps, each of which which individually evolve in a manner
comparable to the single halo in ABN and end up with a ∼ 100 M� core of cool gas in a
state of semi-free fall in the center of each sub-clump. More detailed information on the
core is unavailable due to lack of simulation resolution. Bromm et al. also suggest that
Population III star formation might have favored very massive stars.

More recently, Gao et al. [43] and Reed et al. [44] have performed a series of dark
matter-only simulations where they use a sequence of nested N-body simulations to follow
the growth of progenitors of the most massive object in a ∼ 500 Mpc/h volume. They use
a sequence of nested re-simulations to “zoom in” on this object to study the environment
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and merger history of the halos in that area. The first object capable of forming stars
is believed to collapse at z ' 47, when the mass of this halo is ' 2.4 × 105 M� h−1.
Halos forming in this environment are significantly overabundant and also undergo rapid
mergers compared to a more “average” part of the universe. This leads to the rapid
growth of halos in this region – the largest reaches a mass of ∼ 5 × 107 M� at z = 29.
These authors suggest that by z = 30 a substantial population of primordial objects
are capable of forming Population III stars, and that by this time small “galaxies” with
Tvir > 104 K (that are able to cool effectively by atomic hydrogen) will also exist. These
authors also note that halo populations, merger rates and correlation scales in their
simulations are well-modeled by the extended Press-Shechter formalism at all times,
which is promising.

It should be noted that, as stated above, the simulations discussed by Gao et al. and
Reed et al. are N-body calculations and do not contain baryonic physics. The results that
predict, e.g., the redshift of first star formation, should be taken to be approximations
only. An important lesson, however, is that the simulations which include baryonic
physics use box sizes that are most likely too small to adequately model the scatter in
star formation times (which will be discussed in later sections of this work). This is a
reasonable and correct issue, and is investigated in this thesis.

The reader desiring a more thorough review of Population III star formation is di-
rected to reviews by Bromm & Larson [45] and Ciardi & Ferrara [46].

1.3.5 The Initial Mass Function of primordial stars

One of the most interesting open questions relating to the issue of primordial stars con-
cerns their initial mass function (IMF). If these stars are very massive, they will be
copious emitters of UV radiation and produce large amounts of metals, as discussed in
Section 1.4. This problem, however, is a very difficult one to solve, owing to the range
of physics involved.

Abel et al. [39] are unable to follow the evolution of the fully molecular protostar that
forms in the center of their halo to the point where it moves onto the main sequence. Their
simulations are terminated due to a lack of appropriate physics – namely, the optically
thin radiative cooling approximation for primordial gas breaks down at ∼ 1014 cm−3.
This can be extended another few orders of magnitude using analytical approximations
to the primordial cooling function [47], but eventually full radiation transport will be
necessary. Regardless, Abel et al. estimate the mass range of the protostar by examining
the spherically-averaged accretion rate onto the 1 M�, fully molecular protostar that had
formed by the end of their simulation. Based on the observed accretion rates, they observe
that at least 30 M� of gas will have accreted onto the central core in a few thousand
years, which is much shorter than expected protostellar evolution times. Approximately
200 M� of gas will accrete in ∼ 105 years, and a total of 600 M� will accrete in 5 × 106

13



years. It is implausible that this mass will be reached, since the lifetime of primordial
stars in the mass range of hundreds of solar masses is only 2 − 3 million years. They
suggest that a more reasonable mass range is 30 − 300 M�, and no attempt is made to
state the possible distribution of masses in this range.

The other 3D simulations that have been performed are by Bromm et al. Their
earlier simulations do not have the mass and spatial resolution to estimate the masses of
these stars – however, they suggest that the first generation of stars may have been with
massive, with m∗ ≥ 100 M� [42]. A later simulation by Bromm & Loeb [48] improves
upon this calculation and follows the evolution of a primordial protostar down to a scale
of ∼ 100 AU. They find a conservative upper limit of m∗ ≤ 500 M� and suggest that the
actual stellar mass is likely to be significantly lower than that due to feedback from the
protostar.

Though useful in many ways, and the final arbiter of the Population III IMF, 3D
calculations of Pop III star formation in a cosmological context are limited by compu-
tational costs and the physics packages currently implemented in them. Fully 3D calcu-
lations of accretion onto the primordial protostar, including all relevant physics such as
multifrequency radiation transport, accurate models of the primordial protostar, magne-
tohydrodynamics, and a full nonequilibrium chemical reaction network are in principle
technically feasible, but the computational cost for doing such a calculation is prohibitive
at best. One could wait for computational resources to increase to the point where this
sort of calculation is reasonable, but more impatient (and practical) researchers have
resorted to analytical and one and two-dimensional numerical models.

Tan & McKee and Tan & Blackman [49, 50] have created theoretical models of the
evolution of the Population III protostar as it moves onto the main sequence. They
combine a range of assumptions about the strength of magnetic fields generated in the
protostellar disk (as well as their efficiency in transporting angular momentum) with
estimates of the disk structure, gas infall rates and protostellar evolution models to gain
some understanding of the radiative feedback from the protostar and its role in shutting
off accretion. Based on accretion rates from Abel et al. [39] and from their calculations
showing feedback is dynamically unimportant for protostars with masses < 30 M�, they
conclude that the masses of these primordial stars should be at least 30 M�.

Omukai & Nishi [51] performed calculations modeling the hydrodynamical evolution
of primordial, spherically symmetric clouds taking into account chemistry as well as
continuum and molecular hydrogen line radiative transfer. They find (similarly to Abel et
al.) that a ∼ 1 M�, fully molecular protostar forms in the inner region of their calculation.
However, they see that as accretion continues and central densities climb, the molecular
hydrogen in the core dissociates and a hydrostatic core with mass Mcore ∼ 5 × 10−3 M�

forms at the center of the cloud, with gas accreting onto it at ∼ 10−2 M�/year. The
accretion rate declines with time. They make no estimate of the final range of stellar
masses. Later work by Omukai and various collaborators [52, 53, 54] predict upper mass
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limits for massive primordial stars that range from 300 − 1000 M�. All of these works
assume spherical symmetry and high, time-dependent accretion rates (∼ 10−2 M�/year
initially, decreasing as a function of time), with the upper limit depending strongly
on assumptions regarding the evolution of the protostar, the strength and efficiency of
radiation from the star in halting accretion, and the accretion rates onto the stars.

The results of Omukai et al. are in sharp contrast to the calculations of Nakamura
& Umemura [55, 56, 57]. They perform one and two-dimensional hydrodynamic sim-
ulations coupled with nonequilibrium primordial chemistry and follow the evolution of
the clouds from a central density of ∼ 102 cm−3 up to ∼ 1013 cm−3. They observe
that the star-forming clouds tend to fragment out of filaments, and therefore choose to
simulate these objects using cylindrical symmetry. In their earlier work [55] they per-
form one-dimensional cylindrically symmetric hydrodynamic calculations that neglect all
deuterium-related chemistry and cooling and observe that the typical mass of their cen-
tral object is ∼ 3 M� (though they state that it could grow to be approximately five times
that mass via accretion) over a wide range of input assumptions about cloud temperature
and other properties. Later calculations [56] were performed in both 1D and 2D, again
assuming axial symmetry, and improve upon the previous result. These calculations show
that the initial density of the filaments in their problem setup strongly affects the scale
at which fragmentation occurs, and they posit that the IMF of Population III stars is
likely to be bimodal, with peaks at ∼ 1 and ∼ 100 M�, with the relative numbers of
stars in each peak possibly being a function of the collapse epoch. They also perform
1D calculations including deuterium chemistry [57] and show that due to the enhanced
cooling from the HD molecule there is still a bimodal distribution with a low-mass peak
of ∼ 1−2 M�, though the high mass peak can now be somewhere between 10−100 M�,
depending on the initial filament density and H2 abundance.

This section has shown that there is both agreement and disagreement between differ-
ent groups’ results. All of the research discussed here indicates that the IMF of Population
III stars is wildly different than the IMF of stars in our galaxy at the present day, with
the mean stellar mass being significantly higher in primordial stars than at the present
epoch. The disagreement lies in both the shape of the Population III IMF and in the
mean mass of the primordial stars.

What is the root of this discrepancy? The simulations performed by Abel et al. [39]
(and myself, as discussed later in this thesis) show that the accretion onto the proto-
star is not inherently one-dimensional – we typically see the formation of a generally
spherical core forming in the center of the halo, though there is evidence for angular
momentum-transporting turbulence within this core. Also, the cosmological structures
that these halos form out of are inherently aspherical. This suggests that 1D models are
missing crucial physics. Additionally, it seems apparently that modeling the interplay
between radiation from the growing protostar and the accreting gas is going to be very
important, and this must be done carefully. It also appears that complete modeling of
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the primordial gas (including deuterium, lithium and the various molecules they form
between themselves and with hydrogen) may be important in 2D and 3D simulations. It
may be that magnetic fields also play a significant role in angular momentum transport
at scales corresponding to the size of the forming protostar, so they must be included
in simulations and analytical models. Though expensive, these calculations are possible
in 2D, and will be feasible in 3D in a few years, assuming that the power and availabil-
ity of computing resources continues to grow at similar rates to today. At that point,
accurately predicting the IMF of primordial stars may be a tractable problem.

1.4 Feedback from the first generation of stars

The formation of the first stars marks the transformation of the universe from its almost
completely smooth initial state to its clumpy, complicated current state. As the first lu-
minous objects to form in the universe, Population III stars play an extremely important
role by fundamentally changing the environment that later cosmological structures form
in, through radiative, mechanical, and chemical feedback. The literature discussing the
feedback properties of Population III stars is vast and rapidly evolving. This section will
provide only a brief overview of these properties, and the interested reader is encouraged
to refer to the 2001 review article by Barkana & Loeb [58] or the much more recent review
by Ciardi & Ferrara [46].

1.4.1 Physical properties of Population III stars

As discussed in Section 1.3, recent analytical work and numerical simulations using a
range of initial conditions and assumptions about relevant physics suggest that Popula-
tion III stars may have an exceedingly top-heavy IMF compared to stars in our galaxy.
Massive primordial stars are believed to have several interesting properties that distin-
guish them from stars with a significant fraction of metals: these stars are extremely
compact and, as a result, have very high effective temperatures (approximately 105 K).
As a result, Population III stars have rather hard spectra and produce large numbers
of both hydrogen and helium-ionizing photons. Additionally, due to the lack of metals
in these objects, they are expected to have little mass loss near the end of their main-
sequence lifetime due to line-driven winds. See Schaerer [59] and references therein for a
more complete review.

The final fate of these stars is also quite remarkable. Recent one-dimensional, nonro-
tating simulations of the evolution of massive primordial stars suggest that at the end of
their lives, the more massive of these stars (M∗ ≥ 30M�) which typically collapse directly
into a black hole (M∗ ∼ 30 − 100, M∗ > 260M�) or explode in a massive pair instability
supernova (PISN; M∗ ∼ 140−260 M�), which would completely destroy the star, leaving
no compact remnant behind. These supernovae can be almost two orders of magnitude
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more energetic than a standard Type II supernovae and also leave behind a very distinct
nucleosynthetic signature [60]. A middle range of extremely massive stars is believed to
have an energetic pulsational instability that causes the ejection of much of its envelope
before collapsing into a black hole. The low-mass end of the Population III stellar IMF
would see behavior more comparable to that seen by dying stars in the local universe –
collapse to a white dwarf preceded by asymptotic giant branch-type activity or a Type
II supernova resulting in a neutron star or black hole compact remnant. See Heger et
al. [61] and Figure 1.3 for more information on the the fates of Population III stars over
a large mass range. The black hole remnants of extremely massive Population III stars
have been suggested as seeds for the super massive black holes (SMBHs) that have been
observed in the centers of essentially all large galaxies [62, 63].

1.4.2 Radiative feedback

As mentioned in Section 1.4.1, recent numerical work indicates that Population III stars
are copious emitters of ultraviolet radiation. In addition, it has been noted that the
black hole remnants from these stars may produce large amounts of x-rays. What are
the possible effects of the radiative feedback from these stars and their remnants?

Observations of the polarization of the cosmic microwave background by the Wilkin-
son Microwave Anisotropy Probe (WMAP) satellite have detected excess power on large
angular scales compared to predictions based solely on the temperature power spectrum.
This result is consistent with a period of partial reionization of the intergalactic medium
taking place at redshifts of 11 < z < 30 [64]. Observations of high-redshift quasars have
shown that the universe was fully ionized at z=5.8 [65]. Recent calculations suggest that
complete reionization occurred some time between z = 7 and z = 12 [66, 67, 68], though
the exact epoch of reionization in these simulations is sensitive to a number of highly
uncertain parameters, such as the formation efficiency of stars and quasars and the es-
cape fraction of ionizing photons produced by these sources. Also, it is apparent that the
topology of reionization is very complex - the epoch of reionization starts as “patches”
of ionized material around the first stellar objects and spreads as structure evolves and
more UV-emitting massive stars form [68]. In addition, the regions of highest gas density
(which harbor the stars producing ionizing radiation) also contain significant amounts
of neutral gas. Though the first stars to form are prodigious UV emitters, they are rel-
atively few in number and quite short-lived. This makes the most likely scenario one
where Population III stars are responsible for a partial reionization of the universe, and
the structures that form from material polluted by these stars, namely, the first galaxies
and pre-galactic objects (PGOs), is responsible for the final reionization of the universe,
an idea that was first put forth by Cen [69] and supported by Hui & Haiman, who show
that an early epoch of reionization would have to be followed by some cooling and re-
combination, or else the IGM would have a significantly different temperature than is
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Figure 1.3: Stellar endpoints for zero metallicity stars, as a function of mass. This images
were calculated using the 1D stellar evolution code KEPLER, and were done assuming
a nonrotating model. Results may quantitatively change when rotation, convection and
other physical effects are added. Figure courtesy of Alex Heger (Theoretical Astrophysics
(T-6), Los Alamos National Laboratory).
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observed today [70].

The primary cooling agent in the formation of massive primordial stars is molecular
hydrogen. This molecule is quite fragile – its formation is dependent on the availability of
H−, the formation of which in turn depends on the availability of free electrons, and it can
be easily destroyed by radiation in the Lyman-Werner band, which ranges from 11.18 to
13.6 eV (corresponding to the soft UV band). Since this is below the ionization threshold
of atomic hydrogen, photons in this energy band can propagate great distances in the
IGM. Also, since Population III stars appear to be prolific emitters of UV radiation, they
will build up a background of this soft UV light, which may cause the overall dissociation
of molecular hydrogen, halting the epoch of Population III star formation until more
massive halos, whose virial temperatures are high enough that the gas can cool effectively
by atomic hydrogen (e.g. Tvir > 104 K) have time to form [72, 73]. At this point, the
clouds can continue to collapse and eventually produce primordial stars [74], which may
have a different mass spectrum than Population III stars that form in minihalos with
masses of ∼ 106 M� [75]. Simulations have shown at this soft UV radiation is quite
effective in suppressing the formation of Population III stars in halos with masses of
∼ 105 − 106 M� [71].

The HII regions produced by massive primordial stars may also have a significant
effect on star formation. Whalen et al. [76] show that the I-fronts from massive primordial
stars can propagate several proper kpc in the high-redshift intergalactic medium, ionizing
large volumes of space. These stars will also heat the gas in their parent halo, typically
resulting in the majority of the baryons in a 106 M� halo to be driven out of the halo
at speeds of up to ten times the escape velocity of that halo. Oh & Haiman [77] suggest
that these HII regions will suppress the formation of any further stars in that region.
However, work presented in this thesis shows that the high electron fraction produced
as a result of ionization actually promotes the formation of molecular hydrogen, and in
halos with a density above some critical density this can actually result in a positive
feedback process where stars would form in halos that otherwise would not experience
star formation. It has also been demonstrated that HD (deuterium hydride) can be a
significant source of cooling in star-forming sites in fossil HII regions, allowing the gas
temperature to drop even lower than via cooling due to molecular hydrogen alone would
allow (below 100 K) and possibly resulting in low mass Population III stars [78].

Accretion onto the black holes formed by the collapse of Population III stars may be a
source of significant x-ray radiation in the early universe. It has been suggested that this
radiation is at least partially responsible for the WMAP polarization result [79, 80, 81].
Additionally, the soft x-ray background will produce a significant free electron fraction,
that may result in a positive feedback effect on the formation of Population III stars by
spurring the creation of molecular hydrogen [82]. This is not a certainty – depending
on assumptions about the associated soft UV background and the hardness of the x-ray
spectrum from the Population III black holes, the feedback effects may only be a weak
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positive effect, or even negative [83, 77].

1.4.3 Chemical feedback

Observations of quasar absorption spectra show that the universe at the present day
is uniformly polluted with metals, even at the lowest observed column densities, which
correspond to regions of very low overdensity commonly referred to as the Lyman-α
forest [84, 85]. The primordial composition of the universe is well understood, and post-
BBN nucleosynthesis is believed to take place only in stars and the cataclysmic events
associated with them. Because of this, it is apparent that this period of enrichment must
have taken place between the epoch of first star formation and the present day.

As with reionization, it is unclear which objects are responsible for the majority of
metals in the low-overdensity universe: The most massive galaxies in the early universe,
often referred to as Lyman Break Galaxies (LBGs), are sites of vigorous star formation
and metal production and characterized by strong, metal-rich galactic outflows and high
luminosities [86]. However, being massive, they have deep potential wells which might
serve to trap the ejected materials. Also, since these objects are the most massive bound
objects in the early universe, the theory of hierarchical structure formation tells us (and
observations support the assertion) that these galaxies are few and far between, so metals
produced by them would have to be transported cosmologically significant distances in
order to be as homogeneously distributed (as indicated by observations). The other
possible candidate for homogeneous metal enrichment in a ΛCDM scenario would be
pre-galactic objects and the first dwarf galaxies. While they are much smaller than
LBGs, with correspondingly smaller star formation rates, they have shallower potential
wells which would allow outflowing material to escape much more easily [87]. In addition,
these smaller objects begin to form much earlier and there are many more of them than
LBGs, so metal outflowing as winds from these galaxies or released via ram pressure
stripping during the frequent galaxy mergers demanded by the hierarchical structure
formation scenario would have more time to be distributed and also be required to travel a
much more reasonable distance from their point of origin to obtain the observed relatively
homogeneous distribution of metals [88].

The metals produced by Population III supernovae would have a very important
effect on the following generations of stars. They enhanced the cooling properties of
the gas significantly – molecular hydrogen is a relatively poor coolant compared to dust
grains, which are believed to be produced in significant quantities by both primordial
Type II supernovae and pair-instability supernovae, with the fractional quantity of dust
increasing as the stellar mass increases [89, 90, 91]. Very little metal is required for gas
to cool efficiently – analytical work and simulations suggest that the presence of carbon
and oxygen at levels 10−4 − 10−3 Z� would be sufficient for enhanced fragmentation
of collapsing gas clouds, signifying a change from the top-heavy Population III IMF to
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a mass function resembling that observed in the galaxy today [93, 94]. As with their
HII regions, the metals ejected from Population III supernovae, particularly if the stars
fall into the mass range that produces highly energetic pair-instability supernovae, can
propagate to great distances – simulations indicate that the ejecta from a massive PISN
can eject metal into a sphere of ∼ 1 kpc diameter at z ∼ 20, producing a metallicity floor
above that needed for enhanced cooling to take place [95].

It is doubtful that individual Population III stars can be observed directly during
their main sequence lifetime, even by the James Webb Space Telescope (JWST), which
is scheduled to be launched in 2011. However, it has been suggested that extremely mas-
sive Population III stars may be the progenitors of gamma ray bursts, and as such may be
observable to very high redshifts [96]. The predicted rates of Population III supernovae
suggest that their gamma ray bursts may be observable by the SWIFT satellite at the
rate of approximately one per year, and that Population III supernovae may be observ-
able by JWST at the rate of 4 deg−2 year−1 at z ∼ 15, with a high level of uncertainty
in these calculations [97, 98]. The nucleosynthetic yields of these stars may have already
been detected in observations of the abundance ratios of two extremely metal poor stars,
which have Fe/H ratios of ∼ 10−5.5 [99, 100]. Both of these stars show extreme overabun-
dances of carbon and nitrogen with respect to iron, which suggests a similar origin of the
abundance patterns. However, these abundance patterns do not agree with theoretical
predictions for yields of Population III supernovae, so their origin is uncertain, though
it has been suggested that these results can be naturally explained as the concurrent
pollution of at least two supernovae of relatively low mass [101]. Finally, the coalescence
of black hole remnants of Population III stars may be directly detected by gravitational
interferometers such as Advanced LIGO [102], and indirectly by their contribution to the
near-infrared background excess [103, 104].

1.5 Flaws in the ΛCDM paradigm

It is acknowledged that there appear to be flaws in the ΛCDM scenario. Observations
of gravitational lensing by galaxy clusters indicate that the dark matter profile in the
center of these clusters forms a smooth core, while theory and simulations using the
ΛCDM model suggest that there should be a dark matter ‘cusp’ [105]. This cusp is also
predicted to be seen in galaxies, but has not been observed [106, 107]. In addition, the
CDM model predicts the formation of a large number of dwarf galaxies, and also suggests
that these tiny galaxies will form in the cosmic voids - a prediction that has not been
verified observationally [108, 109]. In addition, there have been observations of significant
numbers of dwarf galaxies forming after the larger Lyman break galaxies, which is not
what one would expect in a hierarchical clustering scenario [110].

This is not to say, however, that the CDM model is fatally flawed. The model has
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done an excellent job of predicting the formation and evolution of large scale structure
[111], as shown in recent years by extensive surveys of the local universe (such as the 2dF
and SDSS surveys). The flaws in the dark matter models are on the sub-galactic scale
[106, 112] – too small to affect the formation and evolution of large-scale structure, but
certainly significant for the evolution of the first structures in the universe. Also, some
work has been done recently which shows that the dark matter cusp issue in galaxies can
be resolved [113]. A complete abandonment of the CDM paradigm seems premature.

There are several proposed solutions to the problems with the ΛCDM model, which
include decaying dark matter [114], warm dark matter [115], collisional dark matter [116],
annihilating dark matter [117] and fuzzy dark matter [118]. The essential feature of the
majority of these models is that they suppress the formation of low-mass cosmological
halos and can significantly alter predictions for early structure formation. The impact
of the suppression of small-scale power by a generic warm dark matter model on cosmic
structure formation in the early universe is explored in Chapter 5.
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Chapter 2

Simulation Methodology

2.1 The generation of cosmological initial conditions

Creating a set of initial conditions for simulations of cosmological structure formation
is, on the surface, a very straightforward task. One specifies a background cosmologi-
cal model, typically described as a spatially flat or open Robertson-Walker spacetime.
Following that, perturbations are imposed upon this background assuming a triply peri-
odic, finite simulation volume. In reality, numerous approximations must be made which
should be carefully considered, and are discussed in some detail below.

The specification of background cosmology requires several inputs: The amount and
nature of dark matter, the Hubble parameter H0, and possibly the amount of baryonic
matter and cosmological constant in the universe. Most of these quantities are typically
specified in terms of the standard cosmological parameters: Ωm, Ωdm and Ωb, which
correspond to the total overall mass density, dark matter density and baryon density at
the present epoch as a fraction of the critical density, ρc ≡ 3H2

0/8πG. The cosmological
constant is specified as ΩΛ, which is the vacuum energy density at the current epoch
as a fraction of the critical energy density, which is simply ρcc

2. The perturbations
of dark matter and baryons are specified as a power spectrum which has one or more
parameters. At the very least, a power spectrum has an index n which specifies the shape
of the primordial power spectrum.

At the epoch of baryon-photon decoupling (z ∼ 1100), small-amplitude (“linear”)
fluctuations in density are already present in all of the components that contribute to
the energy density of the universe (such as baryons, dark matter, photons, and neutrinos).
The statistical nature of these fluctuations depends on their origin. There are two general
classes of early universe models that are considered to provide reasonable mechanisms for
perturbations: topological defects [119] and inflation [120]. Inflation predicts fluctuations
that obey Gaussian statistics and defect models predict non-Gaussian fluctuations.

Gaussian fluctuations are simple since they are specified completely by a single func-
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tion, the power spectrum P(k). In Gaussian models the perturbations are set down
almost immediately after the Big Bang (during the inflationary epoch in the canonical
model of inflationary cosmology, roughly 10−35 seconds after the Big Bang) and evolve
according to the linearized Fokker-Planck equation. In real space, the probability dis-
tribution of density fluctuations is a multidimensional Gaussian, and it is very easy to
sample a Gaussian random field by sampling its Fourier components on a Cartesian lat-
tice, which is the technique that will be discussed here. For more information on other
methods, see Bertschinger’s review on simulations of cosmological structure formation
[121].

Non-Gaussian models are much more complicated to model. Not only do they require
more initial information than a simple power spectrum, they also are more costly in a
computational sense. Typically, topological defects induce matter density fluctuations
from the time of their creation in the early universe to the present day, and the dynamics
of their formation and evolution are relativistic and nonlinear. For more information
on creating initial conditions of topological defects, see Bertschinger [121] or Durrer et.
al. [119].

A simple test of the Gaussianity of the primordial density perturbations can be made
by examining the power spectrum of the cosmic microwave background. The power
spectrum of temperature fluctuations in the CMB was imposed at a very early time
(z ∼ 1100, approximately 300,000 years after the Big Bang) when all perturbations were
linear (and are at most δρ/ρ̄ ∼ 10−5, where ρ̄ is the mean density and δρ ≡ |ρ − ρ̄|),
significantly before the epoch of cosmological structure formation (which is when density
perturbations become nonlinear and gravitationally self-bound). Recent observations
of the CMB using the Wilkinson Microwave Anisotropy Probe (WMAP) satellite have
examined the CMB for signs of non-Gaussianity and have presented upper limits on the
amplitude of non-Gaussian primordial fluctuations using two separate tests [122]. These
observations show to a high level of confidence that the WMAP data is consistent with
Gaussian primordial fluctuations.

Due to the preponderance of evidence in favor of a Gaussian perturbation spectrum,
all simulations described in this thesis will assume this spectrum. Non-Gaussian initial
conditions (i.e. topological defect models) will most likely produce significantly different
results for structure formation on the scales of interest.

2.1.1 Creating Gaussian random fields

The creation of cosmological initial conditions using a Gaussian random field is relatively
straightforward. Given a power spectrum P(k), the linear density fluctuation field is
calculated at some initial time when density perturbations are highly linear (δρ/ρ̄� 1; a
typical choice of starting redshift is z ∼ 100 for high-resolution cosmological simulations).
From this, dark matter particle positions and velocities are determined, along with baryon
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velocity fields, as described below.

The Linear Density Fluctuation Field

The first step towards creating a Gaussian density field is to specify a power spectrum,
which is a function that relates amplitudes of density perturbations with wavelength λ
to their wavenumber k, where k ≡ 2π/λ. The power spectrum of the fractional density
fluctuations at the redshift z = zeq when the energy density in matter is equal to that in
radiation, can be related to the primordial power spectrum by P (k, zeq) ∼ T 2(k)Pp(k),
where T(k) is the matter transfer function as a function of wave number and describes
the processing of the initial density perturbations during the radiation dominated era
(see Padmanabhan [123]) and Pp(k) is the primordial matter power spectrum, which
typically has a power law form, i.e., Pp(k) ∼ kn, where n is the index of the primordial
power spectrum. This index is equal to unity for Harrison-Zel‘Dovich scale-invariant
spectra, a typical model [124, 125]. The power spectrum at any redshift z in the matter
dominated era may then be written in the form

k3

2π2
P (k, z) =

(

ck

H0

)3+n

δ2
HT

2(k)D2
g(z)/D

2
g(0), (2.1)

where the Dg’s are the linear grown factor for perturbations, which is defined in Pee-
bles [126] and many other places. A closed-form fitting function (much more appropriate
for computation) is given in Eisenstein & Hu [194]. δH is a constant describing the am-
plitude of density fluctuation, which can be provided from observations of the CMB or
from large scale structure, or can be normalized by comparing to, e.g., σ8, which is the
RMS amplitude of the mass fluctuations in the universe when smoothed using a top-hat
function with characteristic radius of 8 h−1 Mpc.

Once P(k) has been determined, we then proceed to calculate δk, namely, the density
fluctuations in k-space. To simplify matters, we choose a cubic three-dimensional Carte-
sian grid with N grid points per dimension, though in principle this set of operations
can be calculated for any rectangular solid lattice with some small additional compli-
cations. Each of the grid points has a unique identifier (nx,ny,nz) associated with its
location along the (x,y,z) axis. We sample the power spectrum P(k) discretely at each
grid location (nx,ny,nz), obtaining k in this manner:

k2 = (n2
x + n2

y + n2
z)dk

2 (2.2)

with dk = 2π/Lbox, and Lbox is the size of the simulation box in h−1 Mpc. It is
important to note that the method of sampling P(k) at discrete points, while convenient
when doing simulations on a Cartesian grid, assumes that P(k) is a smoothly and slowly
varying function of k on the physical scales relevant to the simulation (namely, on scales
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encompassing the simulation volume and the size of the grid lattice). If this is not true,
large errors will be introduced unless P(k) is sampled in a different way. We also assume
that the simulation volume is a finite size and assume periodicity - i.e., an object that
travels out of one side of the box re-enters it on the other side. This assumption implicitly
states that the simulation volume is an “average” patch of the universe.

The k-space fluctuation δk is a complex value with random phase and amplitude,
where the distribution of amplitudes fit a Gaussian distribution with a mean of P(k).
One method to calculate it is to generate a phase angle θ, which is randomly selected in
a uniform manner in the interval [0, 2π], and an amplitude A such that

A =
√

−log(R) ∗ P (k) (2.3)

where R is randomly selected in a uniform manner in the interval (0,1). δk is then

δk = Aeiθ (2.4)

We then perform a Fourier transform on the grid of δk values, giving δx, the relative
density fluctuation at each spatial grid point in the simulation volume. The actual
physical (meaning, in position space rather than k-space) dark matter density is then

ρDM(x) = (1 + δx(x))ρDM (2.5)

where ρDM is the mean dark matter density in the simulation. The perturbations in
the dark matter and baryon densities are assumed to be coupled, which is a reasonable
assumption in the linear regime, so the baryon density at any position is

ρb(x) =
Ωb

ΩDM

ρDM(x) (2.6)

where Ωb and ΩDM are the ratios of the present-day mean baryon and dark matter
densities to the critical density of the universe, i.e., Ωb = ρb/ρc. The assumption of
complete baryon-dark matter coupling, though reasonable, is not strictly true at the
redshifts at which cosmological simulations are typically initialized due to the dissipative
nature of the baryons. Therefore, it is more accurate to use separate transfer functions
for the dark matter and baryon components, though in practice this only makes a small
difference for a certain class of simulations. For this reason we typically ignore it when
generating our initial conditions.
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Position and Velocity Fields

In cosmological simulations, dark matter is usually represented by discrete particles rather
than a uniform grid of densities. In that case, these particles must be perturbed so as to
reflect the density fluctuations described in Section 2.1.1. The standard approach for the
dark matter is to displace equal-mass particles from a uniform Cartesian lattice using
the Zel‘Dovich approximation [127]:

x = q +D(a)ψ(q) (2.7)

and

v = a
dD

dt
ψ = aHfDψ, (2.8)

where q labels the unperturbed lattice position, D(a) is the growth factor of the
linear growing mode, H is the Hubble parameter, a is the cosmological scale factor,
and f = dlnD/dlna is its logarithmic growth rate [126]. The irrotational (curl-free)
displacement field ψ is computed by solving the linearized continuity equation,

5 · ψ = − δx
D(t)

, (2.9)

Since the equation is linearized, ψ can be found by taking the Fourier transform of
−iδkk̂/kD(k). This approximation is then also used to calculate the baryon velocities
(using the baryon perturbation field if a different transfer function is used, or a scaling
factor for δx and δk otherwise).

2.1.2 Creating initial conditions for high dynamical range sim-

ulations

Compromises must be made when one is performing cosmological simulations of large-
scale structure formation. In order to get a statistically accurate representation of large
scale structure, one must use as large of a spatial volume as possible. The dark matter
particle mass and ultimate spatial resolution of the simulation must be chosen based on
the structures of interest, so that any given object (e.g. galaxy, galaxy cluster, etc.) is
resolved by a large number of dark matter particles and by many grid cells. Unfortu-
nately, given finite computational resources (in terms of both memory and processing
power) these two criteria are often in direct competition. For example, in the simulations
discussed later in this thesis, it is important to choose a box that is of large enough size
to contain at least one 5× 105M� dark matter halo, which gives us a minimum box size
that is approximately 0.3 h−1 Mpc on a side. We also need to resolve the region around
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this halo with dark matter particles that are small compared to the halo mass and the
final protostar, typically on the order of a few solar masses for a calculation of this type.
Given that Mdm = Ωcdmρc(Lbox/Ngrid)

3M�/h (where Lbox is the box size in Mpc/h and
Ngrid is the number of grid cells along one edge of the box), this results in a volume with
approximately 10243 grid cells and dark matter particles. This is computationally waste-
ful, since we only need to resolve a few percent of the box with high spatial and mass
resolution. It is important to resolve tidal forces from other structure in the simulation
volume, but for this particular application they do not have to be resolved with either
the spatial or the mass resolution of our object of interest.

The solution to this is to use “nested” initial conditions, which are created by nesting
subvolumes of higher spatial and mass resolution within a low-resolution parent grid.
The low-resolution parent grid provides necessary tidal forces and a cosmological volume
which provides reasonable statistics, and the nested subgrid, which is typically only a
small fraction of the overall volume, provides higher mass and spatial resolution in the
area of interest. This can be done recursively and can significantly save computational
resources, particularly when the grids are further refined with adaptive mesh only in the
most highly refined subvolume. See Figure 2.1 for an example.

An example of the overall cost savings can be shown very simply. Let us assume that
the situation is as described for the simulation discussed above, where the overall ratio
of box size to spatial resolution needed in the region of interest is ∼ 103. Furthermore,
we will assume that each subgrid has twice the spatial resolution as the one above it,
suggesting that a grid at level L has to take twice as many timesteps as its parent grid in
order to advance the same physical time. This assumption about time steps is reasonable
for simulations using an explicit hydrodynamics algorithm, where ∆t = κ∆x/cs, where
∆x is the grid size, cs is the local sounds speed, and κ is a “Courant parameter” which
has a value 0 < κ ≤ 1 and a typical value of κ ' 0.3 − 0.5. For the sake of comparison,
we will compare the amount of time that it takes a simulation generated with a single,
10243 cell and particle initial condition to advance a fixed amount of time compared to
a simulation with a 1283 “root grid” and three 1283 grids that are nested inside of each
other, where the “root grid” resolves the same volume as the monolithic 10243 grid, and
the most highly refined grid in the nested grid gives an equivalent resolution of 10243

(i.e. the same as the large monolithic grid). This nested calculation is similar to those
discussed later in this thesis.

Since the simulation with 10243 grid cells has 8 times better spatial resolution than
the root grid of the nested calculation, it will take 8 timesteps of the monolithic grid
calculation to equal a single timestep on the root grid of the nested calculation (ap-
proximately). This means that the monolithic calculation will need to calculate Nmon =
8× 10243 ' 8× 109 individual cell-steps (which is a reasonable, though crude, proxy for
computational cost). In order to evolve the nested grid simulation the same amount of
physical time, it needs to take one timestep on its root grid, two on the first subgrid,
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Figure 2.1: Example of a set of nested-grid initial conditions. The image is of a slice
through the initial conditions that is one grid cell thick on the finest level (1/1024 of
the thickness of the entire box), and shows log baryon density. The overall fluctuations
are at the 20% level throughout the volume. The root grid (“level 0”) is 1283 grid cells,
and each successive nested grid is shown by a black square. The Level 3 grid (central
square) is the highest level of resolution and has the same resolution as a calculation
with identical spatial extent to the entire simulation volume but 10243 grid cells. In
calculations such as these adaptive mesh refinement is only allowed to take place within
the highest level of nested-grid resolution, which in this case corresponds to only 1/64 of
the overall volume.
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four on the second subgrid, and 8 timesteps on the most highly refined subgrid. This
comes out to a total of Nnest = 1283 + 2 × 1283 + 4 × 1283 + 8 × 1283 ' 3.15 × 107 cell-
steps. The relative nested grid calculation takes Nnest/Nmon = 0.0037 as many cell-steps
as the monolithic simulation, which is over a factor of 200 in computational costs! The
reduction in memory needed is also substantial: The nested grid calculation has a total
of 4×1283 ' 8×106 cells, whereas the monolithic grid calculation has 10243 ' 109 cells.
This is a savings of approximately 100 in memory.

The cost savings of these simulations is obvious. Fortunately, it is extremely easy
to create nested initial conditions. One simply recursively generates initial conditions
as described above covering the same physical volume, but at higher and higher spatial
resolutions. The coarsest set has the desired spatial resolution of the “root grid,” and
each additional set of initial conditions is twice as highly resolved in space (resulting in
dark matter particles that are 1/8 the mass of the particles in the next coarser set of
initial conditions), and the subvolume of interest is extracted and put into a separate file.
This method of generating initial conditions results in each grid having the appropriate
perturbation spectra, and a much smaller overall simulation size in terms of computation
and memory use.

The technique of “nesting” boxes of successively higher spatial and mass refinement
described here is only limited by the available memory in which the necessary FFTs
are performed. This limitation can be avoided by using an out-of-core initial conditions
generation technique [128], or a more sophisticated method which does not require large,
global FFTs to be performed [129]. These methods are costly in other ways, primarily in
CPU time, but are necessary to be able to do calculations whose initial conditions have
even higher dynamical range.

2.1.3 Numerical limitations of cosmological initial conditions

The standard methods and assumptions pertaining to simulations of early structure for-
mation and the generation of cosmological initial conditions result in limitations which
the careful simulator (or consumer of simulation-based data) must be cognizant of. These
limitations can generally be broken up into large-scale effects which are due to finite box
size and periodicity, and small scale effects due to finite resolution. Small-scale effects are
dominated by the methods used in computation of forces, and the evolution of baryon
fields. Therefore, we leave discussion of small-scale errors to later in this chapter (where
the relevant numerical methods are discussed) and concentrate on large-scale effects here.

Truncation of the power spectrum due to effects of finite sampling causes issues at
both large and small scales. Essentially, wave modes larger than half of the simulation
(Lbox/2) or smaller than twice the grid resolution (2∆x) are not represented correctly,
which can have very important statistical effects. Gelb & Bertschinger [130] showed that
truncation of power at the scale of the simulation box can result in estimates of σ8, which
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corresponds to the size of density fluctuations when smoothed by a sphere 8 h−1 Mpc in
radius, which are 40% lower than the input value for a simulation with a 50 h−1 Mpc box
when using the previously-described method for generating initial conditions. In order
to reduce the error to 10% the simulation volume had to double in size, to ∼ 100 Mpc.
Pen [131] showed a method to fix this statistical issue, which generates initial conditions
by convolving perturbations in real space instead of k-space. His method also allows
the simple creation of nested-grid ICs without using large amounts of memory. This
method was later implemented into a publicly-available package by Bertschinger [129]. An
alternate method to correctly model large-scale power is discussed by Sirko [132], though
in order to obtain correct statistics this method requires a large number of simulations
to be performed, which is somewhat undesirable when performing large simulations due
to overall computational expense.

A more concrete understanding of the effect of finite box sizes and periodicity on
simulation results is provided by Barkana & Loeb [133]. They show that the majority of
cosmological simulations, which are limited to relatively small volumes (particularly for
study of objects in the early universe), largely omit cosmic scatter. This results in effects
such as the epoch of reionization being shorter in simulations than has been observed and
predicted analytically, non-physical biases in the halo mass function and halo correlations
(i.e. lack of halo clustering), and overall mis-estimation of the halo mass function in small
simulation volumes. This points towards a failing in small boxes of modeling the overall
star formation rate at high redshift, as well as estimates of the amount and effects of
feedback due to the ultraviolet radiation background at high redshift.

Though all of the issues discussed above are valid, we still must perform simulations
of the formation of the first generations of stars in small simulation volumes. This is
due entirely to the finite (though ever-growing) computational resources available to
us. Extension of our computation capabilities by using nested grids (as described in
Section 2.1.2) and techniques such as adaptive mesh refinement (described later in this
chapter) allow us to increase our simulation volumes significantly, but not to the point
where we can state with confidence that we are adequately resolving structure formation
in the high-redshift universe with a high degree of statistical accuracy. This is not such
a handicap, though, since we are interested in the dynamics of individual star forming
clouds, and not the global star formation rate.

This begs the question, “if we can’t trust our statistics, what can be learned from
this sort of simulation?” Fortunately, quite a bit. The simulations still accurately model
the hydrodynamics, primordial gas chemistry, and gravitational interactions between
baryons and dark matter (as well as self-interaction of these components). This allows us
to simulate the evolution of individual star-forming halos very accurately. Additionally,
we can obtain qualitative estimates of the reliability of our calculations by simulating
a range of simulation volumes and extrapolating to larger box size. One can study the
effects of, for example, feedback from a UV background on an individual halo, using a

31



single random realization but varying other parameters, to get an idea of the effects of
various feedback processes in a general sense. In general, quite a bit can be done with
these small-box simulations as long as one is mindful of possible effects due to finite box
size, and assesses their results in light of this.

2.2 The Enzo Simulation Code

‘Enzo’ is an adaptive mesh refinement cosmological simulation code developed by Greg
Bryan and his collaborators [134, 135, 136, 137, 2]. This code couples an N-body particle-
mesh (PM) solver [138, 139] used to follow the evolution of collisionless dark matter
with an Eulerian AMR method for ideal gas dynamics by Berger & Colella [140], which
allows extremely high dynamic range in gravitational physics and hydrodynamics in an
expanding universe.

Enzo solves the equations of ideal gas dynamics in a coordinate system that is comov-
ing with the expanding universe:

∂ρb

∂t
+

1

a
vb · ∇ρb = −1

a
ρb∇ · vb (2.10)
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vb · ∇φ+ Γ − Λ (2.12)

Where ρb is the comoving baryon density, vb is the baryon velocity, p is the pressure,
φ is the modified gravitational potential (in comoving coordinates, which is related to the
potential in proper coordinates Φ by φ ≡ Φ+0.5aäx2) and a is the “expansion parameter”
which describes the expansion of a smooth, homogeneous universe as a function of time.
This expansion parameter is related to the redshift: a ≡ 1/(1 + z). All derivatives
are in comoving coordinates. E is the specific energy of the gas (total energy per unit
mass), and Γ and Λ represent radiative heating and cooling processes as described below.
Equations 2.10, 2.11 and 2.12 represent the conservation of mass, momentum and total
(e.g., kinetic plus thermal) fluid energy.

The equations above are closed with three more equations:

E = p/[(γ − 1)ρb] + v2/2 (2.13)

∇2φ =
4πG

a
(ρb + ρdm − ρ0) (2.14)

ä

a
= −4πG

3a3
(ρ0 + 3p0/c

2) + Λ/3. (2.15)
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where ρdm is the comoving dark matter density, ρ0 is the comoving background density
(ρ0 ≡ Ωmatterρcrit) and p0 is the background pressure, γ is the ratio of specific heats and
Λ is the cosmological constant. Equations 2.13, 2.14 and 2.15 are the equation of state,
Poisson’s equation in comoving form and an equation that describes the evolution of the
comoving coordinates (i.e. the formula for the expansion of an isotropic, homogeneous
universe). All particles in the simulation are governed by Newton’s equations in comoving
coordinates:

dxpart

dt
=

1

a
vpart (2.16)

dvpart

dt
= − ȧ

a
vpart −

1

a
∇φ (2.17)

Where xpart and vpart refer to the position and peculiar velocity of any particles in
the system. Note that the system of equations 2.10-2.17 is valid only in regimes where
relativistic effects are not important (vb, vdm � c, where c is the speed of light) and where
cosmological curvature effects are unimportant, meaning that the simulation volume is
much smaller than the radius of curvature of the universe, as defined as rhub ≡ c/H0,
where c is the speed of light and H0 is the Hubble constant.

Two different hydrodynamic methods are implemented in Enzo: the piecewise parabolic
method (PPM) developed by Woodward & Colella [144] and extended to cosmology by
Bryan et al. [145], and the hydrodynamics method used in the magnetohydrodynamics
(MHD) code ZEUS [146, 147]. Below, we describe both of these methods in turn (PPM
in Section 2.2.2 and the ZEUSmethod in Section 2.2.3), noting that PPM is viewed as the
preferred choice for cosmological simulations since it is higher-order-accurate and is based
on a technique that does not require artificial viscosity to resolve shocks. Enzo solves for
the gravitational potential using the adaptive particle-mesh (APM) method, which is
described in Section 2.2.4. The primordial chemistry and radiative cooling/heating pack-
ages are described in Section 2.2.5, and the star formation and feedback algorithms are
described in Section 2.2.6.

2.2.1 The AMR machinery

Unlike moving mesh methods [141, 142] or methods that subdivide individual cells [143],
Berger & Collela’s AMR (also referred to as structured AMR) utilizes an adaptive hierar-
chy of grid patches at varying levels of resolution. Each rectangular grid patch (referred
to as a “grid”) covers some region of space in its parent grid which requires higher reso-
lution, and can itself become the parent grid to an even more highly resolved child grid.
ENZO’s implementation of structured AMR places no restrictions on the number of grids
at a given level of refinement, or on the number of levels of refinement. However, owing to
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limited computational resources it is practical to institute a maximum level of refinement
`max.

The Enzo implementation of AMR allows arbitrary integer ratios of parent and child
grid resolution. However, in practice refinement factors (defined as the ratio of parent grid
resolution to child grid resolution) of two or four are typically used, with a refinement
factor of two being most commonly used for cosmological simulations for reasons of
efficiency. The ratio of box size to the maximum grid resolution of a given simulation is
therefore L/e = Nroot × 2`max, where Nroot is the number of cells along one edge of the
root grid, `max is the maximum level of refinement allowed, and L and e are the box size
and grid resolution of the most highly refined region, respectively.

The AMR grid patches are the primary data structure in Enzo. Each patch is treated
as an individual object which can contain both field variables and particle data. Indi-
vidual grids are organized into a dynamic, distributed hierarchy of mesh patches. Every
processor keeps a description of the entire grid hierarchy at all times, so that each pro-
cessor knows where all grids are. However, baryon and particle data for a given grid
only exists on a single processor. See Figure 2.2 for a schematic example of this, and
Figure 2.3 for an example of an Enzo simulation performed using this AMR scheme where
both the baryon density and AMR grid hierarchy are shown together. The code handles
load balancing on a level-by-level basis such that the workload on each level is distributed
as uniformly as possible across all processors. Spatial locality of grids is not forced during
message passing, for maximum flexibility (though not necessarily maximum efficiency).
The MPI message passing library1 is used to transfer data between processors.

Each grid patch in Enzo contains arrays of values for baryon and particle quantities.
The baryon quantities are stored in arrays with the dimensionality of the simulation itself,
which can be 1, 2 or 3 spatial dimensions. Grids are partitioned into a core of real zones
and a surrounding layer of ghost zones. The real zones store field values and ghost zones
are used to temporarily store values which have been obtained directly from neighboring
grids or interpolated from a parent grid. These zones are necessary to accommodate the
computational stencil of the hydrodynamics solvers (Sections 2.2.2 and 2.2.3) and the
gravity solver (Section 2.2.4). The hydro solvers typically require ghost zones which are
three cells deep and the gravity solver requires 6 ghost zones on every side of the real
zones. This can lead to significant memory and computational overhead, particularly for
smaller grid patches at high levels of refinement.

Since the addition of more highly refined grids is adaptive, the conditions for refine-
ment must be specified. The criteria of refinement can be set by the threshold value of
the overdensity of baryon gas or dark matter in a cell (which is really a refinement on
the mass of gas or DM in a cell), the local Jeans length, the local density gradient, or
local pressure and energy gradients. A cell reaching any or all of these criteria will then
be flagged for refinement. Once all cells at a given level have been examined, rectangu-

1http://www-unix.mcs.anl.gov/mpi/
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Processor 1 Processor 2

ghost zone

Distributed hierarchy Grid zones

real grid
ghost grid

real zone

Figure 2.2: Left: Example of a simple, distributed AMR hierarchy showing real and
ghost grids. Right: Example 2D Enzo grid showing real and ghost zones, as needed for
the PPM hydro stencil. Image courtesy of James Bordner (Cent. Astrophysics and Space
Sciences, UCSD).
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Figure 2.3: Example of an Enzo simulation showing the AMR grid hierarchy. This is a
simulation of the collapse of a single massive halo with a 323 root grid and two 323 static
nested grids. AMR is only allowed within the most highly refined static nested grid. Log
baryon density is shown by colored isocontours with values corresponding to the legend
at center left. The rectangular solid wire frames correspond to individual AMR grids,
with different colors corresponding to level as indicated by the legend at top left.
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lar boundaries are determined which minimally encompass the flagged cells. A refined
grid patch is introduced within each such bounding rectangle. Thus the cells needing
refinement, as well as adjacent cells within the patch which do not need refinement, are
refined. While this approach is not as memory efficient as cell-splitting AMR schemes,
it offers more freedom with finite difference stencils. For example, PPM requires a sten-
cil of seven cells per dimension. This cannot easily be accommodated in cell-splitting
AMR schemes. In the simulations discussed in this thesis we typically use baryon and
dark matter overdensities as our refinement criteria, though for some higher-resolution
simulations we also refine on other criteria as needed.

In Enzo, resolution of the equations being solved is adaptive in time as well as in
space. The timestep in Enzo is satisfied on a level-by-level basis by finding the largest
timestep such that multiple criteria are satisfied on each level. The timestep criteria used
by Enzo are (showing the one-dimensional case for clarity):

∆thydro = min

(

κhydro
a∆x

cs + |vx|

)
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, (2.18)
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ȧ

)

, (2.20)

∆taccel = min

(
√

∆x

g

)

L

(2.21)

In equations 2.18-2.21, the min(. . .)L formalism means that this value is calculated for
all cells on a given level L and the minimum overall value is taken as the timestep. Equa-
tion 2.18 ensures that all cells satisfy the Courant-Freidrichs-Levy (CFL) condition for
accuracy and stability of an explicit finite difference discretization of the Euler equations.
Effectively this condition forces the timestep to be small enough such that any changes
in the fluid propagate less than a single grid spacing, ∆x. In this equation, κhydro is a nu-
merical constant with a value of 0 < κhydro ≤ 1 (with a typical value of κhydro ∼ 0.3−0.5)
that ensures that the CFL condition is always met, and cs and vx are the sound speed and
peculiar baryon velocity in a given cell. Equation 2.19 is analogous to Equation 2.18 and
ensures accuracy in the N-body solver by requiring that no dark matter particle travels
more than one cell width. The parameter κdm is analogous to κdthydro, with an identical
range of values. Equation 2.20 limits the timestep such that the expansion parameter
a can only change by a fractional amount of fexp = ∆a/a, where fexp is a user-defined
parameter and has typical values of fexp = 0.01 − 0.02. This is required for the stability
of the PPM algorithm in comoving coordinates, and typically limits the timestep only at
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high redshifts when densities are relatively homogeneous. Equation 2.21 is supplemen-
tary to equation 2.18 in that it takes into account the possibility of large accelerations
causing numerical instabilities by violating the Courant condition. In this equation, g is
the gravitational acceleration in each cell on level L.

For simplicity and stability, all cells on a given level are advanced using the same
timestep, which is taken to be the minimum value of Equations 2.18-2.21. Once a level L
has been advanced in time by ∆tL, all grids at level L+ 1 are advanced, using the same
criteria for timestep calculation described above, until they reach the same physical time
as the grids at level L. At this point grids at level L+ 1 exchange flux information with
their parents grids, providing a more accurate solution on level L. This step, controlled
by the parameter FluxCorrection in Enzo, is extremely important, and can significantly
affect simulation results if not used in an AMR calculation. At the end of every timestep
on every level each grid updates its ghost zones by exchanging information with its
neighboring grid patches (if any exist) and/or by interpolating from a parent grid. In
addition, cells are examined to see if they should be refined or de-refined, and the entire
grid hierarchy is rebuilt at that level (including all more highly refined levels). The
timestepping and hierarchy advancement/rebuilding process described here is repeated
recursively on every level to the specified maximum level of refinement in the simulation.

2.2.2 Hydrodynamics with the piecewise parabolic method

The primary hydrodynamic method used in Enzo is based on the piecewise parabolic
method (PPM) of Woodward & Colella [144], which has been significantly modified for
the study of cosmological fluid flows. The method is described in Bryan et al. [145], but
we provide a short description here for clarity.

PPM is an explicit, higher order-accurate version of Godunov’s method for ideal gas
dynamics with third order-accurate piecewise parabolic monotonic interpolation and a
nonlinear Riemann solver for shock capturing. It does an excellent job of capturing strong
shocks in at most two cells. Multidimensional schemes are built up by directional splitting
and produce a method that is formally second order-accurate in space and time which
explicitly conserves mass, linear momentum, and energy. The conservation laws for fluid
mass, momentum and energy density are written in comoving coordinates for a Friedman-
Robertson-Walker space-time, as described previously in Equations 2.10 through 2.12.
Both the conservation laws and the Riemann solver are modified to include gravity, which
is solved using an adaptive particle-mesh (PM) technique (see Section 2.2.4). The terms
due to cosmological expansion, as well as primordial chemistry and radiative heating and
cooling, are solved in a separate step because they have different numerical behavior,
and therefore must be treated differently to ensure stability. Note that unlike the ZEUS

hydro scheme, PPM does not need to use artificial viscosity to resolve shocks.

The system of equations described above works well for systems with relatively low
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Mach numbers, as long as these systems are well resolved. However, cosmology is replete
with situations where there are bulk hypersonic flows. In these situations, the ratio of
kinetic to thermal energy can be very high – in some situations up to 106 − 108. This
implies that the thermal energy is an extremely tiny fraction of the kinetic energy, which
can cause numerical problems when one is interested in just the thermal energy of the
gas, since Equation 2.12 solves for the total energy. In this system of equations, the
thermal energy Etherm is calculated as E − Ekin, where E is the total specific energy as
calculated in equation 2.12 and Ekin is the specific kinetic energy, 0.5v2

b . In hypersonic
flows E and Ekin are nearly the same, and any number calculated as the difference of
these is going to be strongly affected by numerical error. To avoid this problem, Enzo

also solves the internal energy equation in comoving coordinates:

∂e

∂t
+
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vb · ∇e = −3(γ − 1)ȧ

a
e− p

aρ
∇ · vb (2.22)

In this equation e is the internal energy and the other terms are as described previ-
ously. The code still conserves total energy (E) as well. In order to maintain consistency,
both equations are solved at all times in all cells, with the equation for the total energy
(eqtn. 2.12) being used for hydrodynamics routines and the internal energy e being used
when temperature is required. When pressure is required for dynamic purposes, the total
energy is used if the ratio of thermal energy to total energy is less than some threshold
value η, and the internal energy is used for values of the ratio larger than η. A typical
value of this parameter is 10−3. This dual energy formulation ensures that the method
produces the correct entropy jump at strong shocks and also yields accurate pressures
and temperatures in cosmological hypersonic flows.

2.2.3 Hydrodynamics with the ZEUS hydrodynamic method

As a check on PPM, Enzo also includes an implementation of the finite-difference hydro-
dynamic algorithm employed in the compressible magnetohydrodynamics code ‘ZEUS’
[146, 147]. Fluid transport is solved on a Cartesian grid using the upwind, monotonic
advection scheme of van Leer [148] within a multistep (operator split) solution proce-
dure which is fully explicit in time. This method is formally second order-accurate in
space but first order-accurate in time. It is important to note that this method conserves
internal energy rather than total energy, so the “dual energy formulation” discussed in
Section 2.2.2 is unnecessary.

Operator split methods break the solution of the hydrodynamic equations into parts,
with each part representing a single term in the equations. Each part is evaluated suc-
cessively using the results preceding it. The individual parts of the solution are grouped
into two steps, called the source and transport steps.
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The ZEUS method uses a von Neumann-Richtmeyer artificial viscosity to smooth
shock discontinuities that may appear in fluid flows and can cause a break-down of
finite-difference equations. The artificial viscosity term is added in the source terms as

ρ
∂v

∂t
= −∇p− ρ∇φ−∇ · Q (2.23)

∂e

∂t
= −p∇ · v − Q : ∇v, (2.24)

where v is the baryon velocity, ρ is the mass density, p is the pressure, e is the internal
energy density of the gas and Q is the artificial viscosity stress tensor, such that:

Qii =

{

QAVρb(a∆vi + ȧ∆xi)
2, for a∆vi + ȧ∆xi < 0

0 otherwise
(2.25)

and

Qij = 0 for i 6= j. (2.26)

∆xi and ∆vi refer to the comoving width of the grid cell along the i-th axis and the
corresponding difference in gas peculiar velocities across the grid cell, respectively, and
a is the cosmological scale factor. QAV is a constant with a typical value of 2. We refer
the interested reader to Anninos et al. [149] for more details.

The limitation of a technique that uses an artificial viscosity is that, while the correct
Rankine-Hugoniot jump conditions are achieved, shocks are broadened over 6-8 mesh cells
and are thus not treated as true discontinuities. This may cause unphysical pre-heating
of gas upstream of the shock wave, as discussed in Anninos et al. [149].

2.2.4 Gravity Solver

There are multiple methods to compute the gravitational potential (which is an elliptic
equation in the Newtonian limit) in a structured AMR framework. One way would be
to model the dark matter (or other collisionless particle-like objects, such as stars) as
a second fluid in addition to the baryonic fluid and solve the collisionless Boltzmann
equation, which follows the evolution of the fluid density in six-dimensional phase space.
However, this is computationally prohibitive owing to the large dimensionality of the
problem, making this approach unappealing for the cosmological AMR code.

Instead, Enzo uses a particle-mesh N-body method to calculate the dynamics of col-
lisionless systems [139]. This method follows trajectories of a representative sample of
individual particles and is much more efficient than a direct solution of the Boltzmann
equation in most astrophysical situations. The gravitational potential is computed by
solving the elliptic Poisson’s equation (Eqtn. 2.14).
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These equations are finite-differenced and for simplicity are solved with the same
timestep as the hydrodynamic equations, as discussed in Section 2.2.1. The dark mat-
ter particles are distributed onto the grids using the cloud-in-cell (CIC) interpolation
technique to form a spatially discretized density field (analogous to the baryon densities
used to calculate the equations of hydrodynamics). After sampling dark matter density
onto the grid and adding baryon density if it exists (to get the total matter density in
each cell), the gravitational potential is calculated on the periodic root grid using a fast
Fourier transform. In order to calculate more accurate potentials on subgrids, Enzo re-
samples the dark matter density onto individual subgrids using the same CIC method
as on the root grid, but at higher spatial resolution (and again adding baryon densities
if applicable). Boundary conditions are then interpolated from the potential values on
the parent grid (with adjacent grid patches on a given level communicating to ensure
that their boundary values are the same), and then a multigrid relaxation technique is
used to calculate the gravitational potential at every point within a subgrid. Forces are
computed on the mesh by finite-differencing potential values and are then interpolated to
the particle positions, where they are used to update the particle’s position and velocity
information. Potentials on child grids are computed recursively and particle positions are
updated using the same timestep as in the hydrodynamic equations. Particles are stored
in the most highly refined grid patch at the point in space where they exist, and parti-
cles which move out of a subgrid patch are sent to the grid patch covering the adjacent
volume with the finest spatial resolution, which may be of the same spatial resolution,
coarser, or finer than the grid patch that the particles are moved from. This takes place
in a communication process at the end of each timestep on a level.

At this point it is useful to emphasize that the effective force resolution of an adaptive
particle-mesh calculation is approximately twice as coarse as the grid spacing at a given
level of resolution. The potential is solved in each grid cell; however, the quantity of
interest, namely the acceleration, is the gradient of the potential, and hence two potential
values are required to calculate this. In addition, it should be noted that the adaptive
particle-mesh technique described here is very memory intensive: in order to ensure
reasonably accurate force resolution at grid edges the multigrid relaxation method used
in the code requires a layer of ghost zones which is very deep – typically 6 cells in
every direction around the edge of a grid patch. This greatly adds to the memory
requirements of the simulation, particularly because subgrids are typically small (on the
order of 123 − 163 real cells for a standard cosmological calculation) and ghost zones can
dominate the memory and computational requirements of the code.
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2.2.5 Radiative processes and non-equilibrium primordial chem-

istry

Though the equations of hydrodynamics described above are a closed system, they are
still missing a crucial piece of physics: radiative heating and cooling. Radiative cooling is
extremely important in many astrophysical situations, as is the heating of gas from some
sort of radiation background. Enzo has a very simple Sutherland and Dopita equilibrium
cooling function [150] implemented, which uses a cooling table assuming a fixed metallic-
ity of Z = 0.3Z�, and also a nonequilibrium heating/cooling model that assumes gas of
primordial composition exposed to a uniform metagalactic ultraviolet (UV) background
that varies with time [151].

The simulations discussed in this thesis almost exclusively use the nonequilibrium
routines, described in great detail by Abel et al. and Anninos et al. [152, 153] and
summarized in Appendix A. These routines follow the non-equilibrium chemistry of a
gas of primordial composition with 9 total species: H,H+, He,He+, He++, H−, H+

2 , H2,
and e−. The code also calculates radiative heating and cooling, following atomic line
excitation, recombination, collisional excitation, free-free transitions, molecular line ex-
citations, and Compton scattering of the cosmic microwave background, as well as any
of approximately a dozen different models for a metagalactic UV background that heat
the gas via photoionization and photodissociation. The multispecies rate equations are
solved out of equilibrium to properly model situations where, e.g., the cooling rate of the
gas is much shorter than the hydrogen recombination time. The effect of this nonequi-
librium cooling is to leave behind a much larger fraction of residual free electrons than
one would expect if the assumption of equilibrium were being made. The practical effect
of this is that more H− is formed, which subsequently produces hydrogen molecules. If
large amounts of H2 is formed it can greatly increase the cooling rate of primordial gas
at relatively low temperatures (T ≤ 104 K). This can efficiently cool the gas to approx-
imately 200 K, which significantly reduces the Jeans mass of the gas. Correct modeling
of the formation of molecular hydrogen is crucial to the study of star formation in a
primordial gas.

A total of 9 kinetic equations are solved, including 29 kinetic and radiative processes,
for the 9 species mentioned above. See Table 2.1 for the collisional processes and Table 2.2
for the radiative processes solved.

The chemical reaction equation network is technically challenging to solve due to the
huge range of reaction timescales involved – the characteristic creation and destruction
timescales of the various species and reactions can differ by many orders of magnitude. As
a result, the set of rate equations is extremely stiff, and an explicit scheme for integration
of the rate equations can be exceptionally costly if small enough timesteps are taken to
keep the network stable. This makes an implicit scheme much more preferable for such
a set of equations. However, an implicit scheme typically require an iterative procedure
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Collisional Processes

(1) H + e− → H+ + 2e−

(2) H+ + e− → H + γ
(3) He + e− → He+ + 2e−

(4) He+ + e− → He + γ
(5) He+ + e− → He++ + 2e−

(6) He++ + e− → He+ + γ
(7) H + e− → H− + γ
(8) H− + H → H2 + e−

(9) H + H+ → H+
2 + γ

(10) H+
2 + H → H2 + H+

(11) H2 + H+ → H+
2 + H

(12) H2 + e− → 2H + e−

(13) H2 + H → 3H
(14) H− + e− → H + 2e−

(15) H− + H → 2H + e−

(16) H− + H+ → 2H
(17) H− + H+ → H+

2 + e−

(18) H+
2 + e− → 2H

(19) H+
2 + H− → H2 + H

(20) 3H → H2 + H

Table 2.1: Collisional processes solved in the Enzo nonequilibrium primordial chemistry
routines.

Radiative Processes

(21) H + γ → H+ + e−

(22) He + γ → He+ + e−

(23) He+ + γ → He++ + e−

(24) H− + γ → H + e−

(25) H2 + γ → H+
2 + e−

(26) H+
2 + γ → H + H+

(27) H+
2 + γ → 2H+ + e−

(28) H2 + γ → H∗

2 → 2H
(29) H2 + γ → 2H

Table 2.2: Radiative processes solved in the Enzo nonequilibrium primordial chemistry
routines.
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to converge, and for large networks (such as this one) an implicit method can be very
time-consuming, making it undesirable for a large, three-dimensional simulation.

Enzo solves the rate equations using a method based on a backwards differencing
formula (BDF) in order to provide a stable and accurate solution. This technique is
optimized by taking the chemical intermediaries H− and H+

2 , which have large rate
coefficients and low concentrations, and grouping them into a separate category of equa-
tions. Due to their fast reactions these species are very sensitive to small changes in the
more abundant species. However, due to their low overall concentrations, they do not
significantly influence the abundance of species with higher concentrations. Therefore,
reactions involving these two species can be decoupled from the rest of the network and
treated independently. In fact, H− and H+

2 are treated as being in equilibrium at all
times, independent of the other species and the hydrodynamic variables. This allows a
large speedup in solution as the BDF scheme is then applied only to the slower 7-species
network on timescales closer to those required by the hydrodynamics of the simulation.
Even so, the accuracy and stability of the scheme is maintained by subcycling the rate
solver over a single hydrodynamic timestep. These subcycle timesteps are determined so
that the maximum fractional change in the electron concentration is limited to no more
than 10% per timestep.

It is important to note the regime in which this model is valid. According to Abel et
al. and Anninos et al. [152, 153], the reaction network is valid for temperatures between
100 − 108 K. The original model discussed in these two references is only valid up to
nH ∼ 104 cm−3. However, addition of the 3-body H2 formation process (equation 20 in
Table 2.1) allows correct modeling of the chemistry of the gas up until the point where
collisionally-induced emission from molecular hydrogen becomes an important cooling
process, which occurs at nH ∼ 1014 cm−3. A further concern is that the optically thin
approximation for radiative cooling breaks down, which occurs before nH ∼ 1016 −
1017 cm−3. Beyond this point, modifications the cooling function that take into account
the non-negligible opacity in the gas must be made, as discussed by Ripamonti & Abel
[47]. Even with these modifications, a completely correct description of the cooling of
this gas will require some form of radiation transport, which will greatly increase the cost
of the simulations.

Several processes are neglected. The deuterium atom and its processes are completely
ignored, which may have some effect. Recent work shows that HD is a more effective
coolant than previously thought [154]. However, the fractional abundance of HD is so
low that under circumstances relevant to the formation of a Population III star in an
un-ionized region it should be sub-dominant. However, the enhanced electron fraction
in fossil HII regions (as discussed later in this thesis) could result in the HD molecule
becoming a dominant cooling mechanism at relatively low (∼ few hundred K) temper-
atures, and could potentially cool the gas down to below 100 K, which can enhance
fragmentation and could have important consequences for the IMF of primordial stars
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forming in a relic HII region [78].

Aside from deuterium, the chemical reactions involving lithium are also neglected.
According to Galli & Palla [27], these are not important for the density and temperature
regimes explored by the simulations discussed in this thesis. However, at higher densities
it is possible that there are regimes where lithium can be an important coolant.

2.2.6 Star Formation and Feedback Algorithms

While the physics discussed previously is all crucial to the study of cosmological structure
formation, most cosmological observations are of stars and related phenomena. Addi-
tionally, stars eject energy and metal- enriched gas throughout their lives, drastically
modifying their own environment. The formation of galaxies and clusters cannot be
completely modeled without including the feedback of energy and metals. In particu-
lar, it is thought that feedback is crucial for suppressing the large numbers of dwarf-like
galaxies that CDM theories predict [16, 155]. An early burst of star formation could
remove a large fraction of cold gas from such systems [156, 157]. Also, the unexpectedly
low luminosities of small clusters and groups (relative to the richest clusters) is commonly
explained through feedback [158]. Energy ejected during the formation of the cluster el-
lipticals lowers the central density and hence the X-ray luminosity of such clusters [159].
Therefore, the inclusion of star formation and the feedback of energy and metals into the
intergalactic medium in a cosmological code is crucial for many reasons.

We have extended the Enzo code to include multiple models for star formation and
feedback. It is difficult to directly simulate the formation of individual stars in the context
of simulations of galaxy formation and evolution due to the immense computational cost.
Therefore, we adopt parametric methods which attempt to model star forming regions.
One model is based on Kravtsov’s method [160], and the other is based on the method
of Cen & Ostriker [170], which has been modified for use in an AMR code. The basic
ideas behind the methods are straightforward and observationally motivated. Similar
(though somewhat more advanced) methods have been employed for the smoothed parti-
cle hydrodynamics (SPH) method, most recently by Springel & Hernquist [162, 163, 164].
This method assumes a multiphase IGM and has been shown to accurately reproduce
the cosmic star formation rate, and will be implemented into Enzo in the near future.

In the following sections we will detail both the Kravtsov and Cen & Ostriker star
formation methods separately. Tests of the star formation and feedback algorithms will
not be shown, since this work is currently in progress (and an extension of the AMR/SPH
code comparison described in Chapter 3).

45



The Kravtsov star formation and feedback algorithm

Kravtsov’s method of star formation is designed to reproduce the global Schmidt law of
star formation [160, 165]. This algorithm is deliberately minimal, and is explicitly geared
towards modeling star formation in a phenomenological way on kiloparsec scales. Stars
are assume to form with a characteristic gas timescale τ∗ such that ρ̇∗ = ρgas/τ∗ where ρgas

and ρ∗ are the baryon gas and stellar densities, respectively. This “constant efficiency”
model on the scale of star formation regions is well motivated observationally [166, 167].
Star formation is only allowed to take place in very dense regions with ρgas ≥ ρSF , where
ρSF is a constant proper density threshold above which star formation is allowed to occur.
No other criteria are imposed. Kravtsov’s typical choices for τ∗ and ρSF are τ∗ = 4 Gyr
and ρSF = 1.64 M� pc−3 (nH ∼ 50 cm−3). The adopted timescale is derived from the
observationally-determined normalization of the Schmidt law, and the density threshold
is determined by observations of star forming regions on ∼ 100 pc scales. Note that the
density threshold is in proper, not comoving, units.

Algorithmically, the star formation events in Kravtsov’s code are assumed to occur
once every global time step ∆t0 ≤ 107. In cells where star formation is determined to
occur (i.e. ρgas ≥ ρSF ) a collisionless “star particle” is assumed to form, with a mass
m∗ = ρ̇∗Vcell∆t0, where ρ̇∗ is described above and Vcell is the volume of the mesh cell.
These star particles are formed instantaneously, with all m∗ of gas being taken out of
the cell and immediately deposited into the star particle. This particle is then given the
velocity of the gas in the cell, and thereafter treated as a collisionless particle. The Enzo

implementation of this algorithm is similar, except that instead of forming stars only at
the root grid time step, we allow stars to form at the time step of the highest level of
resolution at any particular point in space. As can be seen from the equation for m∗

above, this can result in very small stellar masses. To avoid memory and processor time
issues related to having very large numbers of star particles we impose a threshold mass
M∗,min such that a star particle only forms if m∗ ≥ M∗,min. An appropriate choice of
M∗,min does not significantly change the star overall star formation history of a simulation,
though it may delay the onset of star formation in a given cell relative to a simulation
without a particle mass threshold.

Each “star particle” is assumed to represent an ensemble of stars and is treated as
a single-age stellar population. Kravtsov assumes that the IMF is described by a Miller
& Scalo functional form with stellar masses between 0.1 and 100 M� [168]. All stars in
this IMF with M∗ > 8 M� deposit 2 × 1051 ergs of thermal energy and a mass fzM∗ of
metals into the cell in which they form without delay, with fz ≡ min(0.2, 0.01 M∗−0.06)
(i.e. instantaneous deposition of metals). The definition of fz is a rough approximation
of the results of Woosley & Weaver [169].

Kravtsov reports that simulations with this algorithm reliably reproduce the star for-
mation rate-gas surface density relation of the Schmidt law, and are not particularly
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sensitive to numerical parameters [160]. He also notes that this is surprisingly insen-
sitive to the presence or absence of feedback and details of the cooling and heating
properties of the gas, which suggests that the global star formation rate is determined by
gravitationally- driven supersonic turbulence (on large scales) rather than stellar feedback
or thermal instabilities on small scales.

The Cen & Ostriker star formation algorithm

The Cen & Ostriker method is a heuristic model of star formation on galactic scales. This
method, first described in a 1992 paper [170], is similar in some ways to the Kravtsov
algorithm but has more complex criteria for determining where stars should be formed.
In this method, cells that form stars must have a baryon overdensity higher than some
threshold ρb/ρ̄b ≥ η where ρb is the baryon density in that cell, ρ̄b is the mean baryon
density in the simulation, and η is the user-defined overdensity threshold. Additionally,
the gas in the cells must be contracting, cooling rapidly, and gravitationally unstable,
e.g.:

∇ · vb < 0, (2.27)

tcool < tdyn ≡
√

3π/32Gρtot, (2.28)

mb > mJ ≡ G−3/2ρ
−1/2
b C3

[

1 +
δρd

δρb

]−3/2

(2.29)

where v is the velocity of the gas in the cell, ρb and ρd are the cell’s baryon and dark
matter density, respectively, ρtotal = ρb + ρd, mb and mj are the baryonic mass in the cell
and jeans mass of the cell, and C is the isothermal sound speed in the cell. If all of these
criteria are met, the mass of a star particle is calculated as m∗ = mb

∆t
tdyn

f∗eff , where f∗eff

is the star formation efficiency parameter.
If m∗ is greater than a minimum star mass m∗min, a particle is created and given

several attributes: Mass, a unique index number, the time of formation tform, the local
dynamical free-fall time tdyn and the metallicity fraction of the baryon gas in the cell
fZb. There is a user-defined minimum dynamical time Tdyn,min which is observationally
motivated and affects the feedback rates (see below). The particle is placed in the center
of the cell and given the same peculiar velocity as the gas in the cell, and is then treated
in the same manner as the dark matter particles. An amount of baryon gas corresponding
to the new particle’s mass is removed from the cell.

In addition, we have added a stochastic star formation algorithm that keeps track
of all of the sub-mass threshold stars that should have been created and when the total
mass of uncreated stars is greater than the minimum mass, a star particle is created.
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The feedback of energy and metals into the baryon gas is similar to the Kravtsov
feedback, with some important differences. The star formation algorithm creates each
star particle instantaneously. However, feedback should take place over a significant
timescale, as all of the stars contained within the “star particle” would form over a long
period of time. Therefore, we assume that for the purposes of feedback that the mass of
stars formed at a time t with finite timestep ∆t is:

∆msf = m∗ [

(

1 +
t− tform

tdyn

)

exp

(

−(t− tform)

tdyn

)

−
(

1 +
t+ ∆t− tform

tdyn

)

exp

(

−(t+ ∆t− tform)

tdyn

)

] (2.30)

which can be represented more clearly in integral form:

∫ t+Dt

t

dM

dt
dt =

∫ t+Dt

t
m∗

dt

ttyn

(

t− tform

tdyn

)

exp

(

− t− tform

tdyn

)

(2.31)

During this timestep, we assume that the star particle feeds back metal-enriched gas
and thermal energy from supernovae and from stellar winds. Since massive stars have
very short lifetimes, we assume that there is an immediate feedback of some fraction fSN

of the rest energy from the stars created that timestep into the baryon gas, such that
Eadd = fSN∆msfc

2, where c is the speed of light. In addition, a fraction fZ∗ of the metal
from the star particle is fed back into the baryon gas, which takes into account the effects
of metal recycling. Finally, a fraction of the mass fm∗ from all stars (rather than just
supernovae) is fed back into the gas along with momentum in order to simulate the mass
ejection from non-exploding stars via stellar winds.

There are six user-defined parameters in this algorithm: three deal with the star
formation (η, m∗min and Tdyn,min), and three deal with feedback (fSN , fZ∗ and fm∗).
Some of these parameters are completely free, while others can be guided by observation
or theory. For example, the supernova feedback parameter, fSN , can be constrained
assuming that, for every 200M� of stars created, one supernova occurs, and this event
feeds back approximately 1051 ergs of thermal energy, giving:

fSN =
1051ergs

200 M�c2
' 3 × 10−6 (2.32)

The metal yield fZ∗, defined as the mass in metals produced per unit mass of stars
created, can be constrained by a theoretical model of Woosley & Weaver [169]. This
model suggests that fZ∗ = 0.02 is an appropriate number. The minimum dynamical
time is set to be Tdyn,min = 107 years to agree with timescales seen in nearby OB
associations.
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The other parameters, such as the overdensity threshold η, minimum star mass m∗min,
and mass ejection fraction fm∗ are not well constrained either theoretically or observa-
tionally. Indeed, m∗min is a purely numerical parameter designed to keep the code from
producing too many star particles, and thus has no observational or theoretical counter-
part. These parameters have to be set by performing parameter studies and comparing
to observations. Unfortunately, the range of parameter space is large, and the results
may be degenerate for some combinations of these parameters.
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Chapter 3

A Comparison of AMR and SPH

cosmology codes

3.1 Summary

We compare two cosmological hydrodynamic simulation codes in the context of hierar-
chical galaxy formation: the Lagrangian smoothed particle hydrodynamics (SPH) code
‘GADGET’, and the Eulerian adaptive mesh refinement (AMR) code ‘Enzo’. Both codes
represent dark matter with the N-body method but use different gravity solvers and
fundamentally different approaches for baryonic hydrodynamics. The SPH method in
GADGET uses a recently developed ‘entropy conserving’ formulation of SPH, while for
the mesh-based Enzo two different formulations of Eulerian hydrodynamics are employed:
the piecewise parabolic method (PPM) extended with a dual energy formulation for cos-
mology, and the artificial viscosity-based scheme used in the magnetohydrodynamics code
ZEUS. In this paper we focus on a comparison of cosmological simulations that follow
either only dark matter, or also a non-radiative (‘adiabatic’) hydrodynamic gaseous com-
ponent. We perform multiple simulations using both codes with varying spatial and mass
resolution with identical initial conditions.

The dark matter-only runs agree generally quite well provided Enzo is run with a
comparatively fine root grid and a low overdensity threshold for mesh refinement, oth-
erwise the abundance of low-mass halos is suppressed. This can be readily understood
as a consequence of the hierarchical particle-mesh algorithm used by Enzo to compute
gravitational forces, which tends to deliver lower force resolution than the tree-algorithm
of GADGET at early times before any adaptive mesh refinement takes place. At compa-
rable force resolution we find that the latter offers substantially better performance and
lower memory consumption than the present gravity solver in Enzo.

In simulations that include adiabatic gas dynamics we find general agreement in the
distribution functions of temperature, entropy, and density for gas of moderate to high

50



overdensity, as found inside dark matter halos. However, there are also some significant
differences in the same quantities for gas of lower overdensity. For example, at z = 3 the
fraction of cosmic gas that has temperature log T > 0.5 is ∼ 80% for both Enzo/ZEUS and
GADGET, while it is 40−60% for Enzo/PPM. We argue that these discrepancies are due
to differences in the shock-capturing abilities of the different methods. In particular, we
find that the ZEUS implementation of artificial viscosity in Enzo leads to some unphysical
heating at early times in preshock regions. While this is apparently a significantly weaker
effect in GADGET, its use of an artificial viscosity technique may also make it prone
to some excess generation of entropy which should be absent in ENZO/PPM. Overall,
the hydrodynamical results for GADGET are bracketed by those for Enzo/ZEUS and
Enzo/PPM, but are closer to Enzo/ZEUS. This chapter has been previously published as
a paper in the Astrophysical Journal [4].

3.2 Motivation

Within the currently leading theoretical model for structure formation small fluctuations
that were imprinted in the primordial density field are amplified by gravity, eventually
leading to non-linear collapse and the formation of dark matter (DM) halos. Gas then
falls into the potential wells provided by the DM halos where it is shock-heated and then
cooled radiatively, allowing a fraction of the gas to collapse to such high densities that star
formation can ensue. The formation of galaxies hence involves dissipative gas dynamics
coupled to the nonlinear regime of gravitational growth of structure. The substantial
difficulty of this problem is exacerbated by the inherent three-dimensional character of
structure formation in a ΛCDM universe, where due to the shape of the primordial power
spectrum a large range of wave modes becomes nonlinear in a very short time, resulting in
the rapid formation of objects with a wide range of masses which merge in geometrically
complex ways into ever more massive systems. Therefore, direct numerical simulations
of structure formation which include hydrodynamics arguably provide the only method
for studying this problem in its full generality.

Hydrodynamic methods used in cosmological simulations of galaxy formation can
be broken down into two primary classes: techniques using an Eulerian grid, including
‘Adaptive Mesh Refinement’ (AMR) techniques, and those which follow the fluid elements
in a Lagrangian manner using gas particles, such as ‘Smoothed Particle Hydrodynamics’
(SPH). Although significant amounts of work have been done on structure/galaxy for-
mation using both types of simulations, very few detailed comparisons between the two
simulation methods have been carried out [171, 172], despite the existence of widespread
prejudices in the field with respect to alleged weaknesses and strengths of the different
methods.

Perhaps the most extensive code comparison performed to date was the Santa Barbara
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cluster comparison project [172], in which several different groups ran a simulation of the
formation of one galaxy cluster, starting from identical initial conditions. They compared
a few key quantities of the formed cluster, such as radially-averaged profiles of baryon and
dark matter density, gas temperature and X-ray luminosity. Both Eulerian (fixed grid
and AMR) and SPH methods were used in this study. Although most of the measured
properties of the simulated cluster agreed reasonably well between different types of
simulations (typically within ∼ 20%), there were also some noticeable differences which
largely remained unexplained, for example in the central entropy profile, or in the baryon
fraction within the virial radius. Later simulations by Ascasibar et al. [173] compare
results from the Eulerian AMR code ART [174] with the entropy-conserving version
of GADGET. They find that the entropy-conserving version of GADGET significantly
improves agreement with grid codes when examining the central entropy profile of a
galaxy cluster, though the results are not fully converged. The GADGET result using
the new hydro formulation now shows an entropy floor – in the Santa Barbara paper the
SPH codes typically did not display any trend towards a floor in entropy at the center
of the cluster while the grid-based codes generally did. The ART code produces results
that agree extremely well with the grid codes used in the comparison. The observed
convergence in cluster properties is encouraging, but there is still a need to explore other
systematic differences between simulation methods.

The purpose of the present study is to compare two different types of modern cos-
mological hydrodynamic methods, SPH and AMR, in greater depth, with the goal of
obtaining a better understanding of the systematic differences between the different nu-
merical techniques. This will also help to arrive at a more reliable assessment of the
systematic uncertainties in present numerical simulations, and provide guidance for fu-
ture improvements in numerical methods. The codes we use are ‘GADGET’1, an SPH
code developed by Springel et al. [175], and ‘Enzo’2, an AMR code developed by Bryan
et al. [134, 135]. In this paper, we focus our attention on the clustering properties of
dark matter and on the global distribution of the thermodynamic quantities of cosmic
gas, such as temperature, density, and entropy of the gas. Our work is thus complemen-
tary to the Santa Barbara cluster comparison project because we examine cosmological
volumes that include many halos and a low-density intergalactic medium, rather than fo-
cusing on a single particularly well-resolved halo. We also include idealized tests designed
to highlight the effects of artificial viscosity and cosmic expansion.

The present study is the first paper in a series that aims at providing a comprehensive
comparison of AMR and SPH methods applied to the dissipative galaxy formation prob-
lem. In this paper, we describe the general code methodology, and present fundamental
comparisons between dark matter-only runs and runs that include ordinary ‘adiabatic’
hydrodynamics. This paper is meant to provide statistical comparisons between simula-

1http://www.MPA-Garching.MPG.DE/gadget/
2http://www.cosmos.ucsd.edu/enzo/
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tion codes, and we leave detailed comparisons of baryon properties in individual halos to
a later paper. Additionally, we plan to compare simulations using radiative cooling, star
formation, and supernova feedback in forthcoming work.

The organization of this paper is as follows. We provide a short overview of the
GADGET code in Section 3.3 (Enzo is described in detail in Section 2.2), and then describe
the details of our simulations in Section 3.4. Our comparison is then conducted in two
steps. We first compare the dark matter-only runs in Section 3.5 to test the gravity solver
of each code. This is followed in Section 3.6 with a detailed comparison of hydrodynamic
results obtained in adiabatic cosmological simulations. We then discuss effects of artificial
viscosity in Section 3.7, and the timing and memory usage of the two codes in Section 3.8.
Finally, we conclude in Section 3.9 with a discussion of our findings.

3.3 The GADGET smoothed particle hydrodynam-

ics code

In this study, we compare Enzo with a new version of the parallel TreeSPH code GADGET

[176], which combines smoothed particle hydrodynamics with a hierarchical tree algo-
rithm for gravitational forces. Codes with a similar principal design [177, 178, 179, 180]
have been employed in cosmology for a number of years. Compared with previous SPH
implementations, the new version GADGET-2 used here differs significantly in its formula-
tion of SPH (as discussed below), in its timestepping algorithm, and in its parallelization
strategy. In addition, the new code optionally allows the computation of long-range
forces with a particle-mesh (PM) algorithm, with the tree algorithm supplying short-
range gravitational interactions only. This ‘TreePM’ method can substantially speed up
the computation while maintaining the large dynamic range and flexibility of the tree
algorithm.

3.3.1 Hydrodynamical method

SPH uses a set of discrete tracer particles to describe the state of a fluid, with continuous
fluid quantities being defined by a kernel interpolation technique if needed [181, 182, 183].
The particles with coordinates ri, velocities vi, and masses mi are best thought of as fluid
elements that sample the gas in a Lagrangian sense. The thermodynamic state of each
fluid element may either be defined in terms of its thermal energy per unit mass, ui, or
in terms of the entropy per unit mass, si. We in general prefer to use the latter as the
independent thermodynamic variable evolved in SPH, for reasons discussed in full detail
by Springel & Hernquist [184]. In essence, use of the entropy allows SPH to be formulated
so that both energy and entropy are manifestly conserved, even when adaptive smoothing
lengths are used. [185] In the following we summarize the “entropy formulation” of SPH,
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which is implemented in GADGET-2 as suggested by Springel & Hernquist [184].
We begin by noting that it is more convenient to work with an entropic function

defined by A ≡ P/ργ, instead of directly using the thermodynamic entropy s per unit
mass. Because A = A(s) is only a function of s for an ideal gas, we will simply call A
the ‘entropy’ in what follows. Of fundamental importance for any SPH formulation is
the density estimate, which GADGET calculates in the form

ρi =
N
∑

j=1

mjW (|rij|, hi), (3.1)

where rij ≡ ri−rj , and W (r, h) is the SPH smoothing kernel. In the entropy formulation
of the code, the adaptive smoothing lengths hi of each particle are defined such that their
kernel volumes contain a constant mass for the estimated density; i.e. the smoothing
lengths and the estimated densities obey the (implicit) equations

4π

3
h3

iρi = Nsphm, (3.2)

where Nsph is the typical number of smoothing neighbors, and m is the average particle
mass. Note that in traditional formulations of SPH, smoothing lengths are typically
chosen such that the number of particles inside the smoothing radius hi is equal to a
constant value Nsph.

Starting from a discretized version of the fluid Lagrangian, one can show [184] that
the equations of motion for the SPH particles are given by

dvi

dt
= −

N
∑

j=1

mj

[

fi
Pi

ρ2
i

∇iWij(hi) + fj
Pj

ρ2
j

∇iWij(hj)

]

, (3.3)

where the coefficients fi are defined by

fi =

[

1 +
hi

3ρi

∂ρi

∂hi

]−1

, (3.4)

and the abbreviation Wij(h) = W (|ri − rj|, h) has been used. The particle pressures are
given by Pi = Aiρ

γ
i . Provided there are no shocks and no external sources of heat, the

equations above already fully define reversible fluid dynamics in SPH. The entropy Ai of
each particle simply remains constant in such a flow.

However, flows of ideal gases can easily develop discontinuities where entropy must
be generated by microphysics. Such shocks need to be captured by an artificial viscosity
technique in SPH. To this end GADGET uses a viscous force

dvi

dt

∣

∣

∣

∣

∣

visc.

= −
N
∑

j=1

mjΠij∇iW ij . (3.5)
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For the simulations of this paper, we use a standard Monaghan-Balsara artificial viscosity
Πij [186, 187], parameterized in the following form:

Πij =

{

[

−αcijµij + 2αµ2
ij

]

/ρij if vij · rij < 0

0 otherwise,
(3.6)

with

µij =
hij vij · rij

|rij|2
. (3.7)

Here hij and ρij denote arithmetic means of the corresponding quantities for the two
particles i and j, with cij giving the mean sound speed. The symbol W ij in the viscous
force is the arithmetic average of the two kernels Wij(hi) and Wij(hj). The strength of
the viscosity is regulated by the parameter α, with typical values in the range 0.75− 1.0.
Following Steinmetz [188], GADGET also uses an additional viscosity-limiter in Eqn. (3.6)
in the presence of strong shear flows to alleviate angular momentum transport.

Note that the artificial viscosity is only active when fluid elements approach one
another in physical space, to prevent particle interpenetration. In this case, entropy is
generated by the viscous force at a rate

dAi

dt
=

1

2

γ − 1

ργ−1
i

N
∑

j=1

mjΠijvij · ∇iW ij , (3.8)

transforming kinetic energy of gas motion irreversibly into heat.
We have also run a few simulations with a ‘conventional formulation’ of SPH in order

to compare its results with the ‘entropy formulation’. This conventional formulation
is characterized by the following differences. Equation (3.2) is replaced by a choice of
smoothing length that keeps the number of neighbors constant. In the equation of motion,
the coefficients fi and fj are always equal to unity, and finally, the entropy is replaced
by the thermal energy per unit mass as an independent thermodynamic variable. The
thermal energy is then evolved as

dui

dt
=

N
∑

j=1

mj

(

Pi

ρ2
i

+
1

2
Πij

)

vij · ∇iW ij, (3.9)

with the particle pressures being defined as Pi = (γ − 1)ρiui.

3.3.2 Gravitational method

In the GADGET code, both the collisionless dark matter and the gaseous fluid are rep-
resented by particles, allowing the self-gravity of both components to be computed with
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gravitational N-body methods. Assuming a periodic box of size L, the forces can be for-
mally computed as the gradient of the periodic peculiar potential φ, which is the solution
of

∇2φ(x) = 4πG
∑

i

mi

[

− 1

L3
+
∑

n

δ̃(x − xi − nL)

]

, (3.10)

where the sum over n = (n1, n2, n3) extends over all integer triples. The function δ̃(x)
is a normalized softening kernel, which distributes the mass of a point-mass over a scale
corresponding to the gravitational softening length ε. The GADGET code adopts the
spline kernel used in SPH for δ̃(x), with a scale length chosen such that the force of a
point mass becomes fully Newtonian at a separation of 2.8 ε, with a gravitational potential
at zero lag equal to −Gm/ε, allowing the interpretation of ε as a Plummer equivalent
softening length.

Evaluating the forces by direct summation over all particles becomes rapidly pro-
hibitive for large N owing to the inherent N2 scaling of this approach. Tree algorithms
such as that used in GADGET overcome this problem by using a hierarchical multipole
expansion in which distant particles are grouped into ever larger cells, allowing their
gravity to be accounted for by means of a single multipole force. Instead of requiring
N − 1 partial forces per particle, the gravitational force on a single particle can then be
computed from just O(logN) interactions.

It should be noted that the final result of the tree algorithm will in general only
represent an approximation to the true force described by Eqn. (3.10). However, the
error can be controlled conveniently by adjusting the opening criterion for tree nodes,
and, provided sufficient computational resources are invested, the tree force can be made
arbitrarily close to the well-specified correct force.

The summation over the infinite grid of particle images required for simulations with
periodic boundary conditions can also be treated in the tree algorithm. GADGET uses
the technique proposed by Hernquist et al. [189] for this purpose. Alternatively, the
new version GADGET-2used in this study allows the pure tree algorithm to be replaced
by a hybrid method consisting of a synthesis of the particle-mesh method and the tree
algorithm. GADGET’s mathematical implementation of this so-called TreePM method
[190, 191, 192] is similar to that of Bagla [193]. The potential of Eqn. (3.10) is explicitly
split in Fourier space into a long-range and a short-range part according to φk = φlong

k
+

φshort
k

, where

φlong
k

= φk exp(−k2r2
s), (3.11)

with rs describing the spatial scale of the force-split. This long range potential can be
computed very efficiently with mesh-based Fourier methods. Note that if rs is chosen
slightly larger than the mesh scale, force anisotropies that exist in plain PM methods
can be suppressed to essentially arbitrarily small levels.
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The short range part of the potential can be solved in real space by noting that for
rs � L the short-range part of the potential is given by

φshort(x) = −G
∑

i

mi

ri
erfc

(

ri

2rs

)

. (3.12)

Here ri = min(|x − ri − nL|) is defined as the smallest distance of any of the images
of particle i to the point x. The short-range force can still be computed by the tree
algorithm, except that the force law is modified according to Eqn. (3.12). However,
the tree only needs to be walked in a small spatial region around each target particle
(because the complementary error function rapidly falls for r > rs), and no corrections for
periodic boundary conditions are required, which together can result in a very substantial
performance gain. One typically also gains accuracy in the long range force, which is
now basically exact, and not an approximation as in the tree method. In addition, the
TreePM approach maintains all of the most important advantages of the tree algorithm,
namely its insensitivity to clustering, its essentially unlimited dynamic range, and its
precise control about the softening scale of the gravitational force.

3.4 The simulation set

In all of our simulations, we adopt the standard concordance cold dark matter model
of a flat universe with Ωm = 0.3, ΩΛ = 0.7, σ8 = 0.9, n = 1, and h = 0.7. For
simulations including hydrodynamics, we take the baryon mass density to be Ωb = 0.04.
The simulations are initialized at redshift z = 99 using the Eisenstein & Hu [194] transfer
function. For the dark matter-only runs, we chose a periodic box of comoving size
12 h−1 Mpc, while for the adiabatic runs we preferred 3 h−1 Mpc to achieve higher mass
resolution, although the exact size of the simulation box is of little importance for the
present comparison. Note however that this is different in simulations that also include
cooling, which imprints additional physical scales. We place the unperturbed dark matter
particles at the vertices of a Cartesian grid, with the gas particles offset by half the mean
interparticle separation in the GADGET simulations. These particles are then perturbed
by the Zel’dovich approximation for the initial conditions. In Enzo, fluid elements are
represented by the values at the center of the cells and are also perturbed using the
Zel‘dovich approximation.

For both codes, we have run a large number of simulations, varying the resolution, the
physics (dark matter only, or dark matter with adiabatic hydrodynamics), and some key
numerical parameters. Most of these simulations have been evolved to redshift z = 3. We
give a full list of all simulations we use in this study in Tables 3.1 and 3.2 for GADGET

and Enzo, respectively; below we give some further explanations for this simulation set.
We performed a suite of dark matter-only simulations in order to compare the gravity

solvers in Enzo and GADGET. For GADGET, the spatial resolution is determined by

57



the gravitational softening length ε, while for Enzo the equivalent quantity is given by
the smallest allowed mesh size e (note that in Enzo the gravitational force resolution is
approximately twice as coarse as this: see Section 2.2.4). Together with the box size Lbox,
we can then define a dynamic range Lbox/e to characterize a simulation (for simplicity
we use Lbox/e for GADGET as well instead of Lbox/ε). For our basic set of runs with 643

dark matter particles we varied Lbox/e from 256 to 512, 1024, 2048 and 4096 in Enzo. We
also computed corresponding GADGET simulations, except for the Lbox/e = 4096 case,
which presumably would already show sizable two-body scattering effects. Note that it is
common practice to run collisionless tree N-body simulations with softening in the range
1/25−1/30 of the mean interparticle separation, translating to Lbox/e = 1600−1920 for
a 643 simulation.

Unlike in GADGET, the force accuracy in Enzo at early times also depends on the root
grid size. For most of our runs we used a root grid with 643 cells, but we also performed
Enzo runs with a 1283 root grid in order to test the effect of the root grid size on the dark
matter halo mass function. Both 643 and 1283 particles were used, with the number of
particles never exceeding the size of the root grid.

Our main interest in this study lies, however, in our second set of runs, where we
additionally follow the hydrodynamics of a baryonic component, modeled here as an
ideal, non-radiative gas. As above, we use 643 DM particles and 643 gas particles (for
GADGET), or a 643 root grid (for Enzo), in most of our runs, though as before we also
perform runs with 1283 particles and root grids. Again, we vary the dynamic range
Lbox/e from 256 to 4096 in Enzo, and parallel this with corresponding GADGET runs,
except for the Lbox/e = 4096 case.

An important parameter of the AMR method is the mesh-refinement criterion. Usu-
ally, Enzo runs are configured such that grid refinement occurs when the dark matter
mass in a cell reaches a factor of 4.0 times the mean dark matter mass expected in a cell
at root grid level, or if it has a factor of 8.0 times the mean baryonic mass of a root level
cell, but several runs were performed with a threshold density set to 0.5 of the standard
values for both dark matter and baryon density. All that the “refinement overdensity”
criteria does is set the maximum gas or dark matter mass which may exist in a given
cell before that cell must be refined based on a multiple of the mean cell mass on the
root grid. For example, a baryon overdensity threshold of 4.0 means that a cell is forced
to refine once a cell has accumulated more than 4 times the mean cell mass on the root
grid.

When the refinement overdensity is set to the higher value discussed here, the simu-
lation may fail to properly identify small density peaks at early times, so that they are
not well resolved by placing refinements on them. As a result, the formation of low-mass
DM halos or substructure in larger halos may be suppressed. Note that lowering the
refinement threshold results in a significant increase in the number of refined grids, and
hence a significant increase in the computational cost of a simulation; i.e., one must tune
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GADGET simulations

Run Lbox/e Npart mDM mgas ε notes

L12N64 dm 2048 643 5.5 × 108 — 5.86 DM only
L12N128 dm 3840 1283 6.9 × 107 — 3.13 DM only
L12N256 dm 7680 2563 8.6 × 106 — 1.56 DM only
L3N64 3.1e 256 2 × 643 7.4 × 106 1.1 × 106 11.7 Adiabatic
L3N64 3.2e 512 2 × 643 7.4 × 106 1.1 × 106 5.86 Adiabatic
L3N64 3.3e 1024 2 × 643 7.4 × 106 1.1 × 106 2.93 Adiabatic
L3N64 3.4e 2048 2 × 643 7.4 × 106 1.1 × 106 1.46 Adiabatic

L3N128 3200 2 × 1283 9.3 × 105 1.4 × 105 0.78 Adiabatic
L3N256 6400 2 × 2563 1.2 × 105 1.8 × 104 0.39 Adiabatic

Table 3.1: List of GADGET cosmological simulations that are used in this study. Lbox/e
is the dynamic range, and Npart is the particle number (in the adiabatic runs there are
identical numbers of dark matter and gas particles). mDM and mgas are the masses of
the dark matter and gas particles in units of [h−1 M�]. ε is the Plummer-equivalent
gravitational softening length in units of [h−1 kpc], but the GADGET code adopts the
spline kernel. See Section 3.3.2 for more details.

the refinement criteria to compromise between performance and accuracy.

We also performed simulations with higher mass and spatial resolution, ranging up to
2×2563 particles with GADGET, and 1283 dark matter particles and a 1283 root grid with
Enzo. For DM-only runs, the gravitational softening lengths in these higher resolution
GADGET runs were taken to be 1/30 of the mean dark matter interparticle separation,
giving a dynamic range of Lbox/e = 3840 and 7680 for 1283 and 2563 particle runs,
respectively. For the adiabatic GADGET runs, they were taken to be 1/25 of the mean
interparticle separation, giving Lbox/e = 3200 and 6400 for the 1283 and 2563 particle
runs, respectively. All Enzo runs used a maximum refinement ratio of Lbox/e = 4096.

As an example, we show the spatial distribution of the projected dark matter and gas
mass in Figure 3.1 from one of the representative adiabatic gas runs of GADGET and
Enzo. The mass distribution in the two simulations are remarkably similar for both dark
matter and gas, except that one can see slightly finer structures in GADGET gas mass
distribution compared to that of Enzo. The good visual agreement in the two runs is
very encouraging, and we will analyze the two simulations quantitatively in the following
sections.
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Enzo simulations

Run Lbox/e NDM Nroot notes

64g64d 6l dm hod 4096 643 643 DM only, high od
128g64d 5l dm hod 4096 643 1283 DM only, high od
128g128d 5l dm hod 4096 1283 1283 DM only, high od
64g64d 6l dm lod 4096 643 643 DM only, low od
128g64d 5l dm lod 4096 643 1283 DM only, low od
128g128d 5l dm lod 4096 1283 1283 DM only, low od
64g64d 6l z 4096 643 643 Adiabatic, ZEUS

64g64d 6l z lod 4096 643 643 Adiabatic, ZEUS, low OD
64g64d 6l q0.5 4096 643 643 Adiabatic, ZEUS, QAV = 0.5
128g64d 5l z 4096 643 1283 Adiabatic, ZEUS

128g64d 5l z lod 4096 643 1283 Adiabatic, ZEUS, low OD
128g128d 5l z 4096 1283 1283 Adiabatic, ZEUS

64g64d 2l ppm 256 643 643 Adiabatic, PPM
64g64d 3l ppm 512 643 643 Adiabatic, PPM
64g64d 4l ppm 1024 643 643 Adiabatic, PPM
64g64d 5l ppm 2048 643 643 Adiabatic, PPM
64g64d 6l ppm 4096 643 643 Adiabatic, PPM
64g64d 6l ppm lod 4096 643 643 Adiabatic, PPM, low OD
128g64d 5l ppm 4096 643 1283 Adiabatic, PPM
128g64d 5l ppm lod 4096 643 1283 Adiabatic, PPM, low OD
128g128d 5l ppm 4096 1283 1283 Adiabatic, PPM
128g128d 5l ppm 4096 1283 1283 Adiabatic, PPM, low OD

Table 3.2: List of Enzo simulations used in this study. Lbox/e is the dynamic range (e is
the size of the finest resolution element, i.e. the spatial size of the finest level of grids),
NDM is the number of dark matter particles, and Nroot is the size of the root grid. ‘ZEUS’
and ‘PPM’ in the notes indicate the adopted hydrodynamic method. ‘low OD’ means
that the low overdensity threshold for refinement were chosen (cells refine with a baryon
overdensity of 4.0/dark matter density of 2.0). ‘QAV’ is the artificial viscosity parameter
for the ZEUS hydro method when it is not the default value of 2.0.
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GADGET ENZO

DM

GAS

Figure 3.1: Projected dark matter (top row) and gas mass (bottom row) distribution for
GADGET and Enzo in a slab of size 3×3×0.75 (h−1 Mpc)3. For GADGET (left column),
we used the run with 2 × 643 particles. For Enzo (right column), the run with 643 dark
matter particles and 1283 root grid was used.
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3.5 Simulations with dark matter only

According to the currently favored theoretical model of the CDM theory, the material
content of the universe is dominated by as of yet unidentified elementary particles which
interact so weakly that they can be viewed as a fully collisionless component at spatial
scales of interest for large-scale structure formation. The mean mass density in this cold
dark matter far exceeds that of ordinary baryons, by a factor of ∼ 5− 7 in the currently
favored ΛCDM cosmology. Since structure formation in the Universe is primarily driven
by gravity it is of fundamental importance that the dynamics of the dark matter and the
self-gravity of the hydrodynamic component are simulated accurately by any cosmological
code. In this section we discuss simulations that only follow dark matter in order to
compare Enzo and GADGET in this respect.

3.5.1 Dark matter power spectrum

One of the most fundamental quantities to characterize the clustering of matter is the
power spectrum of dark matter density fluctuations. In Figure 3.2 we compare the power
spectra of DM-only runs at redshifts z = 10 and 3. The short-dashed curve is the linearly
evolved power spectrum based on the transfer function of Eisenstein & Hu [194], while
the solid curve gives the expected nonlinear power spectrum calculated with the Peacock
& Dodds [195] scheme. We calculate the dark matter power spectrum in each simulation
by creating a uniform grid of dark matter densities. The grid resolution is twice as fine
as the mean interparticle spacing of the simulation (i.e. a simulation with 1283 particles
will use a 2563 grid to calculate the power spectrum) and densities are generated with the
triangular-shaped cloud (TSC) method. A fast Fourier transform is then performed on
the grid of density values and the power spectrum is calculated by averaging the power
in logarithmic bins of wavenumber. We do not attempt to correct for shot-noise or the
smoothing effects of the TSC kernel.

The results of all GADGET and Enzo runs with 1283 root grid agree well with each
other at both epochs up to the Nyquist wavenumber. However, the Enzo simulations with
a 643 root grid deviate on small scales from the other results significantly, particularly
at z = 10. This can be understood to be a consequence of the particle-mesh technique
adopted as the gravity solver in the AMR code, which induces a softening of the grav-
itational force on the scale of one mesh cell (this is a property of all PM codes, not
just Enzo). To obtain reasonably accurate forces down to the scale of the interparticle
spacing, at least two cells per particle spacing are therefore required at the outset of
the calculation. In particular, the force accuracy of Enzo is much less accurate at small
scales at early times when compared to GADGET because before significant overdensities
develop the code does not adaptively refine any regions of space (and therefore increased
force resolution to include small-scale force corrections). GADGET is a tree-PM code –
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at short range, forces on particles are calculated using the tree method, which offers a
force accuracy that is essentially independent of the clustering state of the matter down
to the adopted gravitational softening length (see Section 3.3.2 for details).

However, as the simulation progresses in time and dark matter begins to cluster into
halos, the force calculation by Enzo becomes more accurate as additional levels of grids
are adaptively added to the high density regions, reducing the discrepancy seen between
Enzo and GADGET at redshift z = 10 to something much smaller at z = 3.

3.5.2 Halo dark matter mass function and halo positions

We have identified dark matter halos in the simulations using a standard Friends-of-
Friends algorithm with a linking length of 0.2 in units of the mean interparticle separation.
In this section, we consider only halos with more than 32 particles. We obtained nearly
identical results to those described in this section using the HOP halo finder [196].

In Figure 3.3, we compare the cumulative DM halo mass function for several simula-
tions with 643, 1283 and 2563 dark matter particles as a function of Lbox/e and particle
mass. In the bottom panel, we show the residual in logarithmic space with respect to the
Sheth-Tormen mass function, i.e., log(N>M)− log(S&T). The agreement between Enzo

and GADGET simulations at the high-mass end of the mass function is reasonable, but
at lower masses there is a systematic difference between the two codes. The Enzo run
with 643 root grid contains significantly fewer low mass halos compared to the GADGET

simulations. Increasing the root grid size to 1283 brings the low-mass end of the Enzo

result closer to that of GADGET.

This highlights the importance of the size of the root grid in the adaptive particle-
mesh method based AMR simulations. Eulerian simulations using the particle-mesh
technique require a root grid twice as fine as the mean interparticle separation in order
to achieve a force resolution at early times comparable to tree methods or so-called P3M
methods [138], which supplement the softened PM force with a direct particle-particle
(PP) summation on the scale of the mesh. Having a conservative refinement criterion
together with a coarse root grid in AMR is not sufficient to improve the low mass end
of the halo mass function because the lack of force resolution at early times effectively
results in a loss of small-scale power, which then prevents many low mass halos from
forming.

We have also directly compared the positions of individual dark matter halos identified
in a simulation with the same initial conditions, run both with GADGET and Enzo. This
run had 643 dark matter particles and a Lbox = 12h−1 Mpc box size. For GADGET, we
used a gravitational softening equivalent to Lbox/e = 2048. For Enzo, we used a 1283 root
grid, a low overdensity threshold for the refinement criteria, and we limited refinements
to a dynamic range of Lbox/e = 4096 (5 total levels of refinement).

In order to match up halos, we apply the following method to identify “pairs” of halos
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Figure 3.2: Dark matter power spectra at z = 10 and z = 3 for both Enzo and GADGET

simulations with 643 dark matter particles, Lbox = 12 h−1 Mpc (comoving) and varying
spatial resolution. The short-dashed curve in each panel is the linear power spectrum
predicted by theory using the transfer function of Eisenstein & Hu [194]. The solid curve
in each panel is the non-linear power spectrum calculated with the Peacock & Dodds
method. [195] Arrows indicate the largest wavelength that can be accurately represented
in the simulation initial conditions (k = 2π/Lbox) and those that correspond to the
Nyquist frequencies of 643, 1283, and 2563 Enzo root grids.
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Figure 3.3: Cumulative mass functions at z = 3 for dark matter-only Enzo & GADGET

runs with 643 particles and a comoving box size of Lbox = 12h−1 Mpc. All Enzo runs have
Lbox/e = 4096. The solid black line denotes the Sheth & Tormen [198] mass function. In
the bottom panel, we show the residual in logarithmic space with respect to the Sheth
& Tormen mass function, i.e., log(N>M)− log(S&T).
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Figure 3.4: Left column: Probability distribution function of the number of dark matter
halos as a function of the separation of the matched halo pair in corresponding Enzo and
GADGET simulations (see text for the details of the runs used in this comparison). The
separation is in units of the initial mean interparticle separation, ∆ . The shaded region
in the distribution function shows the quartiles on both sides of the median value (which
is shown by the arrows) of the distribution. Right column: Separation of each pair (in
units of ∆) vs. mean halo mass of each pair. The top row is of pairs whose masses agree
to within 10% (i.e. fM = 1.1) and the bottom row is of pairs whose masses agree to
within a factor of two (i.e. fM = 2.0).
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with approximately the same mass and center-of-mass position. First, we sort the halos
in order of decreasing mass, and then select a halo from the massive end of one of the two
simulations (i.e. the beginning of the list). Starting again from the massive end, we then
search the other list of halos for a halo within a distance of rmax = fR∆, where ∆ is the
mean interparticle separation (1/64 of the box size in this case) and fR is a dimensionless
number (chosen here to be either 0.5 or 1.0). If the halo masses are also within a fraction
fM of one another, then the two halos in question are counted as a ‘matched pair’ and
removed from the lists to avoid double-counting. This procedure is continued until there
are no more halos left that satisfy these criteria.

In the left column of Figure 3.4, we show the distribution of pair separations obtained
in this way. The arrow indicates the median value of the distribution, and the quartile on
each side of the median value is indicated by the shaded region. The values of rmax and
fM are also shown in each panel. A conservative matching-criterion that allows only a
10% deviation in halo mass and half a cell of variation in the position (i.e. rmax = 0.5∆,
fM = 1.1) finds only 117 halo pairs (out of ∼ 292 halos in each simulation) with a median
separation of 0.096∆ between the center-of-mass positions of halos. Increasing rmax to
1.0 ∆ does very little to increase the number of matched halos. Keeping rmax = 0.5∆
and increasing fM to 2.0 gives us 252 halo pairs with a median separation of 0.128∆.
Increasing fM any further does little to increase the number of matched pairs, and looking
further away than rmax = 1.0∆ produces spurious results in some cases, particularly for
low halo masses.

This result therefore suggests that the halos are typically in almost the same places
in both simulations, but that their individual masses show somewhat larger fluctuations.
Note however that a large fraction of this scatter simply stems from noise inherent in
the group sizes obtained with the halo finding algorithms used. The friends-of-friends
algorithm often links (or not yet links) infalling satellites across feeble particle bridges
with the halo, so that the numbers of particles linked to a halo can show large variations
between simulations even though the halo’s virial mass is nearly identical in the runs. We
also tested the group finder HOP [196], but found that it also shows significant noise in
the estimation of halo masses. It may be possible to reduce the latter by experimenting
with the adjustable parameters of this group finder (one of which controls the “bridging
problem” that the friends-of-friends method is susceptible to), but we have not tried this.

In the right panels of Figure 3.4, we plot the separation of halo pairs against the
average mass of the two halos in question. Clearly, pairs of massive halos tend to have
smaller separations than low mass halos. Note that some of the low mass halos with large
separation (L/∆ > 0.4) could be false identifications. It is very encouraging, however,
that the massive halos in the two simulations generally lie within 1/10 of the initial mean
interparticle separation. The slight differences in halo positions may be caused by timing
differences between the two simulation codes.
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3.5.3 Halo dark matter substructure

Another way to compare the solution accuracy of the N-body problem in the two codes
is to examine the substructure of dark matter halos. The most massive halos in the 1283

particle dark matter-only simulations discussed in this paper have approximately 11,000
particles, which is enough to marginally resolve substructure. We look for gravitationally-
bound substructure using the SUBFIND method described in Springel et al. [197], which
we briefly summarize here for clarity. The process is as follows: a Friends-of-Friends
group finder is used (with the standard linking length of 0.2 times the mean interparticle
spacing) to find all of the dark matter halos in the simulations. We then select the two
most massive halos in the calculation (each of which has at least 11,000 particles in both
simulations) and analyze them with the subhalo finding algorithm. This algorithm first
computes a local estimate of the density at the positions of all particles in the input
group, and then finds locally overdense regions using a topological method. Each of
the substructure candidates identified in this way is then subjected to a gravitational
unbinding procedure where only particles bound to the substructure are kept. If the
remaining self-bound particle group has more than some minimum number of particles
it is considered to be a subhalo. We use identical parameters for the Friends-of-Friends
and subhalo detection calculations for both the Enzo and GADGET dark matter-only
calculations.

Figure 3.5 shows the projected dark matter density distribution and substructure
mass function for the two most massive halos in the 1283 particle DM-only calculations
for both Enzo and GADGET, which have dark matter masses close to Mhalo ∼ 1012M�.
Bound subhalos are indicated by different colors, with identical colors being used in
both simulations to denote the most massive subhalo, second most massive, etc. Qual-
itatively, the halos have similar overall morphologies in both calculations, though there
are some differences in the substructures. The masses of these two parent halos in the
Enzo calculation are 8.19 × 1011 M� and 7.14 × 1011 M�, and we identify total 20 and
18 subhalos, respectively. The corresponding halos in the GADGET calculation have
masses of 8.27 × 1011 M� and 7.29 × 1011 M�, and they have 7 and 10 subhalos. De-
spite the difficulty of Enzo in fully resolving the low-mass end of the halo mass function,
the code apparently has no problem in following dark matter substructure within large
halos, and hosts larger number of small subhalos than the GADGET calculation. Some
corresponding subhalos in the two calculations appear to be slightly off-set. Overall,
the agreement of the substructure mass functions for the intermediate mass regime of
subhalos is relatively good and within the expected noise.

It is not fully clear what causes the observed differences in halo substructure between
the two codes. It may be due to lack of spatial and/or dark matter particle mass resolution
in the calculations – typically simulations used for substructure studies have at least
an order of magnitude more dark matter particles per halo than we have here. It is
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also possible that systematics in the grouping algorithm are responsible for some of the
differences.

3.6 Adiabatic simulations

In this section, we start our comparison of the fundamentally different hydrodynamical
algorithms of Enzo and GADGET. It is important to keep in mind that a direct compar-
ison between the AMR and SPH methods when applied to cosmic structure formation
will always be convolved with a comparison of the gravity solvers of the codes. This is
because the process of structure formation is primarily driven by gravity, to the extent
that hydrodynamical forces are subdominant in most of the volume of the universe. Dif-
ferences that originate in the gravitational dynamics will in general induce differences in
the hydrodynamical sector as well, and it may not always be straightforward to cleanly
separate those from genuine differences between the AMR and SPH methods themselves.
Given that the dark matter comparisons indicate that one must be careful to appropri-
ately resolve dark matter forces at early times unless relatively fine root grids are used
for Enzo calculations, it is clear that any difference found between the codes needs to be
regarded with caution until confirmed with AMR simulations of high gravitational force
resolution.

Having made these cautionary remarks, we will begin our comparison with a seemingly
trivial test of a freely expanding universe without perturbations, which is useful to check
conservation of entropy (for example). After that, we will compare the gas properties
found in cosmological simulations of the ΛCDM model in more detail.

3.6.1 Unperturbed adiabatic expansion test

Unperturbed ideal gas in an expanding universe should follow Poisson’s law of adiabatic
expansion: T ∝ V γ−1 ∝ ρ1−γ . Therefore, if we define entropy as S ≡ T/ργ−1, it should
be constant for an adiabatically expanding gas.

This simple relation suggests a straightforward test of how well the hydrodynamic
codes described in Chapter 2 and Section 3.3 conserve entropy [185]. To this end, we set
up unperturbed simulations for both Enzo and GADGET with 163 grid cells or particles,
respectively. The runs are initialized at z = 99 with uniform density and temperature
T = 104 K. This initial temperature was deliberately set to a higher value than expected
for the real universe in order to avoid hitting the temperature floor set in the codes while
following the adiabatic cooling of gas due to the expansion of the universe. The box was
then allowed to expand until z = 3. Enzo runs were performed using both the PPM and
ZEUS algorithms and GADGET runs were done with both ‘conventional’ and the ‘entropy
conserving’ formulation of SPH.

69



-200

-100

0

100

200 Enzo group 0

-200 -100 0 100 200

-200

-100

0

100

200 GADGET group 0

Enzo group 1

-200 -100 0 100 200

GADGET group 1

100 1000 10000
Nptcl

1

10

N
(>

N
pt

cl
)

group 0

100 1000 10000
Nptcl

group 1

Figure 3.5: Dark matter substructure in both Enzo and GADGET dark matter-only cal-
culations with 1283 particles. The Enzo simulations use the “low overdensity” refinement
parameters. Left column: data from the most massive halo in the simulation volume.
Right column: second most massive halo. Top row: Projected dark matter density for
halos in the Enzo simulation with substructure color-coded. Middle row: projected dark
matter density for GADGET simulations. Bottom row: Halo substructure mass function
for each halo with both Enzo and GADGET results plotted together, with units of num-
ber of halos greater than a given mass on the y axis and number of particles on the x
axis. In these simulations the dark matter particle mass is 9.82 × 107 M�, resulting in
total halo masses of ∼ 1012 M�. In the top and middle rows subhalos with the same
color correspond to the most massive, second most massive, etc. subhalos. In the Enzo

calculation all subhalos beyond the 10th most massive are shown using the same color.
Both sets of halos have masses of ∼ 1012 M� The x and y axes in the top two rows are
in units of comoving kpc/h. In the bottom row, Enzo results are shown as a black solid
line and GADGET results are shown as a red dashed line.
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Figure 3.6: Fractional deviations from the expected adiabatic relation for temperature,
comoving gas density and entropy as a function of redshift in simulations of unperturbed
adiabatic expansion test. Left column: the ‘entropy conserving’ formulation of SPH (top
panel) and the ‘conventional’ formulation (bottom panel). Right column: The PPM
(top panel) and ZEUS (bottom panel) hydrodynamic methods in Enzo. Error bars in
all panels show the variance of each quantity. The short-long-dashed line in the bottom
right panel shows the case where the maximum timestep is limited to be 1/10 of the
default maximum. Note the difference in scales of the y axes in the bottom row.
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In Figure 3.6 we show the fractional deviation from the expected adiabatic relation
for density, temperature, and entropy. The GADGET results (left column) show that the
‘entropy conserving’ formulation of SPH preserves the entropy very well, as expected.
There is a small net decrease in temperature and density of only ∼ 0.1%, reflecting the
error of SPH in estimating the mean density. In contrast, in the ‘conventional’ SPH
formulation the temperature and entropy deviate from the adiabatic relation by 15%,
while the comoving density of each gas particle remains constant. This systematic drift
is here caused by a small error in estimating the local velocity dispersion owing to the
expansion of the universe. In physical coordinates, one expects ∇ · v = 3H(a), but in
conventional SPH, the velocity divergence needs to be estimated with a small number
of discrete particles, which in general will give a result that slightly deviates from the
continuum expectation of 3H(a). In our test, this error is the same for all particles, with-
out having a chance to average out for particles with different neighbor configurations,
hence resulting in a substantial systematic drift. In the entropy formulation of SPH, this
problem is absent by construction.

In the Enzo/PPM run (top right panel), there is a net decrease of only ∼ 0.1% in
temperature and entropy, whereas in Enzo/ZEUS (bottom right panel), the temperature
and entropy drop by 12% between z = 99 and z = 3. The comoving gas density remains
constant in all Enzo runs. In the bottom right panel, the short-long-dashed line shows
an Enzo/ZEUS run where we lowered the maximum expansion of the simulation volume
during a single timestep (i.e. ∆a/a, where a is the scale factor) by a factor of 10. This
results in a factor of ∼ 10 reduction of the error, such that the fractional deviation
from the adiabatic relation is only about 1%. This behavior is to be expected since the
ZEUS hydrodynamic algorithm is formally first-order-accurate in time in an expanding
universe.

In summary, these results show that both the Enzo/ZEUS hydrodynamic algorithm
and the conventional SPH formulation in GADGET have problems in reliably conserving
entropy. However, these problems are essentially absent in Enzo/PPM and the new SPH
formulation of GADGET.

3.6.2 Differential distribution functions of gas properties

We now begin our analysis of gas properties found in full cosmological simulations of
structure formation. In Figures 3.7 and 3.8 we show mass-weighted one-dimensional
differential probability distribution functions of gas density, temperature and entropy, for
redshifts z = 10 (Figure 3.7) and z = 3 (Figure 3.8). We compare results for GADGET

and Enzo simulations at different numerical resolution, and run with both the ZEUS and
PPM formulations of Enzo.

At z = 10, effects owing to an increase of resolution are clearly seen in the distribution
of gas overdensity (left column), with runs of higher resolution reaching higher densities
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earlier than those of lower resolution. However, this discrepancy becomes smaller at z = 3
because lower resolution runs tend to ‘catch up’ at late times, indicating that then more
massive structures, which are also resolved in the lower resolution simulations, become
ever more important. One can also see that the density distribution becomes wider at
z = 3 compared to those at z = 10, reaching to higher gas densities at lower redshift.

At z = 3, both Enzo and GADGET simulations agree very well at log T > 3.5 and
log S > 21.5, with a characteristic shoulder in the temperature (middle column) and a
peak in the entropy (right column) distributions at these values. This can be understood
with a simple analytic estimate of gas properties in dark matter halos. We estimate
the virial temperature of a dark matter halo with mass 108 M� (1011 M�) at z = 3 to
be logT = 3.7 (5.7). Assuming a gas overdensity of 200, the corresponding entropy is
log S = 21.9 (23.9). The good agreement in the distribution functions at logT > 3.5 and
log S > 21.5 therefore suggests that the properties of gas inside the dark matter halos
agree reasonably well in both simulations. The gas in the upper end of the distribution
is in the most massive halos in the simulation, with masses of ∼ 1011 M� at z = 3.
Enzo has a built-in temperature floor of 1 Kelvin, resulting in an artificial feature in the
temperature and entropy profiles at z = 3. GADGET also has a temperature floor, but it
is set to 0.1 Kelvin and is much less noticeable since that temperature is not attained in
this simulation. Note that the entropy floor stays at the constant value of logSinit = 18.44
for all simulations at both redshifts.

However, there are also some interesting differences in the distribution of temper-
ature and entropy between Enzo/PPM and the other methods for gas of low overden-
sity. Enzo/PPM exhibits a ‘dip’ at intermediate temperature (log T ∼ 2.0) and entropy
(log S ∼ 20), whereas Enzo/ZEUS and GADGET do not show the resulting bimodal char-
acter of the distribution. We will revisit this feature when we examine two dimensional
phase-space distributions of the gas in Section 3.6.4, and again in Section 3.7 when we ex-
amine numerical effects due to artificial viscosity. In general, the GADGET results appear
to lie in between those obtained with Enzo/ZEUS and Enzo/PPM, and are qualitatively
more similar to the Enzo/ZEUS results.

3.6.3 Cumulative distribution functions of gas properties

In this section we study cumulative distribution functions of the quantities considered
above, highlighting the quantitative differences in the distributions in a more easily ac-
cessible way. In Figures 3.9 and 3.10 we show the mass-weighted cumulative distribution
functions of gas overdensity, temperature and entropy at z = 10 (Figure 3.9) and z = 3
(Figure 3.10). The measurements parallel those described in Section 3.6.2, and were done
for the same simulations.

We observe similar trends as before. At z = 10 in the GADGET simulations, 70% of
the total gas mass is in regions above the mean density of baryons, but in Enzo, only 50%
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Figure 3.7: Probability distribution functions of gas mass as functions of gas overdensity
(left column), temperature (middle column) and entropy (right column) at z = 10. For
GADGET, runs with 2×643 (red solid line), 2×1283 (red short-dashed line) and 2×2563

(red long-dashed line) particles are shown. The dynamic range of the Enzo simulations
were fixed to Lbox/e = 4096, but the particle numbers and the root grid size were varied
between 643 and 1283. Both the ZEUS and PPM hydro methods were used in the Enzo

calculations. The Enzo line types are: 128g/128dm PPM lowod (black dash-dotted line),
128g/128dm ZEUS (black dotted line), and 64g/64dm PPM lowod (black long dash-short
dashed line). In the bottom panels, the residuals in logarithmic scale with respect to the
GADGET N256 run are shown.
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Figure 3.8: Probability distribution functions of gas mass as functions of gas overdensity
(left column), temperature (middle column) and entropy (right column) at z = 3. For
GADGET, runs with 2 × 643, 2 × 1283 and 2 × 2563 particles were used. The dynamic
range of the Enzo simulations were fixed to Lbox/e = 4096, but the particle numbers and
the root grid size were varied between 643 and 1283 (e.g. 64dm/128grid means 643 DM
particles and 1283 root grid). Both the ZEUS and PPM hydro methods were used in the
Enzo calculations, as shown in the figure key. Lines are identical to those in Figure 3.7.
In the bottom panels, we show the residuals in logarithmic scale with respect to the
GADGET N256 run.
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is in such regions. This mass fraction increases to 80% in GADGET runs, and to 70% in
Enzo runs at z = 3, as more gas falls into the potential wells of dark matter halos.

More distinct differences can be observed in the distribution of temperature and
entropy. At z = 10, only 10− 20% of the total gas mass is heated to temperatures above
log T = 0.5 in Enzo/PPM, whereas this fraction is 70−75% in Enzo/ZEUS, and 35−55%
in GADGET. At z = 3, the mass fraction that has temperature logT > 0.5 is 40 − 60%
for Enzo/PPM, and ∼ 80% for both Enzo/ZEUS and GADGET. Similar mass fractions
can be observed for gas with entropy logS > 18.5 − 19.0.

In summary, these results show that both GADGET and particularly Enzo/ZEUS

tend to heat up a significant amount of gas at earlier times than Enzo/PPM. This may
be related to differences in the parameterization of numerical viscosity, a topic that we
will discuss in more detail in Section 3.7.

3.6.4 Phase diagrams

In Figure 3.11 we show the redshift evolution of the mass-weighted two-dimensional
distribution of entropy vs. gas overdensity for redshifts z = 30, 10 and 3 (top to bottom
rows). Two representative GADGET simulations with 2 × 643 and 2× 2563 particles are
shown in the left two columns. The Enzo simulations shown in the right two columns both
have a maximum dynamic range of Lbox/e = 4096 and use 1283 dark matter particles
with a 1283 root grid. They differ in that the simulation in the rightmost column uses
the PPM hydrodynamic method, while the other column uses the ZEUS method.

The gas is initialized at z = 99 at a temperature of 140 K and cools as it adiabatically
expands. The gas should follow the adiabatic relation until it undergoes shock heating,
so one expects that there should be very little entropy production until z ∼ 30, because
the first gravitationally-bound structures are just beginning to form at this epoch. Gas
that reaches densities of a few times the cosmic mean is not expected to be significantly
shocked; instead, it should increase its temperature only by adiabatic compression. This
is true for GADGET and Enzo/PPM, where almost all of the gas maintains its initial en-
tropy, or equivalently, it stays on its initial adiabat. At z = 30, only a very small amount
of high-density gas departs from its initial entropy, indicating that it has undergone some
shock heating. However, in the Enzo/ZEUS simulation, a much larger fraction of gas has
been heated to higher temperatures. In fact, it looks as if essentially all overdense gas has
increased its entropy by a non-negligible amount. We believe this is most likely caused by
the artificial viscosity implemented in the ZEUS method, a point we will discuss further
in Section 3.7.

As time progresses, virialized halos and dark matter filaments form, which are sur-
rounded by strong accretion shocks in the gas and are filled with weaker flow shocks
[199]. The distribution of gas then extends towards much higher entropies and densities.
However, there is still a population of unshocked gas, which can be nicely seen as a flat
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Figure 3.9: Cumulative distribution functions of gas mass as functions of comoving gas
overdensity (left column), temperature (middle column) and entropy (right column) at
z = 10. The simulations and the line types used here are the same as in Figures 3.7
and 3.8. In the bottom panels, we show the residuals in logarithmic scale with respect
to the GADGET N256 run.
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Figure 3.10: Cumulative distribution functions of gas mass as functions of comoving gas
overdensity (left column), temperature (middle column) and entropy (right column) at
z = 3. The simulations and the line types used here are the same as in Figures 3.7
and 3.8. In the bottom panels, we show the residuals in logarithmic scale with respect
to the GADGET N256 run.
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Figure 3.11: Redshift evolution of the two dimensional mass-weighted distribution of gas
entropy vs. gas overdensity for four representative Enzo and GADGET simulations. Rows
correspond to (from top to bottom) z = 30, 10 and 3. In each panel six contours are
evenly spaced from 0 to the maximum value in logarithmic scale, with the scale being
identical in all simulations at a given redshift to allow for direct comparison. Column
1: GADGET, 2 × 643 particles, Lbox/e = 2048. Column 2: GADGET, 2 × 2563 particles,
Lbox/e = 6400. Column 3: Enzo/ZEUS hydro, 1283 DM particles, 1283 root grid, Lbox/e =
4096. Column 4: Enzo/PPM hydro, 1283 DM particles, 1283 root grid, Lbox/e = 4096.
The increasing minimum entropy with decreasing overdensity in the Enzo results is an
artifact of imposing a temperature floor–a numerical convenience.
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constant entropy floor in all the runs until z = 10. However, the Enzo/ZEUS simulation
largely loses this feature by z = 3, reflecting its poor ability to conserve entropy in un-
shocked regions. On the other hand, the GADGET ‘entropy conserving’ SPH-formulation
preserves a very well defined entropy floor down to z = 3. The result of Enzo/PPM lies
between that of GADGET and Enzo/ZEUS in this respect. The 1 Kelvin temperature
floor in the Enzo code results in an artificial increase in the entropy “floor” in significantly
underdense gas at z = 3.

Perhaps the most significant difference between the simulations lies however in the
‘bimodality’ that Enzo/PPM develops in the density-entropy phase space. This is already
seen at redshift z = 10, but becomes clearer at z = 3. While Enzo/ZEUS and GADGET

show a reservoir of gas around the initial entropy with an extended distribution towards
higher density and entropy, Enzo/PPM develops a second peak at higher entropy, i.e. in-
termediate density and entropy values are comparatively rare. The resulting bimodal
character of the distribution is also reflected in a ‘dip’ at logT ∼ 2.0 seen in the 1-D
differential distribution function in Figures 3.7 and 3.8.

We note that the high-resolution GADGET run with 2563 particles exhibits a broader
distribution than the 643 run because of its much larger dynamic range and better sam-
pling, but it does not show the bimodality seen in the Enzo/PPM run. We also find that
increasing the dynamic range Lbox/e with a fixed particle number does not change the
overall shape of the distributions in a qualitative way, except that the gas extends to a
slightly higher overdensity when Lbox/e is increased.

3.6.5 Mean gas temperature and entropy

In Figure 3.12 we show the mass-weighted mean gas temperature and entropy of the entire
simulation box as a function of redshift. We compare results for GADGET simulations
with particle numbers of 643, 1283 and 2563, and Enzo runs with 643 or 1283 particles for
different choices of root grid size and hydrodynamic algorithm.

In the temperature evolution shown in the left panel of Figure 3.12, we see that the
temperature drops until z ∼ 20 owing to adiabatic expansion. This decline in the temper-
ature is noticeably slower in the Enzo/ZEUS runs compared with the other simulations,
reflecting the artificial heating seen in Enzo/ZEUS at early times. After z = 20 structure
formation and its associated shock heating overcomes the adiabatic cooling and the mean
temperature of the gas begins to rise quickly. While at intermediate redshifts (z ∼ 40−8)
some noticeable differences among the simulations exist, they tend to converge very well
to a common mean temperature at late times when structure is well developed. In gen-
eral, Enzo/PPM tends to have the lowest temperatures, with the GADGET SPH-results
lying between those of Enzo/ZEUS and Enzo/PPM.

In the right panel of Figure 3.12, we show the evolution of the mean mass-weighted
entropy, where similar trends as in the mean temperature can be observed. We see that
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Figure 3.12: Mass-weighted mean gas temperature and entropy for Enzo and GADGET

runs as a function of redshift. The runs used are the same as those shown in Figures 3.7
and 3.8.

a constant initial entropy (logSinit = 18.44) is preserved until z ∼ 20 in Enzo/PPM

and GADGET. However, an unphysical early increase in mean entropy is observed in
Enzo/ZEUS. The mean entropy quickly rises after z = 20 owing to entropy generation as
a results of shocks occurring during structure formation.

Despite differences in the early evolution of the mean quantities calculated we find
it encouraging that the global mean quantities of the simulations agree very well at low
redshift, where temperature and entropy converge within a very narrow range. At high
redshifts the majority of gas (in terms of total mass) is in regions which are collapsing
but still have not been virialized, and are hence unshocked. As we show in Section 3.7,
the formulations of artificial viscosity used in the GADGET code and in the Enzo imple-
mentation of the ZEUS hydro algorithm play a significant role in increasing the entropy
of unshocked gas which is undergoing compression (though the magnitude of the effect is
significantly less in GADGET), which explains why the simulations using these techniques
have systematically higher mean temperatures/entropies at early times than those using
the PPM technique. At late times these mean values are dominated by gas which has
already been virialized in large halos, and the increase in temperature and entropy due
to virialization overwhelms heating due to numerical effects. This suggests that most
results at low redshift are probably insensitive to the differences seen here during the
onset of structure formation at high redshift.
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3.6.6 Evolution of kinetic energy

Different numerical codes may have different numerical errors per timestep, which can
accumulate over time and results in differences in halo positions and other quantities of
interest. It was seen in the Santa Barbara cluster comparison project that each code
calculated the time versus redshift evolution in a slightly different way, and overall that
resulted in substructures being in different positions because the codes were at different
“times”. In our comparison of the halo positions in Section 3.5.2 we saw something
similar – the accumulated error in the simulations results in our halos being in slightly
different locations. Since we do not measure the overall integration error in our codes
(which is actually quite hard to quantify in an accurate way, considering the complexity
of both codes) we argue that the kinetic energy is a reasonable proxy because the kinetic
energy is essentially a measure of the growth of structure - as the halos grow and the
potential wells deepen the overall kinetic energy increases. If one code has errors that
contribute to the timesteps being faster/slower than the other code this shows up as
slight differences in the total kinetic energy.

In Figure 3.13 we show the kinetic energy (hereafter KE) of dark matter and gas
in GADGET and Enzo runs as a function of redshift. As expected, KE increases with
decreasing redshift. In the bottom panels, the residuals with respect to the GADGET

2563 particle run is shown in logarithmic units (i.e., log(KEothers) - log(KE256) ). Initially
at z = 99, GADGET and Enzo runs agree to within a fraction of a percent within their
own runs with different particle numbers. The corresponding GADGET and Enzo runs
with the same particle/mesh number agree within a few percent. These differences may
have been caused by the numerical errors during the conversion of the initial conditions
and the calculation of the KE itself. It is reasonable that the runs with a larger particle
number result in a larger KE at both early and late times, because the larger particle
number run can sample the power spectrum to a higher wavenumber, therefore having
more small-scale power at early times and more small-scale structures at late times. The
643 runs both agree with each other at z = 99, and overall have about 1% less kinetic
energy than the 2563 run. At the same resolution, Enzo runs show up to a few percent
less energy at late times than GADGET runs, but their temporal evolutions track each
other closely.

3.6.7 The gas fraction in halos

The content of gas inside the virial radius of dark matter halos is of fundamental interest
for galaxy formation. Given that the Santa Barbara cluster comparison project hinted
that there may be a systematic difference between Eulerian codes (including AMR) and
SPH codes (Enzo gave slightly higher gas mass fraction compared to SPH runs at the
virial radius), we study this property in our set of simulations.

In order to define the gas content of halos in our simulations we first identify dark
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Figure 3.13: Kinetic energy of dark matter and gas as a function of redshift, and the
residuals in logarithmic units with respect to the 2563 particle Gadget run (red long-
dashed line) is shown in the bottom panels. Red short-dashed line is for GADGET 1283

particle run, and red solid line is for GADGET 643 particle run. Black lines are for Enzo
runs: 128g128dm PPM, lowod (dot-short dash), 128g128dm Zeus (dotted), 64g64dm
PPM, lowod (short dash-long dash).
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matter halos using a standard friends-of-friends algorithm. We then determine the halo
center to be the center of mass of the dark matter halo and compute the “virial radius”
for each halo using Equation (24) of Barkana & Loeb [200] with the halo mass given by
the friends-of-friends algorithm. This definition is independent of the gas distribution,
thereby freeing us from ambiguities that are otherwise introduced owing to the different
representations of the gas in the different codes on a mesh or with particles. Next, we
measure the gas mass within the virial radius of each halo. For GADGET, we can simply
count the SPH particles within the radius. In Enzo, we include all cells whose centers
are within the virial radius of each halo. Note that small inaccuracies can arise because
some cells may only partially overlap with the virial radius. However, in significantly
overdense regions the cell sizes are typically much smaller than the virial radius, so this
effect should not be significant for large halos.

In Figure 3.14 we show the gas mass fractions obtained in this manner as a function
of total mass of the halos, with the values normalized by the universal mass fraction
fgas ≡ (Mgas/Mtot)/(Ωb/Ωm). The top three panels show results obtained with GADGET

for 2 × 644, 2 × 1283, and 2 × 2563 particles, respectively. The bottom 9 panels show
Enzo results with 643 and 1283 root grids. Simulations shown in the right column use the
ZEUS hydro algorithm and the others use the PPM algorithm. All Enzo runs shown have
643 dark matter particles, except for the bottom row which uses 1283 particles. The Enzo

simulations in the top row use a 643 root grid and all others use a 1283 root grid. Grid
and particle sizes, overdensity threshold for refinement and hydro method are noted in
each panel.

For well-resolved massive halos, the gas mass fraction reaches ∼ 90% of the universal
baryon fraction in the GADGET runs, and ∼ 100% in all of the Enzo runs. There is a hint
that the Enzo runs seem to give values a bit higher than the universal fraction, particularly
for runs using the ZEUS hydro algorithm. This behavior is consistent with the findings of
the Santa Barbara comparison project. Given the small size of our sample, it is unclear
whether this difference is really significant. However, there is a clear systematic difference
in baryon mass fraction between Enzo and GADGET simulations. Examining the mass
fraction of simulations to successively larger radii show that the Enzo simulations are
consistently close to a baryon mass fraction of unity out to several virial radii, and the
gas mass fractions for GADGET runs approaches unity at radii larger than twice the
virial radius of a given halo.

The systematic difference between Enzo and GADGET calculations, even for large
masses, is also somewhat reflected in the results of Kravtsov et al. [201]. They perform
simulations of galaxy clusters done using adiabatic gas and dark matter dynamics with
their adaptive mesh code and GADGET. At z = 0 their results for the baryon fraction
of gas within the virial radius converge to within a few percent between the two codes,
with the overall gas fraction being slightly less than unity. It is interesting to note that
they also observe that the AMR code has a higher overall baryon mass fraction than
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Figure 3.14: Gas mass fraction normalized by the universal baryon mass fraction fgas =
(Mgas/Mtot)/(Ωb/Ωm) is shown. The top 3 panels are for GADGET runs with 2 × 643,
(Lbox/e = 2048), 2 × 1283 (Lbox/e = 3200), and 2 × 2563 (Lbox/e = 6400) particles.
The bottom panels are for the Enzo runs with 643 or 1283 grid, and 643 or 1283 dark
matter particles. The ZEUS hydrodynamics method is used for one set of the Enzo

simulations (right column) and the PPM method is used for the rest. All Enzo runs have
Lbox/e = 4096.
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GADGET, though still slightly less than what we observe with our Enzoresults.

Note that the scatter of the baryon fraction seen for halos at the low mass end is a
resolution effect. This can be seen when comparing the three panels with the GADGET

results. As the mass resolution is improved, the down-turn in the baryon fraction shifts
towards lower mass halos, and the range of halo masses where values near the universal
baryon fraction are reached becomes broader. The sharp cutoff in the distribution of the
points corresponds to the mass of a halo with 32 DM particles.

It is also interesting to compare the cumulative mass function of gas mass in halos,
which we show in Figure 3.15 for adiabatic runs. This can be viewed as a combination
of a measurement of the DM halo mass function and the baryon mass fractions. In the
lower panel, the residuals in logarithmic scale are shown for each run with respect to the
Sheth & Tormen [198] mass function (i.e., log(N[>M])− log(S&T)).

As with the dark matter halo mass function, the gas mass functions agree well at the
high-mass end over more than a decade of mass, but there is a systematic discrepancy
between AMR and SPH runs at the low-mass end of the distribution. While the three
SPH runs with different gravitational softening agree well with the expectation based
on the Sheth & Tormen mass function and an assumed universal baryon fraction at
Mgas < 108 h−1 M�, the Enzo run with 643 root grid and 643 DM particles has fewer halos.
Similarly, the Enzo run with 1283 grid and 1283 DM particles has fewer low mass halos
at Mgas < 107 h−1 M� compared to the GADGET 1283 DM particle run. Convergence
with the SPH results for Enzo requires the use of a root grid with spatial resolution twice
that of the initial mean interparticle separation, as well as a low-overdensity refinement
criterion. We also see that the PPM method results in a better gas mass function than
the ZEUS hydro method at the low-mass end for the same number of particles and root
grid size.

3.7 The role of artificial viscosity

In Section 3.6.4 we found that slightly overdense gas in Enzo/ZEUS simulations shows an
early departure from the adiabatic relation towards higher temperature, suggesting an
unphysical entropy injection. In this section we investigate to what extent this effect can
be understood as a result of the numerical viscosity built into the ZEUS hydrodynamic
algorithm. As the gas in the pre-shocked universe begins to fall into potential wells,
this artificial viscosity causes the gas to be heated up in proportion to its compression,
potentially causing a significant departure from the adiabat even when the shock has not
occurred yet; i.e. when the compression is only adiabatic.

This effect is demonstrated in Figure 3.16, where we compare two-dimensional entropy–
overdensity phase space diagrams for two Enzo/ZEUS where the strength of the artificial
viscosity was reduced from its “standard” value of QAV = 2.0 to QAV = 0.5. These runs
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Figure 3.15: Cumulative halo gas mass function at z = 3. For reference, the solid black
line is the Sheth & Tormen [198] mass function multiplied by the universal baryon mass
fraction Ωb/Ωm. In the bottom panel, the residuals in logarithmic scale with respect to
the Sheth & Tormen mass function are shown for each run (i.e., log(N[>M])− log(S&T)).
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Figure 3.16: Two-dimensional distribution functions of gas entropy vs. gas overdensity
for two Enzo runs performed with the ZEUS hydrodynamics algorithm, varying with
redshift. Rows correspond to (top to bottom) z = 30, 10 and 3. In each panel, six
contours are evenly spaced from 0 to the maximum value in equal logarithmic scale.
Two different values of the ZEUS artificial viscosity parameter are used: QAV = 0.5 (left
column) and QAV = 2.0 (right column). Both runs use 643 dark matter particles and a
643 root grid and have a maximum spatial resolution of Lbox/e = 4096. The standard
value of the artificial viscosity parameter is QAV = 2.0.
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used 643 dark matter particles and 643 root grid, and the QAV = 2.0 corresponds to the
case shown earlier in Figure 3.11.

Comparison of the Enzo/ZEUS runs with QAV = 0.5 and 2.0 shows that decreasing
QAV results in a systematic decrease of the unphysical gas heating at high redshifts.
Also, at z = 4 the QAV = 0.5 result shows a secondary peak at higher density, so that
the distribution becomes somewhat more similar to the PPM result. Unfortunately, a
strong reduction of the artificial viscosity in the ZEUS algorithm is numerically dangerous
because the discontinuities that can appear owing to the finite-difference method are then
no longer smoothed sufficiently by the artificial viscosity algorithm, which can produce
unstable or incorrect results.

An artificial viscosity is needed to capture shocks when they occur in both the
Enzo/ZEUS and GADGET SPH scheme. This in itself is not really problematic, pro-
vided the artificial viscosity is very small or equal to zero in regions without shocks. In
this respect, GADGET’s artificial viscosity behaves differently from that of Enzo/ZEUS.
It takes the form of a pairwise repulsive force that is non-zero only when Lagrangian fluid
elements approach each other in physical space. In addition, the strength of the force
depends in a non-linear fashion on the rate of compression of the fluid. While even an
adiabatic compression produces some small amount of (artificial) entropy, only a com-
pression that proceeds rapidly with respect to the sound-speed, as in a shock, produces
entropy in large amounts. This can be seen explicitly when we analyze equations (3.6)
and (3.8) for the case of a homogeneous gas which is uniformly compressed. For definite-
ness, let us consider a situation where all separations shrink at a rate q = ṙij/rij < 0,
with ∇·v = 3 q. It is then easy to show that the artificial viscosity in GADGET produces
entropy at a rate

d logAi

d log ρi
=
γ − 1

2
α





−q hi

ci
+ 2

(

q hi

ci

)2


 . (3.13)

Note that since we assumed a uniform gas, we here have hi = hij , ci = cij , and ρi = ρij .
We see that only if the compression is fast compared to the sound-crossing time across
the typical spacing of SPH particles, i.e. for |q| > ci/hi, a significant amount of entropy
is produced, while slow (and hence adiabatic) compressions proceed essentially in an
isentropic fashion. On the other hand, the artificial viscosity implemented in Enzo/ZEUS

produces entropy irrespective of the sound-speed, depending only on the compression
factor of the gas.

We have also investigated the pre-shock entropy generation in Enzo/ZEUS using an-
other simple test, the collapse of a one-dimensional Zel’dovich pancake. The initial
conditions of this test are simple and described in full detail by Bryan et al. [145] A
one-dimensional simulation volume is set up in an expanding coordinate system in a flat
cosmology with an initially sinusoidal density perturbation with a peak at x = 0.5 and
a corresponding perturbation in the velocity field with nodes at x = 0.0, 0.5, and 1.0.
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Figure 3.17: Final results of the Zel’dovich pancake test. Panel (a): Log baryon over-
density vs. position. Panel (b): Log entropy vs. position. Panel (c): Cumulative mass-
weighted entropy distribution function. Panel (d): Pre-shock entropy evolution in the
256-cell Zeus run. All Zel’dovich pancake simulations are performed in one dimension us-
ing the Enzo code. Panels (a), (b), (c): The line types are for PPM/1024 (short-dashed),
PPM/256 (solid), ZEUS/1024 (dotted), and ZEUS/256 (long dashed) where 256 and 1024
are the number of cells used in the calculation. All data is at the end of the run (z = 0).
Panel (d): Entropy evolution of the 256-cell ZEUS and PPM runs for redshifts z = 20
(solid line), 10 (dotted line), 5 (long-dashed line), 2.5 (dot-dashed line) and 2 (dot-long-
dashed line). All PPM results overlay the ZEUS initial conditions (z = 20). Note that
the x-axis range for panel (d) is different from that of panels (a) and (b).
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A temperature perturbation is added such that gas entropy is constant throughout the
volume.

In Figure 3.17 we show the density and entropy profiles as a function of position, at
a time when the non-linear collapse of the pancake is well underway. We also show the
pre-shock evolution of the entropy profile for both algorithms. We compare runs using
256 and 1024 grid cells with both the ZEUS and PPM formulations of Enzo.

As the matter falls in onto the density peak at x = 0.5, accretion shocks on either
side form, clearly marked by the jumps in density, entropy, and temperature. Note that
the dip in the temperature at x = 0.5 is physical – the gas sitting there is unshocked
and only adiabatically compressed, and therefore has relatively low temperature. Reas-
suringly, both the ZEUS and PPM hydrodynamical methods reproduce the qualitative
behavior of the Zel’dovich pancake quite well, but there are also some systematic differ-
ences at a given resolution. This can be seen most clearly in the mass-weighted cumulative
entropy distribution in the bottom left panel of Figure 3.17. We see that the Enzo/ZEUS

calculations show a broader distribution than Enzo/PPM for a given spatial resolution.
This can be interpreted as another sign of pre-shock entropy generation by the artificial
viscosity in ZEUS. In contrast, the Riemann solver used in PPM can capture shocks such
that they are resolved as true discontinuities, which avoids this problem.

More concrete evidence of spurious entropy generation in the artificial viscosity-based
scheme can be seen by examining the pre-shock evolution of entropy in these simulations
(as seen in panel (d) of Figure 3.17). No entropy should be generated before the twin
shocks form to the left and right of x = 0.5 (as can be seen in panel (b) of the same
figure). The simulations using PPM (black solid line in panel d) produce no spurious
entropy. The simulations using the ZEUS scheme, however, produce significant amounts
of entropy in the infalling (but unshocked) gas. Note that the magnitude of the entropy
generation is relatively small compared to the final entropy produced in the shocks (as
seen in panel (b)), but the values are still significant.

While this test showed only comparatively small differences between the different
methods, it is plausible that the effects of pre-shock entropy generation become much
more important in three-dimensional cosmological simulations, where galaxies form hier-
archically through complicated merger processes that involve extremely complex shock
patterns. We thus speculate that this effect may be the key reason for the systematic
differences between the Enzo/PPM runs and the ZEUS and GADGET simulations.

3.8 Timing & memory usage

An important practical consideration when assessing the relative performance of com-
putational methods or simulation codes is the amount of computational resources they
require to solve a given problem. Of primary importance are the total amount of memory
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and the CPU time that is needed. However, it is not always easy to arrive at a meaningful
comparison, particularly for very different methods such as AMR and SPH. For example,
the variable number of grid cells owing to the adaptive nature of AMR is an important
complication, making the number of resolution elements change over time, while the par-
ticle number stays constant in the SPH method. An additional layer of complexity is
added when considering parallel codes. The parallelization strategies that are used for
AMR applications can be significantly different than those used in SPH codes, and the
performance of an individual simulation code can heavily depend on the specific com-
puter architecture and implementation of MPI (or other software used for parallelization)
chosen. Therefore we caution the readers to take all of the timing information discussed
in this section as results for a particular problem setup and machine architecture, and not
to extrapolate directly to different types of cosmological simulations (e.g., with cooling
and star formation) and machines.

3.8.1 Initial comparison on a distributed memory machine

When we started this project, we initially performed our comparison runs on the IA-64
Linux cluster Titan at the National Center for Supercomputing Applications (NCSA). It
had 134 dual processor nodes with 800 MHz Intel Itanium 1 chips, 2.5 GB memory per
node, and Myrinet 2000 network interconnect. Our initial comparison on Titan showed
that the GADGET code was faster than Enzo by a factor of 40 (15) for a 643 (1283) particle
DM-only run when Enzo was using a low overdensity criteria for grid refinement. The low
overdensity refinement criterion was required for Enzo in order to obtain a DM halo mass
function comparable to that of GADGET at low-mass end. GADGET used a factor of
18 (4) less amount of memory than Enzo for a 643 (1283) particle DM-only run. For the
adiabatic runs, GADGET was faster than Enzo by a factor of 2.5 for a 643 DM particles
and 643 gas particles (a 643 root grid for Enzo). A GADGET run with 1283 dark matter
and gas particles completed 8 times faster than an Enzo simulation with a 1283 root
grid and 643 DM particles. These performance results were gathered using Linux-based
Beowulf-style clusters with relatively slow inter-node communication networks. Since the
AMR code performs load balancing by passing grids between processors, it was expected
that the performance of Enzo would improve on a large shared-memory machine. The
disparity is most significant for DM-only simulations, so improvement of the Enzo N-body
solver could significantly increase the performance of the AMR code.

3.8.2 More recent comparison on a shared memory machine

During the course of this comparison study, both GADGET and Enzo evolved, and the
performance of both codes have greatly improved. Therefore, we repeated the perfor-
mance comparison with our updated codes using the IBM DataStar machine at the San
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Diego Supercomputing Center.3 The portion of the machine used for these timing tests is
composed of 176 IBM p655 compute nodes, each of which has eight 1.5 GHz IBM Power4
processors. These processors are super-scalar, pipelined 64 bit chips which can execute
up to 8 instructions per clock cycle and up to four floating point operations per clock
cycle, with a theoretical peak performance of 6.0 GFlop per chip. Processors in a single
node share a total of 16 GB of memory. All nodes are connected by an IBM Federation
switch, which provides processor-to-processor bandwidth of approximately 1.4 GB/s with
8 microsecond latency when using IBM’s MPI library. Each node is directly connected
to a parallel filesystem through a Fibre Channel link.

We first compare the series of dark matter-only runs discussed in Section 3.5. A GAD-

GET simulation with 643 dark matter particles takes total wall-clock time of 225 seconds
on 8 cpus (total 1800 seconds CPU time) and requires 270 MB of memory. 24% of the
total computational time was spent doing interprocessor message-passing. The corre-
sponding Enzo simulation with 643 particles and a 643 root grid requires 1053 seconds on
8 cpus (total 8424 seconds CPU time) when refining on a dark matter overdensity of 2.0,
and requires 1.21 GB of memory total. 34% of the total computational time was spent
in interprocessor communication. This is a factor of 4.7 slower than the corresponding
GADGET simulation, and requires roughly 4.5 times more memory. Raising the refine-
ment criteria to a dark matter overdensity of 4.0 (at a cost of losing low-mass DM halos)
reduces the wall clock time to 261 seconds on 8 processors (total 2088 seconds CPU time)
and decreases the total amount of memory needed to 540 MB, which is comparable to
the GADGET simulation. A 1283 DM particle GADGET adiabatic run takes a total of
2871 seconds to run on 8 cpus (total 22,968 seconds CPU time) and requires 1.73 GB
of memory. An Enzo simulation with 1283 particles and a 1283 root grid that refines
on a dark matter overdensity of 2.0 needs approximately 34,028 seconds on 8 proces-
sors (total 272,224 CPU seconds) and 5.6 GB of memory. This is a factor of 12 slower
and 3.2 times more memory than the equivalent GADGET run. The same calculation
run with refinement overdensities of 4.0 or 8.0 completes in 13,960 and 3839 seconds,
respectively, which are factors of 4.9 and 1.3 slower than the equivalent GADGET run.
The reason for the huge change in computational speeds is due to the low overdensity
threshold used in the first simulation, which results in a huge number of grids to be
instantiated and a great deal of time to be spent regridding the simulation. Raising the
overdensity criteria suppresses the formation of halos at the low mass end of the mass
function, though higher-mass halos are unaffected. This timing comparison suggests that
if one is interested in simulating the full spectrum of dark matter halos at a reasonable
computational cost, GADGET would be a wiser choice than Enzo for this application.
If one was interested in only the high-mass end of the mass function, the codes have
comparable performance.

Comparison of the adiabatic gas + N-body cosmological simulations in Section 3.6

3http : //www.sdsc.edu/user services/datastar/
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is also quite informative. The 643 dark matter particle/643 gas particle GADGET calcu-
lation takes 1839 seconds to run on 8 processors (total 14,712 seconds CPU time) and
requires 511 MB of memory. The equivalent Enzo simulation with 643 particles and a
643 root grid using the low overdensity refinement criteria (refining on a baryon overden-
sity of 4.0 and a dark matter overdensity of 2.0) requires 6895 seconds on 8 processors
(55,160 seconds total) and 2.5 GB of memory. This is 3.7 times slower and 4.9 times
more memory than the corresponding GADGET run. Raising the overdensity thresholds
by a factor of two decreases the computational time to 2168 seconds on 8 processors and
the memory required to 1.28 GB. The GADGET calculation with 1283 dark matter and
baryon particles requires 35,879 seconds on 8 cpus (287032 seconds total CPU time) and
5.4 GB of memory, and an Enzo calculation with 1283 particles on a 1283 root grid which
refines on a baryon overdensity of 8.0 and a dark matter overdensity of 4.0 requires 64,812
seconds and 8 GB of memory. Enzo simulations using the PPM and Zeus hydro methods
require comparable amounts of simulation time.

3.8.3 Mass resolution in Enzo and GADGET

It is clear from Sections 3.8.1 and 3.8.2 that Enzo, at present, is significantly slower and
requires more memory than GADGET when one demands convergence on all scales for a
simulation of a given size. If one requires convergence only at the high-mass end of the
mass function the relative performance of the two codes becomes much more comparable.
However, it is unclear that raw computational time and memory is a fair assessment of
the performance of the two codes. As discussed previously, the number of dark matter
and gas particles in the GADGET simulations remain constant always. In the AMR
simulations, the number of dark matter particles is fixed, but the adaptive nature of the
code adds more cells in areas of high overdensity, so that the number of root grid cells
(Ngrid in Table 3.2) is a lower bound for the total number Nrez of cells used to solve the
hydrodynamics in an Enzo simulation, which becomes typically larger than the number
of root grid cells by a factor of at least a few once structure has developed.

Note in this context that the refinement criterion presently used in Enzo tries to
roughly keep the baryonic mass per cell constant, which is in principle similar to the
Lagrangian behavior of GADGET, where a constant mass resolution is imprinted by
construction. This is seen more clearly in Figure 3.18, where the mean gas mass in cells
in Enzo simulations is shown as a function of gas overdensity. The AMR simulations show
a nearly flat behavior for a broad range of densities, i.e. by and large they distribute their
resolution elements similarly as a function of density, except at very high and low density.
At low densities, the baryonic mass resolution tends to become better compared with a
purely Lagrangian code, the prime reason being that the root grid never becomes coarser.
In contrast, the mass resolution tends to become worse for high densities, because the
imposed limit on the maximum level of refinements prevents the placing of additional
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refinements. Note however that one conceptual strength of AMR is that the refinement
criteria are flexible, and that they do not necessarily have to mimic Lagrangian behavior
as has been the case here. The SPH particle masses are shown as horizontal short-dashed
lines in this figure. It can be clearly seen that the mean gas mass resolved in a single
cell in the Enzo calculations is roughly a factor of 8 better than the equivalent GADGET

calculation (i.e. when comparing simulations with the same root grid size as number of
particles).

Another way of looking at this is to examine the distribution of baryon masses in cells
in the Enzo calculations. Figure 3.19 shows a plot of the number of cells (per mass bin) as
a function of cell baryon mass. The (fixed) baryon particle masses for the GADGET calcu-
lations are shown as vertical arrows. This plot shows that, for simulations with the same
root grid size/number of baryon particles, the median cell mass in the Enzo calculations
are approximately an order of magnitude less than the corresponding GADGET runs,
and that the “low overdensity” Enzo simulations have a median mass resolution that is
roughly a factor of 2−−3 better than the corresponding “high overdensity” calculation.
This is unsurprising, considering that a low overdensity threshold for refinement directly
translates into a lower cell mass. Given that the mean cell mass stays relatively constant
as a function of overdensity (as shown in Figure 3.18), this implies that there is a large
amount of scatter in the baryon mass contained in cells at a given spatial resolution or
overdensity.

Another interesting comparison that can be made between the Enzo and GADGET cal-
culations concerns the total number of unique resolution elements and their distribution
as a function of overdensity (which is directly related to spatial resolution). Figure 3.20
shows the distribution of unique resolution elements as a function of overdensity for both
Enzo and GADGET simulations. The curves shown in this figure are not normalized,
meaning that integrating the area under the curve gives the total number of resolution
elements. For a given simulation size, the Enzo calculations have at least a factor of three
more resolution elements overall than the corresponding GADGET simulation, with the
“low overdensity” calculations having roughly an order of magnitude more unique reso-
lution elements overall. The overall distributions of resolution elements are comparable
between the two different codes, though there is a peak at low overdensities in the Enzo

simulations, which is due to the root grid, which has a fixed (and large) number of grid
cells. In terms of overall resolution of baryons as a function of overdensity, the Enzo 643

“low overdensity” simulation has a comparable number of resolution elements to the 1283

GADGET run at overdensities greater than one, and the 1283 Enzo low overdensity run
is comparable to the 2563 GADGET calculation, with the caveat in both cases that the
GADGET calculations resolve to slightly higher overdensities overall. There are very few
resolution elements at the highest densities, so the significance of this is unclear.

Though it seems that a given Enzo calculation has much better overall baryon mass
resolution than the equivalent GADGET simulation, the significance of this is unknown.
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Figure 3.18: Mean cell mass as a function of overdensity for four representative Enzo

calculations. All simulations use the PPM hydro algorithm – calculations done with the
ZEUS algorithm are essentially the same as the corresponding PPM simulation. We show
results for the 643 and 1283 root grid Enzo calculations (black and red lines, respectively),
and use only simulations that have the same number of dark matter particles as root
grid cells. Results for both high and low-overdensity calculations are shown. The baryon
particle mass for the equivalent GADGET simulations are shown as horizontal black
dashed lines corresponding to (from top to bottom) the 643, 1283 and 2563 particle
GADGET simulations.
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Figure 3.19: Number of cells as a function of cell baryon mass for four representative
Enzo simulations. All simulations use the PPM hydro algorithm – calculations done with
the ZEUS algorithm are essentially the same as the corresponding PPM simulation. We
show results for the 643 and 1283 root grid Enzo calculations (black and red lines, respec-
tively), and use only simulations that have the same number of dark matter particles as
root grid cells. Results for both high and low-overdensity calculations are shown. The
baryon particle mass for the equivalent GADGET simulations are shown as vertical arrows
corresponding to (left to right) the 2563, 1283 and 643 particle GADGET simulations.
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Figure 3.20: Number of resolution elements as a function of baryon overdensity for rep-
resentative Enzo and GADGET calculations. All Enzo simulations use the PPM hydro
algorithm – calculations done with the ZEUS algorithm are essentially the same as the
corresponding PPM simulation. We show results for the 643 and 1283 root grid Enzo

calculations (blue and red lines, respectively), and use only simulations that have the
same number of dark matter particles as root grid cells. Results for both high and low-
overdensity calculations are shown. Resolution element distributions for the GADGET

simulations with 643, 1283 and 2563 particles are shown as black lines (with the total
number of particles increasing from bottom to top).
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Given that the dark matter particle masses in the Enzo calculations are fixed (and the
same as in the corresponding GADGET simulation), the difference in baryon resolution
will have essentially no effect on the large scale structure in the simulation. However,
within a given halo better baryon mass resolution implies that shocks and the internal
dynamics of the halo are more highly resolved, which may become important in simula-
tions with more complicated physics, such as radiative cooling and star formation and
feedback.

3.9 Discussion and conclusions

This chapter presents initial results of a comparison of two state-of-the-art cosmological
hydrodynamic codes: Enzo, an Eulerian adaptive mesh refinement code, and GADGET,
a Lagrangian smoothed particle hydrodynamics code. These codes differ substantially in
the way they compute gravitational forces and even more radically in the way they treat
gas dynamics. In cosmological applications structure formation is driven primarily by
gravity, so a comparison of the hydrodynamical methods necessarily involves an implicit
comparison of the gravitational solvers as well. In order to at least partially disentangle
these two aspects we have performed both a series of dark matter-only simulations and a
set of simulations that followed both a dark matter and an adiabatic gaseous component.

Our comparison of the dark matter results showed good agreement in general pro-
vided we chose a root grid resolution in Enzo at least twice that of the mean interparticle
separation of dark matter particles together with a relatively conservative AMR refine-
ment criterion of dark matter overdensity of 2. If less stringent settings are adopted, the
AMR code shows a significant deficit of low mass halos. This behavior can be readily
understood as a consequence of the hierarchical particle-mesh algorithm used by Enzo

for computing gravitational forces, which softens forces on the scale of the mesh size.
Sufficiently small mesh cells are hence required to compete with the high force-resolution
tree-algorithm of GADGET. In general, we find excellent agreement with the results of
Heitmann et al.[202], particularly with regards to systematic differences in the power
spectrum and low-mass end of the halo mass function between mesh and tree codes. Our
results are complementary in several ways – Heitmann et al. use simulations run with
the “standard” parameters for many codes (using the same initial conditions) and then
compare results without any attempt to improve the quality of agreement, whereas we
examine only two codes, but systematically vary parameters in order to understand how
the codes can be made to agree to very high precision.

Examination of the dark matter substructure in the two most massive halos in our
1283 particle dark matter-only calculations shows that while both codes appear to resolve
substructure (and obtain substructure mass functions that are comparable) there are
some differences in the number and the spatial distribution of subhalos between the
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two codes. While the origin of these differences are not fully clear, it may be due to
a lack of spatial (i.e. force) or dark matter mass resolution, or possible due in part
to systematics in the grouping algorithm used to detect substructure. The observed
differences in substructure are not surprising when one considers how dissimilar the
algorithms that Enzo and GADGET use to calculate gravitational accelerations on small
scales are, and a further study with much higher resolution is necessary.

We also found broad agreement in most gas quantities we examined in simulations
which include adiabatic gas evolution, but there were also some interesting discrepancies
between the different codes and different hydrodynamical methods. While the distribu-
tions of temperature, density, and entropy of the gas evolved qualitatively similarly over
time, and reassuringly converged to the same mean temperature and entropy values at
late times, there were clearly some noticeable differences in the early evolution of the gas
and in the properties of intermediate density gas.

In particular, in the Enzo/ZEUS simulations we found an early heating of collapsing
or compressed gas, caused by injection of entropy by the artificial viscosity in this code.
This resulted in substantial pre-shock entropy generation in the Enzo/ZEUS runs. While
GADGET also uses an artificial viscosity to capture shocks, effects of pre-shock entropy
generation are substantially weaker in this code. This reflects its different parameter-
ization of artificial viscosity, which better targets the entropy production to shocked
regions.

Considering the entropy-density distribution in more detail, we found that Enzo/PPM

calculations show a marked trend towards a segregation of gas into a low-entropy reservoir
of unshocked low density gas and a pool of gas that has been shocked and accumulated
high entropy when it reached higher density regions. Such a bimodality is not apparent in
the Enzo/ZEUS and GADGET runs at z = 3. Instead, there is a smoother transition from
low- to high-entropy material; i.e. more gas of intermediate entropy exists. It is possible
that this intermediate-entropy gas is produced by the artificial viscosity in pre-shock
regions, where entropy generation should not yet take place. Some supporting evidence
for this interpretation is provided by the fact that the distributions of temperature and
entropy of Enzo/ZEUS become somewhat more similar to those of Enzo/PPM when we
reduce the strength of the artificial viscosity.

Perhaps the most interesting difference we found between the two methods lies in the
baryon fraction inside the virial radius of the halos at z = 3. For well-resolved halos Enzo

results asymptote to slightly higher than 100% of the cosmic baryon fraction, independent
of the resolution and hydro method used (though note that the results using the ZEUS

method appear to converge to a marginally higher value than the PPM results). This
also shows up as an overestimate of gas mass function Mgas > 108 h−1 M� compared to
the Sheth & Tormen function multiplied by (Ωb/ΩM). In contrast, GADGET halos at
all resolutions only reach ∼ 90% of the cosmic baryon fraction. This result is not easily
understood in terms of effects due to artificial viscosity since the ZEUS method used in
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Enzo produces more artificial viscosity than either of the other methods, yet the results
for the two hydro methods in Enzo agree quite well. The systematic difference between
Enzo and GADGET results in this regime provides an interesting comparison to Kravtsov
et al. [201], who examine the enclosed gas mass fraction at z = 0 as a function of radius
of eight galaxy clusters in adiabatic gas simulations done with the ART and GADGET

codes. They see that at small radii there are significant differences in enclosed gas mass
fraction, but at distances comparable to the virial radius of the cluster the mass fractions
converge to within a few percent and are overall approximately 95% of the universal
mass fraction. It is interesting to note that the enclosed gas mass fraction at the virial
radius produced by the ART code is higher than that of GADGET by a few percent, and
the ART gas mass fraction result would be bracketed by the Enzo and GADGET results,
overall. This suggests that it is not clear that a universal baryon fraction of ∼ 100% is
predicted by AMR codes, though there seems to be a clear trend of AMR codes having
higher overall baryon mass fractions in halos than SPH codes to, which agrees with the
results of Frenk et al. [172]

It is unclear why our results with the GADGET code differ from those seen in Kravtsov
et al. (with the net gas fraction in our calculations being approximately 5% lower at
the virial radius), though it may be due entirely to the difference in regime – we are
examining galaxy-sized halos with masses of ∼ 109 − 1010M� at z = 3, whereas they
model ∼ 1013 − 1014M� galaxy clusters at z = 0. Regardless, the observed differences
between the codes are significant and will be examined in more detail in future work.

It should be noted that the hydrodynamic results obtained for the GADGET SPH
code are typically found to be bracketed by the two different hydrodynamic formulations
implemented in the AMR code. This suggests that there is no principle systematic dif-
ference between the techniques which would cause widely differing results. Instead, the
systematic uncertainties within each technique, for example with respect to the choice
of shock-capturing algorithm, appear to be larger than the intrinsic differences between
SPH and AMR for the quantities of interest in this paper. We also note that some of
the differences we find in bulk simulation properties are likely to be of little relevance for
actual simulations of galaxy formation. For example, in simulations including more real-
istic physics, specifically a UV background, the low temperature gas that is affected most
strongly by artificial early heating in Enzo/ZEUS will be photoionized and thus heated
uniformly to approximately 104 K, so that many of the differences in temperature and
entropy at low overdensity owing to the choice of hydrodynamical method will disappear.
We will investigate such effects of additional physics in the future.

We have also examined the relative computational performance of the codes studied
here, using metrics such as the total CPU time and memory consumption. If one simply
compares simulations which have the same number of particles and grid cells at the start
of the simulation, GADGET performs better; i.e. it finishes faster, uses less memory, and
is more accurate at the low-mass end of the halo mass function. However, much of this
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difference is caused by the slowly increasing number of cells used by the AMR code to
represent the gas, while the Lagrangian code keeps the number of SPH particles constant.
If the consumed resources are normalized to the number of resolution elements used to
represent the gas (cells or particles), they are roughly comparable. Unfortunately, the
lower gravitational force-resolution of the hierarchical particle-mesh algorithm of Enzo

will usually require the use of twice as many root grid cells as particles per dimension for
high-accuracy results at the low-mass end of the mass function, which then induces an
additional boost of the number of needed cells by nearly an order of magnitude with a
corresponding impact on the required computational resources. As a consequence of this,
the gas will be represented more accurately, and this is hence not necessarily a wasted
effort. However given that the dark matter mass resolution is not also improved at the
same time (unless the DM particle number is also increased), it is probably of little help
to make progress in the galaxy formation problem, where the self-gravity of dark matter
is of fundamental importance. It is also true that the relative performance of the codes
is dependent upon the memory architecture and interprocessor communication network
of the computer used to perform the comparison as we discussed in Section 3.8.

It is encouraging that, with enough computational effort, it is possible to achieve
the same results using both the Enzo and GADGET codes. In principle both codes are
equally well-suited to performing dark matter-only calculations (in terms of their ability
to obtain results that both match analytical estimates and also agree with output from
the other code), but practically speaking the slower speed of the AMR code makes it
undesirable as a tool for doing large, high-resolution N-body calculations at the present
day. It should be noted that solving Poisson’s equation on an adaptive mesh grid is
a relatively new technique, particularly compared to doing N-body calculations using
tree and PM codes, and much can be done to speed up the Enzo Poisson solver and
decrease its memory consumption. The GADGET N-body solver is already very highly
optimized. If the speed of the Enzo N-body solver can be increased by a factor of a few,
an improvement which is quite reasonable to expect in the near future, the overall speed
that the codes require to achieve solutions with similar dark matter force resolutions and
mass functions will be comparable.

In future work it will be important to understand the origin of the small but finite dif-
ferences between Enzo/ZEUS, Enzo/PPM, and SPH at a more fundamental level. These
differences will most likely be seen (and the reasons for the differences identified) when
making direct comparisons of the formation and evolution of individual dark matter halos
and the gas within them. Additionally, isolated idealized cases such as the Bertschinger
adiabatic infall solution [203] will provide useful tests to isolate numerical issues. Ex-
amination of individual halos may also point the way to improved parameterizations of
artificial viscosity (and/or diffusivity) which would then also be beneficial for the SPH
method. Simultaneously, we plan to investigate the differences of the current generation
of codes when additional physical effects are modeled.
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Chapter 4

The Formation of Population III

stars in a ΛCDM universe

4.1 Summary

In this chapter I discuss aspects of primordial star formation in a ΛCDM universe. The
collapse of gas in a representative halo which will contain a single Population III protostar
is described in detail in Section 4.4.1, emphasizing the critical role that the chemistry and
cooling properties of molecular hydrogen gas (H2) play. Our results are both qualitatively
and quantitatively similar to those discussed in Abel, Bryan & Norman [39] despite being
in a different cosmology. Section 4.4.2 describes the role of angular momentum in the
formation of primordial protostars for the same halo, showing that the gas which collects
in the halo core preferentially has low angular momentum compared to gas that does not
collapse into the center of the halo. I analyze angular momentum transport in the halo
using standard disk methods as well as by using Lagrangian “tracer particles” and show
that some angular momentum transport also appears to take place during the collapse
of the halo through turbulent transport. The disk approximation is a poor one, however,
since the molecular cloud-like objects that form in the center of the halos are spheroidal in
shape and generally have circular velocities that are far lower than the Keplerian circular
velocity.

In Section 4.4.3, I examine the consistency of radial properties of halos which form
Population III stars when the simulation volume and the large scale structure are varied.
A dozen simulations are examined using three different box sizes. The simulations are
compared when the gas at the center of the halo has reached ∼ 1011 cm−3. Simulations
with the same box size but different large scale structure show comparable evolution
of the first protostar to form in each calculation,, though with significant scatter in
properties such as the core temperature and accretion rate onto the central protostar.
Simulations with different box sizes show a systematic trend towards higher molecular
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hydrogen fractions, lower baryon temperatures, and lower overall accretion rates onto
the primordial protostar with increasing box size. This result is robust and suggests that
previous estimates of the Population III mass range from three-dimensional cosmological
calculations may overestimate the Population III mass function by a significant amount.

Section 4.4.4 explores the formation of Population III stars in the presence of a soft UV
(SUV) background. I use a single cosmological realization and vary the SUV background
over a wide range of values. I show that for a significant range of the SUV background
fluxes the main effect of this background is to delay the collapse of the primordial cloud
by inhibiting the formation of molecular hydrogen. The final properties of the Population
III protostar are quite similar regardless of the UV background strength, though final
accretion rates vary nonlinearly with the SUV background flux. Halos subject to very
high soft UV background fluxes do not form enough H2 to collapse during the simulation,
which implies that a different mode of primordial star formation must take place when
the UV background is very high.

4.2 Motivation

As discussed in Section 1.3, many unresolved issues remain concerning the formation of
Population III stars. Exploration of the detailed properties of these objects via purely
analytical work is essentially impossible due to the wide range of physics involved, which
includes the dynamics of dark matter systems, hydrodynamics, and the nonequilibrium
chemistry and radiative cooling of the primordial gas out of which these objects form.
Similarly, simulations have shown that the formation process of Population III stars
is not inherently symmetrical, and that the formation of these stars takes place in a
cosmological context. This suggests that in order to correctly model the formation of
Population III stars, we need three-dimensional simulations with extremely high spatial
and temporal dynamical range.

Previously published three dimensional, high dynamical range cosmological simula-
tions of the formation of Population III stars (Abel, Bryan and Norman [39], hereafter
ABN) are an important step towards understanding these objects. This work was per-
formed in a Ωm = 1 universe, and derives results about the possible mass function of Pop-
ulation III stars using only one cosmological realization in a relatively small (128 h−1 kpc)
simulation volume. In this chapter I explore the formation of Population III protostars
in a ΛCDM universe, using multiple box sizes and cosmological realizations, in order to
determine the robustness of the predictions in ABN.

Another important scenario for the formation of Population III stars involves the
presence of a soft ultraviolet (SUV) background. Massive primordial stars are copious
emitters of ultraviolet radiation, particularly in the Lyman-Werner energy band (11.18−
13.6 eV) which is responsible for the photodissociation of molecular hydrogen. Since
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this radiation is below the ionization energy of atomic hydrogen it is probable that
photons in the Lyman-Werner band form a background of soft ultraviolet light, which
could significantly affect the formation of later generations of Population III stars via
the dissociation of molecular hydrogen. Previous work has been done on this subject by
Machacek, Bryan & Abel [71] – however, the work presented here uses higher resolution
calculations and examines more fully the evolution of a single halo.

4.3 Problem setup

All of the simulations described in this chapter are performed using the adaptive mesh
cosmology code Enzo, which is described in detail in Section 2.2. They are initialized at
z = 99 assuming a “concordance” cosmological model: Ωm = 0.3, Ωb = 0.04, ΩCDM =
0.26, ΩΛ = 0.7, h = 0.7 (in units of 100 km/s/Mpc), σ8 = 0.9, and using an Eisenstein &
Hu power spectrum [194] with a spectral index of n = 1. The selection of CDM power
spectrum is unimportant, as at the length scales being explored in these calculations the
power spectrum effectively becomes a power law with P (k) ∼ k−3 for all plausible CDM
power spectra. Twelve simulations are generated using a separate random seed for each,
meaning that the large-scale structure that forms in each of the simulation volumes is
statistically independent of the others. These simulations are divided into sets of four
simulations in three different box sizes: 0.3, 0.45, and 0.6 h−1 Mpc (comoving). The
first halo to form in each simulation with a mass of ∼ 106 M� is found using a dark
matter-only calculation with 1283 particles on a 1283 root grid with a maximum of 4
levels of adaptive mesh, refining on a dark matter overdensity criterion of 8.0. The
initial conditions are then regenerated with both dark matter and baryons for each of the
simulation volumes such that the Lagrangian volume in which the halo formed is now
resolved at much higher spatial and mass resolution using the nested initial condition
method described in Section 2.1.2. These simulations have a 1283 root grid and three
static nested grids, for an overall effective grid size of 10243 in the region where the most
massive halo will form. The highest resolution grid in each simulation is 2563 grid cells,
and corresponds to a volume (75, 112.5, 150) h−1 comoving kpc on a side for the (0.3, 0.45,
0.6) h−1 Mpc box. The dark matter particles in the highest resolution grid are (1.81, 6.13,
14.5) h−1 M� and the spatial resolution of cells on these grids are (293, 439, 586) h−1

parsecs (comoving). Though the simulations have a range of initial spatial resolutions
and dark matter masses, we find that the final simulation results are converged – the
spatial and mass resolution of the 0.3 h−1 Mpc volume simulations can be degraded to
that of the 0.6 h−1 Mpc without significantly changing the results.

The simulations are then started at z = 99 and allowed to evolve until the collapse of
the gas within the center of the most massive halo, which occurs at a range of redshifts
(as shown in Section 4.4.3). The equations of hydrodynamics are solved using the PPM
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method with a dual energy formulation, as described in Section 2.2.2 (the results are
the same when the ZEUS hydrodynamic method is used). The nonequilibrium chemical
evolution and optically thin radiative cooling of the primordial gas is modeled as described
in Section 2.2.5, following 9 separate species including molecular hydrogen (but excluding
deuterium). Adaptive mesh refinement is turned on such that cells are refined by factors
of two along each axis, with a maximum of 22 total levels of refinement. This corresponds
to a maximum resolution of (115, 173, 230) h−1 astronomical units (comoving) at the
finest level of resolution, with an overall spatial dynamical range of 5.37× 108. To avoid
effects due to the finite size of the dark matter particles, the dark matter density is
smoothed on a comoving scale of ∼ 0.5 pc. This is reasonable because at that radius in
all of our calculations the gravitational potential is dominated by the baryons.

Grid cells are adaptively refined based upon several criteria: baryon and dark matter
overdensities in cells of 4.0 and 8.0, respectively, checks to ensure that the pressure jump
and/or energy ratios between adjoining cells never exceeds 5.0, that the cooling time
in a given cell is always longer than the sound crossing time of that cell, and that the
Jeans length is always resolved by at least 16 cells. This guarantees that the Truelove
criterion [217], which is an empirical result showing that in order to avoid artificial
fragmentation in numerical simulations the Jeans length must be resolved by at least 4
grid cells, is always maintained by a comfortable margin. Simulations which force the
Jeans length to be resolved by a minimum of 4 and 64 cells produce results which are
essentially identical to when the Jeans length is resolved by a minimum of 16 cells.

The simulations described in Section 4.4.4 take one of the models described previously
(with a box size of 0.3 h−1 Mpc) and resimulate it assuming a range of unevolving soft UV
backgrounds with intensities in the Lyman-Werner band of FLW = 0.0, 10−24, 10−23, 3 ×
10−23, 10−22, 10−21 and 10−20 erg s−1 cm−2 Hz−1. This covers a much wider range of
parameter space than the results described in Machacek, Bryan & Abel [71]. As with the
other calculations, these are initialized at z = 99 and evolved until the collapse of the
core of the largest halo, which occurs at a range of redshifts. The simulations with the
two highest SUV fluxes do not collapse before z = 10, the point at which the simulations
are stopped.

4.4 Results

4.4.1 Collapse of a representative primordial star

In this section we describe in detail the collapse of a single primordial protostar out of
the ensemble discussed in Section 4.4.3. This simulation was selected at random out of
the four simulations performed in a 0.3 h−1 Mpc comoving volume. The results described
here are qualitatively similar for all of the calculations described in Section 4.4.3, though
there is some scatter in the exact evolution of each halo due to differences in large scale

106



structure and the detailed merger history of the halo. However, since the collapse is
essentially controlled by the chemistry of molecular hydrogen formation, the result is
general.

Figures 4.1, 4.2, and 4.3 zoom in on the central gas core in each halo at the redshift
of collapse by factors of four, showing projections of log baryon density, log baryon
temperature, and maximum refinement level, respectively. The largest-scale panel shows
a projection of a volume of the universe 1320 proper parsecs across and deep, and zooms
in to approximately 1.3 pc across. Each panel is centered on the collapsing protostar.
At large scales it is apparent from Figure 4.1 that the halo in which the first star in the
simulation volume forms is at the intersection of two cosmological filaments, a distinctly
asymmetrical situation. Examination of Figure 4.2 shows that the filaments and majority
of the volume of the halo are relatively hot (∼ 1000 Kelvin), due primarily to accretion
shocks formed by gas raining onto the filaments and into the halo. However, as we zoom
in towards the center of the halo we can see that the high-density gas is at a much
lower temperature (a few hundred Kelvin) due to cooling by the significant quantity of
molecular hydrogen that is formed in the halo. The gas within the halo is not particularly
spherical until scales of a few parsecs are reached, where a slightly warmer core of gas
forms with an overall mass of a few thousand solar masses, harboring a fully-molecular
protostar with a mass of ∼ 1 M�. The central core is generally spheroidal due to gas
pressure and is not rotationally supported at any point. Figure 4.3 shows how the
adaptive mesh refinement is used to resolve the cosmological structure by concentrating
refinement only where it is needed. This method is extremely effective at conserving
computational resources - the level 16 grids, which are the highest level of resolution
shown in Figure 4.3, only encompass ∼ 2.5 × 10−17 of the overall volume!

Figures 4.4 through 4.7 show the evolution of radial profiles of several spherically
averaged, mass-weighted baryon quantities of a representative primordial protostar from
approximately the onset of halo collapse until the formation of a fully molecular protostar.
The halo begins its collapse at z = 18.05 (approximately 2.04 × 108 years after the Big
Bang) and ends its collapse 6.294 × 106 years later, at z = 17.67. Figure 4.4 shows
the spherically-averaged baryon number density, temperature, and enclosed mass as a
function of radius. Figure 4.5 shows the molecular hydrogen fraction, electron fraction,
and H− fraction as a function of radius. Figure 4.6 shows the evolution of angular
momentum as a function of enclosed mass, baryon radial velocity as a function of radius,
and circular velocity of the cloud as a function of radius. Figure 4.7 shows the ratios
of gas cooling time to sound crossing time, cooling time to system dynamical time, and
sound crossing time to dynamical time as a function of radius. The lines in all of these
plots are color coded such that the same line color and type corresponds to the same
time in each panel.

We begin to follow the evolution of the halo at z = 18.05, when the central hydrogen
number density has reached n ∼ 103 particles per cubic centimeter (black solid line in
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Figure 4.1: Zoom on projected mass-weighted baryon density by factors of four for a rep-
resentative Population III protostar formation calculation at the last simulation output.
At this redshift (z = 19.28), the maximum density was ∼ 1012 cm−3 with a cosmic mean
density of ' 0.003 cm−3, for an overall density increase of 15 orders of magnitude. Top
left: view is 1320 pc across. Top center: 330 pc. Top right: 82.5 pc. Bottom left: 20.6
pc. Bottom center: 5.2 pc. Bottom right: 1.29 pc. Note that all sizes are in proper
parsecs at z = 19.28. In all panels yellow represents high densities and blue represents
low density, with the color table relative in each frame.
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Figure 4.2: Zoom on projected mass-weighted baryon temperature by factors of four
in a representative Population III protostar formation calculation at the last simulation
output. The collapse redshift is z = 19.28 and the simulation and spatial sizes of each
panel are the same as in Figure 4.1. In all panels white represents high temperatures and
dark colors represent low temperatures. The color table is relative in each frame.
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Figure 4.3: Zoom on projected maximum level in a representative Population III protostar
formation calculation at the last simulation output. The spatial scale for each panel and
simulation are the same as in Figure 4.1. The maximum projected level in each panel
is as follows. Top left: Level 6. Top center: Level 8. Top right: Level 10. Bottom left:
Level 12. Bottom center: Level 14. Bottom right: Level 16. In each panel the highest
level grid is represented is in red, second highest in yellow, and so on. The highest level
of resolution at this time is L = 22.
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all plots). This corresponds to a core with a radius of ∼ 1 parsec and a mass of a
few thousand solar masses, which is accreting gas at a significant rate. The molecular
hydrogen fraction within this core is slightly less than 10−3 but is still enough to rapidly
cool the center of the halo to ∼ 200 Kelvin at a cooling rate proportional to the square
of the gas density. The gas cannot cool below this temperature because of the sharp
decrease in the cooling rate of molecular hydrogen below ' 200 Kelvin. This core is the
high-redshift equivalent of a molecular cloud core. The halo “loiters” for approximately
six million years as the amount of molecular hydrogen is slowly built up to a mass fraction
of a few times 10−3 and the central density increases. As the gas density passes roughly
n ∼ 104 cm−3 the ro-vibrational levels of H2 are populated at their equilibrium value and
the cooling rate again becomes independent of density, which corresponds to an increase
in gas temperature with increasing density (as can be seen by the blue and green solid
lines in the temperature vs. radius plot in Figure 4.4). As the temperature increases
the cooling rate again begins to rise, leading to an increase in the inflow velocities of
gas. Examination of the plot of enclosed mass vs. radius in Figure 4.4 shows that at
this point the enclosed gas mass has exceeded the Bonnor-Ebert critical mass, which is
defined as MBE = 1.18M�(c4s/G

3/2)P
−1/2
ext , where cs is the local sound speed and G is

the gravitational constant. This is the critical mass at which an isothermal sphere of gas
with an external pressure Pext becomes unstable and undergoes collapse. This occurs in
this halo at a mass scale of ∼ 1000 M�.

When the central density of the cloud core becomes sufficiently large (n ∼ 108 cm−3)
the three-body H2 formation process takes over, resulting in a rapid increase in the
molecular hydrogen fraction from a few times 10−3 to essentially unity. This causes a
huge increase in the cooling rate, which results in a rapid drop in temperature of the
center of the halo, allowing it to contract and causing an increase in central density of
n ∼ 1015 cm−3 in only another ∼ 2 × 104 years, with a corresponding increase in the
inflow rates. At a mass scale of ∼ 1 M� a protostellar core forms which is completely
molecular and has gas accreting onto it supersonically, producing a protostellar accretion
shock at ∼ 100 astronomical units from its center. At this point the optical depth of the
halo core becomes close to unity to molecular hydrogen ro-vibrational line emission, so
we terminate the simulation because the assumption of optically thin radiative cooling
used in our code is no longer correct.

It is useful to examine the relevant chemical, thermal and dynamical timescales of
the collapsing halo. The ratios of cooling time to sound crossing time (calculated in
spherically averaged radial shells) as a function of radius, cooling time to dynamical
time, and sound crossing time to dynamical time are plotted in Figure 4.7. Within the
core of the halo (r ∼ 1 parsec) the sound crossing time (tcross) is slightly less than the
dynamical time (tdyn) for the majority of the evolution time of the halo, while the cooling
time (tcool) is somewhat longer than both of these timescales (but generally only by a
factor of a few). If tcross � tdyn the halo is stable against collapse because the halo
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can easily equilibrate its pressure to compensate for collapsing gas. If tcross � tdyn, the
system cannot come into equilibrium and is in free-fall. In this case, tcross ≈ tdyn < tcool,
and the system is undergoing a quasistatic collapse. This can also be seen by examining
the evolution of the radial infall velocity as a function of radius in Figure 4.6, where the
radial infall velocity is subsonic until the very last portion of the core’s evolution, when
it becomes locally supersonic. This corresponds to a dramatic increase in the molecular
hydrogen fraction, and a corresponding rapid decrease in the cooling time. In the center
of the halo at the last few data outputs, the cooling time becomes shorter than both
the dynamical time and sound crossing time, creating a situation where gas is essentially
free-falling onto the central protostar.

As in ABN, we carefully examine the forming protostellar core for signs of fragmen-
tation. This might be expected due to chemothermal instabilities caused by the rapid
formation of molecular hydrogen via the 3-body process and the resulting rapid increase
in cooling rate. However, the sound crossing time within the core is less than the H2 for-
mation timescale until the last output time, allowing mixing to take place and preventing
the formation of large density contrasts. By the time that the H2 formation timescale
becomes shorter than the sound crossing time, the core is fully molecular and therefore
stable against this chemothermal instability.

As discussed previously, at the time that the simulation is stopped (due to a break-
down in the assumption of optically thin radiative cooling at the center of the protostellar
cloud) a fully-molecular protostar with a mass of ∼ 1 M� has formed and is accreting
gas supersonically. The spherically-averaged accretion time at the last output timestep,
plotted as a function of enclosed gas mass, is shown as the red solid line in Figure 4.8.
The accretion time is defined as tacc ≡Menc/Ṁ , where Menc is the enclosed baryon mass
and Ṁ ≡ 4πr2ρ(r)v(r), with ρ(r) and v(r) being the baryon density and velocity as
a function of radius, and v(r) defined as being positive towards the center of the halo.
The green solid line the accretion time as determined by taking the local accretion rate
from the Shu isothermal collapse model, ṀShu = m0c

3
s/G, where m0 is a dimensionless

constant of order unity, cs is the sound speed, and G is the gravitational constant. This
value of Ṁ is calculated in each bin and the accretion time is plotted as Menc/ṀShu.
The dot-long dashed line is the Kelvin-Helmholz time for a Population III star with a
mass identical to the enclosed mass, as calculated from the results given by Schaerer [59].
The dot-short dashed line is the baryon accretion time for the result in Abel, Bryan, and
Norman.

The agreement between the spherically-averaged accretion rate and that estimated
by the Shu isothermal collapse model is striking. As shown by Shu [204], as long as
the densities in a condensing molecular cloud core span several orders of magnitude
before a stage of dynamic instability is reached, the subsequent collapse properties of
the cloud should resemble those of an isothermal sphere. The lack of characteristic time
and length scales results in a self-similar wave of infalling gas which propagates outward
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Figure 4.4: Evolution of spherically-averaged values for baryon number density (top
left), baryon temperature (top right), and enclosed baryon mass (bottom) as a function
of radius of a representative primordial protostar. The solid black line in each panel cor-
responds to spherically averaged radial profile of each quantity the onset of halo collapse,
at z = 18.05 (approximately 2.04 × 108 years after the Big Bang). Solid blue line: the
state of the halo 8.73 × 105 years after that. Solid green line: 5.103 × 106 years later.
Solid red line: 2.99 × 105 years later. Solid cyan line: 16, 660 years later. Dashed black
line: 2267 years later. Dashed blue line: 310 years later. Dashed green line: 91 years
later. Dashed red line: 31 years later, at a final output redshift of z = 17.673. The total
time spanned by the lines in these panels is 6.294× 106 years. The black dot-dashed line
in the bottom left panel is the Bonnor-Ebert critical mass calculated at the last timestep.
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Figure 4.5: Evolution of spherically averaged radial profiles of molecular hydrogen frac-
tion (top left), electron fraction (top right), and H− fraction (bottom) as a function of
radius of a representative primordial protostar. The lines correspond to the same times
as in Figure 4.4 and are of the same simulation.
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Figure 4.6: Evolution of radial profiles of spherically-averaged baryon angular momentum
as a function of enclosed mass of a representative primordial protostar (top left panel)
and radial velocity and circular velocity as a function of radius (top right and bottom
panels, respectively). The lines correspond to the same times as in Figure 4.4 and are
of the same simulation. The black dot-dashed line in the plot of radial velocity as a
function of radius is the sound speed calculated using the local baryon temperature in
each radial bin at the last simulation timestep. The black dot-dashed line in the plot of
baryon circular velocity vs. time is the Newtonian circular velocity computed from the
radius and enclosed baryon mass at the last timestep.
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Figure 4.7: Evolution of the ratio of gas cooling time to sound crossing time (top left
panel), gas cooling time to system dynamical time (top right panel), and sound crossing
time to system dynamical time (bottom panel) as a function of radius of a representative
primordial protostar. These quantities are mass-weighted and spherically-averaged, and
the lines correspond to the same times as in Figure 4.4 and are of the same simulation.
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at the speed of sound, resulting in the accretion rate described above. This accretion
rate can be derived in a more intuitive way by considering the properties of a cloud of
gas with radius R and mass Mcl which is marginally unstable. The accretion rate of
this gas must be given (as an order of magnitude estimate) by Ṁ ∼ Mcl/tdyn, where
tdyn = R/a, where a is the characteristic velocity associated with the cloud (the virial
velocity). If this cloud was originally marginally supported against its self-gravity, then
a2 ∼ GMcl/R (where G is the gravitational constant), which can be substituted into the
expression for Ṁ to give Ṁ ∼ a3/G, independent of R. In the case of this quasi-statically
collapsing cloud, the virial speed is comparable to the sound speed cs, giving Ṁ ∼ c3/G.
While the Shu model assumes that the entire cloud is of a constant temperature, our
calculations have a varying temperature as a function of radius, and a radially-varying
accretion rate based on this temperature is an excellent fit. This is reasonable because
the isothermal collapse model assumes that the infall wave propagates at the local sound
speed, assuming that the cloud is not supported by any other means. In this calculation
we completely neglect the effects of magnetic fields, and it can be seen from Figure 4.6
that rotation contributes an insignificant amount of support, resulting in gas pressure
being the sole means of support of the cloud.

Unfortunately, the final mass of the star remains unclear. This simulation (as well as
all of the other calculations discussed in this chapter) lacks any of the necessary feedback
processes that might halt accretion onto the protostar, making it impossible to accurately
determine the main-sequence mass of the star. However, rough bounds on the mass of this
object can be determined from examining Figure 4.8 and applying similar arguments to
those used in ABN. A one solar mass protostar evolves far too slowly to halt accretion,
particularly considering the high rates at which mass is falling onto the star (∼ 10−2

M�/year at Menc ≤ 100 M�). Approximately 20 M� of gas will be accreted within 103

years, and ∼ 60 M� of gas will be accreted within 104 years. A conservative minimum
mass limit to this star should be approximately 20 M�, since a thousand years is much
shorter than the observed evolution timescales of galactic protostars. This is unclear,
however, since little is known about the evolution of Population III protostars, whose
evolution timescales may bear little relation to those of their modern-day brethren. A
reasonable maximum mass is obtained by taking the mass at the maximum accretion
time, which corresponds to ∼ 103 M� at 2 × 106 years. However, the estimated main
sequence lifetime of a ∼ 300 M� primordial star is approximately 2 × 106 years, so it
is implausible that the star could grow to be much larger than that. From these rough
estimates, we obtain bounds on the mass of this Population III star of ∼ 20 − 300 M�.
As discussed previously, however, this is a rough estimate at best – radiative feedback
from the forming protostar will strongly affect the dynamics of the gas accreting onto
the protostar. It is unlikely that photon pressure will significantly contribute to halting
the accretion onto the protostar. However, as the star becomes luminous, production of
ultraviolet light will cause photodissociation of molecular hydrogen in the accreting gas,
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drastically affecting its cooling properties and possibly dramatically reducing or stopping
the accretion of gas onto the protostar.

4.4.2 Angular momentum transport

One of the most pressing issues in modern-day star formation is the transport of angular
momentum. The average rotational velocity observed in stars forming in the disk of
our galaxy is several orders of magnitude smaller than one would assume if angular
momentum of the collapsing molecular cloud out of which the star was formed were
conserved, implying that somehow a huge amount angular momentum is transported
away from the center of a collapsing molecular cloud core. The mechanisms responsible
for this in the galaxy are generally believed to be the fragmentation of molecular cloud
cores into multiple clumps (with the majority of the angular momentum going into their
orbits around each other) and transport via magnetic fields.

The scenario with Population III stars is significantly different. Examination of the
plot of radial velocity vs. radius in Figure 4.6 shows that the collapse of the cloud core
is never stopped by rotational support. The reasons for this can be seen by the plot of
angular momentum vs. enclosed gas mass in the same figure. At the onset of collapse,
the core of the gas cloud has a very low specific angular momentum, with the overall
distribution being generally well described by a power law. This is a natural consequence
of dark matter halos which are produced by gravitational collapse, as explained by Quinn
& Zurek [207], and is a result of efficient mixing and angular momentum transport during
the relaxation of the halo. They show that for well-mixed halos the angular momentum
distribution can be shown to have a power-law behavior, as is observed in this simulation.
Examination of the halo in which the first protostar forms shows it to be well-mixed, with
little substructure, and with the dark matter density profile of a halo in virial equilibrium.
All of these clues suggest that one might expect the angular momentum distribution
described above.

Even though the gas which ends up in the protostellar core starts out with very little
angular momentum, it is clear from the plot of specific angular momentum vs. enclosed
mass in Figure 4.6 that there is still some angular momentum transport occurring. This
can be seen even more clearly in Figure 4.9, which shows the mean angular momentum
evolution of the individual parcels of gas which end up at various radii in the dark matter
halo which contains the first protostar. Due to the Eulerian nature of Enzo, we cannot
in general directly follow the evolution of a specific parcel of gas. However, the code was
modified to include “tracer particles,” which are Lagrangian particles with zero mass that
are placed in the baryon gas and simply follow along with the flow of the fluid. These
particles were distributed evenly in the gas at the initialization of the simulation and were
given unique numerical identifiers, allowing us to track each of their courses individually.
These particles followed the flow of the baryon gas until the end of the simulation. At
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Figure 4.8: Baryon gas accretion time as a function of enclosed baryon mass for a rep-
resentative primordial protostar. This is defined as Menc/Ṁ , where Menc is the enclosed
baryon mass and Ṁ ≡ 4πr2ρ(r)v(r), with ρ(r) and v(r) being the baryon density and
velocity as a function of radius, and v(r) defined as being positive towards the center of
the halo. The red solid line is the baryon accretion time for this simulation. The green
solid line is the accretion time as determined by taking the accretion rate from the Shu
isothermal collapse model, ṀShu = m0c

3
s/G, where m0 is a dimensionless constant of

order unity, cs is the sound speed, and G is the gravitational constant. This value of Ṁ
is calculated in each bin and the accretion time is plotted as Menc/ṀShu. The dot-long
dashed line is the Kelvin-Helmholz time for a Population III star with a mass identical
to the enclosed mass, as calculated from the results given by Schaerer. The dot-short
dashed line is the baryon accretion time for the result in Abel, Bryan & Norman. The
plot here corresponds to the last output dataset, corresponding to the red dashed line in
Figures 4.4 through 4.7.
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this time, we then bin the particles as a function of their final radius (separating the
particles into bins spaced in roughly logarithmic intervals), and work backwards in time,
calculating the mean angular momentum and radius of each bin of particles as a function
of time. The results are displayed in the top panels of Figure 4.9. This shows that
gas which is always outside of the core of the halo experiences proportionally very little
transport of angular momentum or net movement inward, whereas the particles that
end up in the innermost bins typically lose a factor of more than 50 in specific angular
momentum and decrease their mean radius by a factor of more than 10. Figure 4.10
shows the evolution of cumulative angular momentum as a function of enclosed mass for
this halo for each component of the angular momentum, as well as for the overall angular
momentum of the system. This plot shows that the baryons within the cosmological halo
conserve angular momentum overall. However, it is clear that within the innermost few
thousand solar masses of gas, which corresponds to the quasistatically collapsing core of
the halo, angular momentum is being redistributed outward.

What causes this transport of angular momentum? In this situation there are three
plausible mechanisms for angular momentum transport in the absence of magnetic fields:
Tidal coupling between gas in the core and the dark matter halo (or other nearby cos-
mological structures), non-axisymmetric perturbations in the baryons themselves (which
generally serve to transport angular momentum outwards), and turbulent transport of
angular momentum.

The first mechanism can be easily ruled out by examining the relative distributions
of asymmetries in the baryons and dark matter. While the baryons that experience
significant angular momentum transport show deviations from spherical symmetry on a
scales of a few parsecs (see Figure 4.1), the dark matter is roughly spherical on scales
smaller than 10 parsecs. This implies little tidal coupling between the two components of
the halo. Tidal coupling from nearby cosmological structures can be ruled out by noting
that the different components of the angular momentum appear to be redistributed in a
similar manner, and also on a very rapid timescale. Tidal coupling from objects that are
very far away and much larger than the halo core would cause relatively small changes
which would take place much more gradually.

The analytical examination of non-axisymmetric perturbations requires us to treat
the halo core as a disk. Using the formalism discussed by Hachisu et al. [208], we define
a parameter β ≡ T/|W |, where T is the rotational energy and W is the gravitational
energy, calculated in cylindrical shells around the axis of rotation. They show that an
incompressible gas in axisymmetric equilibrium first experiences a dynamical gravita-
tional instability that forms a non-axisymmetric perturbation (e.g. spiral density wave)
at β = 0.27. The gas in our calculation is manifestly compressible, and Hachisu et al.
show in a later paper that gas with a polytropic equation of state experiences these in-
stabilities for β ' 0.44 [209]. The parameter β is calculated as a function of radius and
shown in the top right panel of Figure 4.11 for the same series of simulation outputs
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Figure 4.9: Evolution of mean baryon properties (as measured using baryon tracer parti-
cles) as a function of time. Left: Mean particle specific angular momentum as a function
of time. Right: Mean particle radius as a function of time. Each line corresponds to the
mean quantity for a number of particles particles that are in a specific spherical shell at
the end of the calculation, traced backwards through the simulation. Black solid line:
all particles with rpart ≤ 0.25 pc at the end of the simulation. Blue solid line: particles
with 0.25 < rpart ≤ 0.5 pc. Red solid line:particles with 0.5 < rpart ≤ 1 pc. Green solid
line: particles with 1 < rpart ≤ 2 pc. Cyan solid line: particles with 2 < rpart ≤ 4 pc.
Black dashed line: particles with 4 < rpart ≤ 8 pc. Blue dashed line: particles with
8 < rpart ≤ 16 pc. Red dashed line: particles with 16 < rpart ≤ 32 pc. Green dashed
line: particles with 32 < rpart ≤ 64 pc.
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Figure 4.10: Cumulative angular momentum as a function of enclosed mass for several
data outputs. Top left panel: absolute value of x component of angular momentum. Top
right panel: absolute value of y component of angular momentum. Bottom left panel:
absolute value of z component of angular momentum. Bottom right panel: total angular
momentum. The lines correspond to the same times as in Figure 4.4 and are of the same
simulation.
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described in Section 4.4.1. The critical value of β for noncompressible and polytropic
gases are shown as horizontal black lines. This plot shows that the only gas that could be
susceptible to non-axisymmetric perturbations is at very large radii which, while it may
experience some small amount of angular momentum transport over the the evolution of
the halo, is at a distance where the overall rotational period of the gas is significantly
longer than the the evolution time of the core of the halo. The beta values for the
gas which is seen to be undergoing angular momentum transport are far too small for
non-axisymmetric perturbations to be responsible for this transport. Additionally, visual
inspection of the core of the halo does not show any sort of spiral arm-type structures
which are the classical manifestation of non-axisymmetric perturbations.

One can analytically examine the turbulent transport of angular momentum in an
accretion disk using the method described by Li et al. [210]. They show that the radial
flux of the angular momentum can be calculated by integrating the off-axis component
of the Reynolds stress tensor such that FL =< Σδvrδvφ >, where FL is the angular
momentum flux, Σ is the surface density of the gas, δvr ≡ vr− < vr > is the deviation
from the mean radial velocity, δvφ ≡ vφ− < vφ > is the deviation from the mean circular
velocity, and < . . . > indicates averaging over the azimuthal component, φ. The results
are plotted in the bottom panel of Figure 4.11 in units of specific angular momentum
transport (for consistency) and with line colors corresponding to previous plots in this
chapter. A positive value of Fl indicates angular momentum transport outwards. There
is some evidence for turbulent transport of angular momentum in this analysis.

One problem with the analytical results discussed above is that the approximation of
a self-gravitating “thin disk” is very poor. Analysis of thin disks generally assumes that
the scale height of the disk, h, is much smaller than the radius at any given point, r. The
ratio of the scale height to the radius is typically calculated as h/r ≡ cs/vcirc, where cs
is the sound speed and vcirc is the circular velocity. This implies that cs � vcirc, which is
not the case in this situation. In fact, for the radii in question, cs ' vcirc, implying that
the cloud core is spheroidal. This can be shown more quantitatively by examining the
moment of inertia of the cloud core. The diagonal components of the moment of inertia
have values that are similar. If the core were disk-like, one of the three components of the
moment of inertia would be much smaller than the other two. Additionally, one cannot
apply standard analytics that use a “thick disk” approximation because in standard
situations where a thick disk is relevant, such as the accretion disks around compact
objects, there is a central source (such as a black hole) whose gravity overwhelmingly
dominates the self-gravity of the disk, which is not the case in this situation. Furthermore,
analytical models of thin disks typically assume that the disk is rotating at a Keplerian
orbital velocity (i.e. is rotationally supported) and that there is a central object such as
a star or black hole dominating the gravitational potential. In the situation examined
here, the overall circular velocity is far less than the Keplerian velocity and there is no
central object dominating the potential. This casts further doubts on the validity of
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using analysis techniques for thin disks on this particular situation.

Even though the validity of the analytical estimates for angular momentum transport
discussed previously are dubious, this does not mean that all of the scenarios discussed
previously are completely ruled out. Figure 4.13 shows the spherically-averaged, mass-
weighted evolution of the radial velocity, RMS (root-mean-square) velocity of the baryon
gas, and RMS Mach number of gas in the collapsing halo. Examination of this figure
shows that at all radii where angular momentum transport is significant, the RMS velocity
of the baryon gas is much greater than the average radial velocity, and that the average
radial velocity is much smaller than the sound speed at most radii, while the RMS Mach
number vs. radius plot shows that the baryon velocity is significantly larger than the
sound speed at radii where angular momentum is being transported. This suggests that
the gas in the core of the halo is experiencing significant supersonic turbulent motion,
which may be responsible for the transport of angular momentum. In a turbulent medium
in a gravitational potential, a given volume of space contains packets of gas that have
a large distribution of angular momentum with respect to the center of the well. This
turbulent medium effectively transports angular momentum outwards by allowing packets
of gas with low angular momentum to sink towards the center of the potential well,
replacing gas with higher angular momentum. This mechanism is only effective when
the cooling time of the gas is longer than the dynamical time (e.g. when gas pressure
plays a significant role). This scenario is given credibility by Figure 4.12, which shows
a scatter plot of the specific angular momentum of tracer particles (with respect to the
maximum baryon density) at the onset of halo collapse to the distance of that particle
from the baryon density maxima at the point at which the simulation is terminated. Gas
within the innermost few parsecs (which is the region undergoing quasistatic collapse
and angular momentum transport) shows a distinct (though noisy) relationship between
initial angular momentum and final distance with respect to the halo center.

A further possible source of transport of angular momentum could be due to numerical
shear viscosity. In order to determine whether this is the case, a parameter study was
carried out where we varied the effective resolution of the simulation by a factor of 16
along each grid axis by enforcing that the Jeans length be resolved by a minimum of 4, 16
or 64 cells. The properties of the halo in all cases were very similar. Additionally, we used
two different hydrodynamical methods (both PPM and the method used in the ZEUS
code) with different orders of accuracy, and found no significant differences between the
two calculations. The ZEUS hydro method has an explicit artificial viscosity for shock
capturing purposes, and the PPM method uses a Riemann solver which has no explicit
numerical viscosity, and they get the same result. While this is not a formal proof of the
lack importance of numerical viscosity, it is highly suggestive that the observed angular
momentum transport is not caused by numerical effects.

Quantifying the magnitude of numerical viscosity is difficult due to the range of spatial
and temporal resolutions. The most straightforward way to do so would be to simulate
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Figure 4.11: Evolution of quantities related to the angular momentum as a function of
radius at several output times. Top left panel: Specific angular momentum as a function
of radius. Top right panel: Evolution of the β parameter as a function of radius. Bottom
panel: specific angular momentum flux as a function of radius. In the top right panel
the critical values of β for compressible and noncompressible fluids are shown by the top
and bottom horizontal black lines, respectively. The line colors correspond to the same
output times as are described in previous figures.
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Figure 4.12: Scatter plot of initial specific angular momentum of tracer particles with
respect to the maximum density of the collapsing halo core versus the particle’s final
distance from the halo core at the point that the simulation is terminated.
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a problem with an analytical solution that explicitly includes viscosity and solve it on
an adaptive grid using the Euler equations, which implicitly assume no viscosity. Then
one would observe the evolution of the problem and post facto estimate the numerical
viscosity. The numerical viscosity in an adaptive mesh code may be highly dependent on
the test problem.

4.4.3 Consistency of result across multiple realizations

Another important issue relating to studies of the formation of Population III stars in a
cosmological context is the consistency of the results over a range of simulation parame-
ters. As discussed in Section 4.2, previously published high dynamical range calculations
of Pop III star formation have concentrated upon a single cosmological realization. While
this is an important first step, it neglects possible systematic effects relating to simulation
box size and other parameters, and also allows for error due to small number statistics.

In this section I attempt to address some of these issues. Twelve simulations are
set up as described in Section 4.3. Each simulation has a different cosmological realiza-
tion (i.e. large scale structure). Four simulations in each of three box sizes (0.3, 0.45,
and 0.6 h−1 comoving Mpc) are performed, with the results shown in Figures 4.14
through 4.23.

Figures 4.14 - 4.16 display several mean properties of the halos. In each of the panels
in these graphs the information for each separate simulation is plotted as a filled-in square
which is color coded according to box size as described in the figure captions. The colored
crosses correspond to mean values for all simulations of a given box size (with colors again
corresponding to the box size), and the green circle corresponds to the mean of all twelve
of the simulations together.

The top left panel of Figure 4.14 shows the virial mass of each halo at the time of
protostellar cloud collapse plotted against the redshift of collapse. Though there is a
large amount of scatter in virial mass overall (with the smallest halo having a mass of
1.36 × 105 M� and the largest 6.92 × 105), the average virial mass in each box size is
virtually identical. The mean virial mass of all twelve of the halos is 3.63 × 105 M�,
which is significantly lower than the halo mass of 7× 105 M� in ABN. In contrast to the
virial mass, there is a strong trend in earlier collapse time (large collapse redshift) as a
function of box size, with the 0.45 and 0.6 h−1 Mpc boxes collapsing at a mean redshift
of z ' 27.5 and the 0.3 h−1 Mpc boxes collapsing at a mean redshift of z ' 22. This
can be understood as a result of the distribution of power as a function of simulation
volume. Since the power as a function of wave number falls off as P (k) ∼ k−3 at
large wave numbers (small box sizes), doubling the box size significantly increases the
power on large scales. The net results of this is that the most massive halo in each box
forms significantly earlier, out of a density peak that is statistically denser overall, and
also undergoes a more rapid merger history. An effect of this can be seen in the top
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Figure 4.13: Top left panel: spherically-averaged, mass-weighted radial velocity as a
function of radius for several simulation output times. Top right panel: spherically-
averaged, mass-weighted root-mean-square velocity as a function of radius for several
simulation output times. Bottom panel: spherically-averaged, mass-weighted RMS Mach
number as a function of radius for several simulation output times. The line colors
correspond to the same output times as are described in previous figures.
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right panel of Figure 4.14, which shows the mean baryon temperature in each halo as a
function of collapse redshift. As with the plot of virial mass vs. collapse redshift, there is
a significant amount of scatter in the results, but a clear trend of increased overall halo
temperature with box size is apparent. This is explainable in terms of competing heating
and cooling effects. The gas in a given halo is heated by shocking during merger events,
and cools radiatively (primarily due to line cooling from molecular hydrogen at these
temperatures for a gas of primordial composition). A higher overall merger rate results
in a warmer overall halo temperature assuming that the halo merger rate is comparable
to the overall gas cooling rate (which is true for halos in the early universe). However,
the rate of molecular hydrogen production at low densities increases as a function of
temperature (due to the increased availability of free electrons) at the temperatures
relevant to Population III halos, so even though the halos that form in larger boxes have
higher overall mean temperatures, they also produce more molecular hydrogen in their
cores, leading to an overall cooler halo core when collapse takes place. This will be
discussed in more detail later in this section.

The mean halo baryon temperature vs. halo virial mass is plotted in the bottom left
panel of Figure 4.14, and the mean halo temperature versus the halo virial temperature
is plotted in the bottom right hand panel. The dashed line in the plot of halo mean
temperature vs. virial mass scales as T ∼ M2/3, arbitrarily scaled to intersect the mean
temperature and mass value for all simulations. This is the scaling relation expected
from gas in a halo forming in a situation where radiative cooling is unimportant, and
is commonly used to understand the mass-temperature relationship of the intracluster
medium in galaxy clusters. There is some relationship between mean temperature and
virial mass that generally conforms to this power law, which is due to the relatively
poor cooling properties of molecular hydrogen. Still, there is a great deal of scatter
in the relationship. The amount of scatter is reduced when considering the mean halo
temperature vs. halo virial radius (shown in the bottom right hand panel). The halo virial

temperature is a function of both halo mass and of redshift, with Tvir ∼M
2/3
vir (1+z). The

reduction in scatter is primarily due to the general trend of halos collapsing at higher
redshifts having higher overall gas temperatures for an unevolving mean virial mass,
which results in overall higher virial temperatures at high redshift. Though there is a clear
relationship between halo baryon temperature and virial temperature, the mean baryon
temperature in all cases is significantly lower than the halo virial temperature, suggesting
that radiative cooling plays a non-negligible role in the overall temperature of the halo
despite its generally poor cooling properties at low temperatures. If radiative cooling were
completely unimportant the mean halo baryon temperature would be approximately the
virial temperature.

Figure 4.15 shows the relationship of the angular momentum in the halos with various
quantities. The angular momentum of a cosmological halo can be described as a function
of the dimensionless spin parameter, λ ≡ J |E|1/2/GM5/2, where J is angular momentum,
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Figure 4.14: Plots of basic halo quantities for 12 different cosmological random realiza-
tions. Top left panel: halo virial mass vs. protostar collapse redshift. Top right panel:
mean mass-weighted halo baryon temperature vs. collapse redshift. Bottom left panel:
mean mass-weighted halo vs. halo virial mass. Bottom right panel: halo mean baryon
temperature vs. halo virial temperature. In each plot, black, blue and red squares cor-
respond to simulations with 0.3 h−1 Mpc, 0.45 h−1 Mpc and 0.6 h−1 Mpc comoving box
sizes. Each colored “x” corresponds to the average value for simulations with that box
size, with colors corresponding to the same simulation box sizes as the squares. The
green circle corresponds to the average for all simulations together. The dashed line in
the plot of halo mean temperature vs. virial mass (bottom left) scales as T ∼ M2/3,
arbitrarily scaled to intersect the mean temperature and mass value for all simulations.
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E is the total energy, G is the gravitational constant and M is the halo mass. This is
roughly equivalent to the ratio of the angular momentum of the halo to the angular
momentum needed for the halo to be rotationally supported. Typical values for the halo
spin parameter are 0.02−0.1, with a mean value of 0.05 [221, 222]. The gas spin parameter
is somewhat lower than the dark matter spin parameter, which this is a function of the
way in which the total energy and masses are calculated, and not an indication that there
is less angular momentum per unit mass in the baryons as opposed to the dark matter.

The top left panel of Figure 4.15 shows the gas and dark matter spin parameters
plotted against each other for the halo in each simulation that forms the Population III
protostar, at the time of collapse. The mean value of the dark matter spin parameter
is approximately 0.05, and both this and the overall range and distribution of the spin
parameters agree with previous analytical and numerical results [221, 222]. The baryon
gas spin parameter is lower overall (this is an effect of the scaling of the parameter and
should be taken as a renormalization), and the distribution agrees with previous work.
There appears to be some overall positive correlation between the dark matter and baryon
spin parameters (e.g. halos with higher overall dark matter angular momentum tend to
have higher overall baryon angular momentum) but there is considerable scatter. In all
cases the spin parameters are much less than one, which suggests that the halos have
little overall angular momentum. This is a general property of cosmological halos, and
is consistent with previous analytical and numerical work, as well as the properties of
angular momentum in the representative halo discussed in Section 4.4.1.

The top right hand panel of Figure 4.15 plots dark matter spin parameter vs. collapse
redshift of the halo. There is no evidence for evolution of the spin parameter with redshift.
The bottom left and right panels of Figure 4.15 plot the baryon and dark matter spin
parameters against the halo virial mass. As with the other quantities examined, there is
considerable scatter in the distributions, but no evidence for a clear relationship between
halo virial mass and either gas or dark matter spin parameter. In all of the panels of this
figure there is no evidence for any systematic effect due to box size.

Figure 4.16 plots the angle between the overall dark matter and baryon angular
momentum vectors (θ) versus several different quantities. The top left panel plots θ vs.
halo virial mass at the time of formation of the Pop III protostar in each halo. Overall,
the average value for θ is approximately 25 degrees, which is consistent with recent
numerical simulations. There is a great deal of scatter in θ, which is also consistent.
There is no evidence for correlation between θ and halo virial mass. The top right panel
plots θ vs. collapse redshift for each simulation, and the bottom left and right panels
plot the gas and dark matter spin parameters vs. θ, respectively. There appears to be
no correlation between θ and collapse redshift or the gas or dark matter spin parameters,
and no evidence of there being any systematic effect due to box size.

In addition to plots of mean halo properties, it is very useful to look at more detailed
information about each halo. Figures 4.17 through 4.23 show spherically-averaged, mass-
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Figure 4.15: Plots of basic halo quantities for 12 different cosmological random realiza-
tions. Top left panel: gas spin parameter vs. dark matter spin parameter. Top right
panel: dark matter spin parameter vs. halo collapse redshift. Bottom left: gas spin
parameter vs. halo virial mass. Bottom right: dark matter spin parameter vs. halo
virial mass. In each plot, black, blue and red squares correspond to simulations with 0.3
h−1 Mpc, 0.45 h−1 Mpc and 0.6 h−1 Mpc comoving box sizes. Each colored “x” corre-
sponds to the average value for simulations with that box size, with colors corresponding
to the same simulation box sizes as the squares. The green circle corresponds to the
average for all simulations together.

132



Figure 4.16: Plots of basic halo quantities for 12 different cosmological random realiza-
tions. Top left panel: Theta (angle between gas and dark matter angular momentum
vectors) vs. halo virial mass. Top right panel: theta vs. halo collapse redshift. Bottom
left panel: gas spin parameter vs. theta. Bottom right panel: dark matter spin param-
eter vs. redshift. In each plot, black, blue and red squares correspond to simulations
with 0.3 h−1 Mpc, 0.45 h−1 Mpc and 0.6 h−1 Mpc comoving box sizes. Each colored “x”
corresponds to the average value for simulations with that box size, with colors corre-
sponding to the same simulation box sizes as the squares. The green circle corresponds
to the average for all simulations together.
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weighted radial profiles of several baryon quantities in eleven of the twelve simulations
(one simulation crashed and could not be restarted before reaching a high enough den-
sity). Since the cores of the most massive halo in each simulation collapse at a range of
redshifts, it is not worthwhile to compare each halo at a specific point in time. Instead,
we choose to compare them at a fixed point in the halo’s evolution, as measured by the
peak central baryon density in the protostellar cloud, which is roughly analogous to a
constant point in the evolution of the protostar. In each of the figures discussed below,
the top left panel shows radial profiles for all of the simulations plotted together. The
top right panel shows only the results for the 0.3 h−1 Mpc box, the bottom left panel
shows only results for the 0.45 h−1 Mpc box, and the bottom right panel shows only
results for the 0.6 h−1 Mpc box. Line of a given color and line type correspond to the
same simulation in all figures.

Figure 4.17 shows the plots of number density as a function of radius for eleven sim-
ulations, shown at approximately the same point in their evolution. There is remarkably
little scatter in the density profiles for all of the simulations, and the density profiles
all tend towards ρ(r) ∼ r−2. It was shown by Bodenheimer & Sweigart [205] that for a
cloud of gas that is nearly isothermal and slowly rotating and which has negligible sup-
port from a magnetic field, the subsonic evolution of the gas will tend to produce a 1/r2

density distribution as long as the thermal pressure remains approximately in balance
with the gravitational field. In particular, Chandrasekhar [206] showed that a molecular
cloud core which forms at subsonic speeds will tend towards the density distribution of
a singular isothermal sphere,

ρ(r) =
c2s

2πGr2
(4.1)

where cs ≡ (kT/m)1/2 is the isothermal sound speed, T, k, and m are the temperature,
Boltzmann’s constant, and mean molecular weight of the gas, respectively, and and r is
the radius. Since the halos generally have low angular momentum (as seen in Figure 4.15)
and magnetic fields are completely neglected in these simulations, it is reasonable that the
density go as ρ(r) ∼ r−2 in all of the simulations. The overall normalization of the density
profiles also agrees very well. This can be understood as a result of the cooling properties
of hydrogen gas. Each of the halos examined in this figure has the same composition, and
therefore is cooled by the same mechanism. Only a small amount of molecular hydrogen is
needed to cool the gas relatively efficiently, suggesting that in a halo that is in a somewhat
stable equilibrium the gas temperature at low densities should be approximately constant
for different halos, independent of the molecular hydrogen fraction. At densities above
approximately 104 cm−3 the cooling rate becomes independent of density and the overall
evolution of the gas happens very rapidly, so small differences in the initial molecular
hydrogen fraction become magnified (as discussed later in this section).
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Figure 4.17: Mass weighted, spherically-averaged baryon number density as a function
of radius for 11 different cosmological random realizations, chosen at an output time
where peak baryon density values are approximately the same. There are three box
sizes: 0.3 h−1 Mpc, 0.45 h−1 Mpc and 0.6 h−1 Mpc (comoving). One of the 0.45 h−1 Mpc
simulations has been omitted since the simulation crashed before reaching a comparable
density value. Top left panel: All 11 simulations plotted together. Top right panel: 0.3
h−1 Mpc box simulations. Bottom left panel: 0.45 h−1 Mpc box simulations. Bottom
right panel: 0.6 h−1 Mpc box simulations.
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Figure 4.18 shows the baryon temperature as a function of radius. At radii outside
of ∼ 1 parsec,the temperature profiles are similar between all of the simulations, though
halos forming in larger simulation volumes tend to have a higher overall temperature.
At smaller radii there is significant scatter in core temperature of the simulations (for a
fixed density), with a systematic trend towards halos forming in larger boxes having a
lower overall core temperature. Examination of Figure 4.19 (molecular hydrogen mass
fraction as a function of radius) shows that halos which form in a larger simulation
volume have systematically larger H2 mass fractions, though this effect is much more
pronounced in the core of the halo than in the envelope. This difference in molecular
hydrogen fraction can be understood as a result of the overall halo temperature. The rate
at which molecular hydrogen is produced at low densities is limited by the availability of
free electrons, as described in Section 1.3.2. The mean fraction of free electrons available
in the primordial gas is a function of baryon temperature, with larger temperatures
corresponding to larger electron fractions. On the other hand, the rate at which molecular
hydrogen forms via the H− channel declines at high temperatures. Since the limiting
reaction in the formation of molecular hydrogen via the H− channel is the formation
of free electrons, this reaction dominates, and it can be shown using a simple one-zone
calculation following the nonequilibrium primordial chemistry that molecular hydrogen
production is maximized at ∼ 1000 K. Halos with higher overall baryon temperatures
will have systematically higher molecular hydrogen fractions. Once the core of the halo
begins to collapse to very high densities small differences in the molecular hydrogen
fraction are amplified, resulting in a general trend towards halos with higher overall
baryon temperatures having higher H2 fractions in their cores, and thus lower central
temperatures.

Figures 4.20 and 4.21 show the enclosed baryon mass and circular velocity in each halo
as a function of radius. The plot of enclosed mass versus radius shows very little scatter
between the different simulations. This is to be expected since this is essentially another
way of showing that the overall density distributions of the halos has little scatter (as in
Figure 4.17), and is a result of the cooling properties of a primordial gas. The plot of
circular velocity as a function of radius shows much more scatter, though there is no clear
trend with simulation box size. In all cases the overall circular velocity is significantly
less than the Keplerian orbital velocity, which agrees with our previous observation that
the halos have generally low angular momentum, and that during the collapse of the core
angular momentum is transported outward by turbulence.

It is useful to examine Figures 4.22 and 4.23 together, since they are essentially
two different ways of looking at the same data. Figure 4.22 is the mean baryon radial
velocity as a function of radius, and Figure 4.23 is the baryon accretion time as a function
of enclosed mass. Figure 4.22 shows that there is a clear systematic effect present,
where halos forming in simulations with larger boxes having a significantly lower overall
radial velocity at small radii. This translates directly to a lower overall accretion rate
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Figure 4.18: Mass-weighted, spherically-averaged baryon temperature as a function of
radius for 11 different cosmological random realizations, chosen at an output time where
peak baryon density values are approximately the same. There are three box sizes:
0.3 h−1 Mpc, 0.45 h−1 Mpc and 0.6 h−1 Mpc (comoving). One of the 0.45 h−1 Mpc
simulations has been omitted since the simulation crashed before reaching a comparable
density value. Top left panel: All 11 simulations plotted together. Top right panel: 0.3
h−1 Mpc box simulations. Bottom left panel: 0.45 h−1 Mpc box simulations. Bottom
right panel: 0.6 h−1 Mpc box simulations.
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Figure 4.19: Mass-weighted, spherically-averaged molecular hydrogen fraction as a func-
tion of radius for 11 different cosmological random realizations, chosen at an output time
where peak baryon density values are approximately the same. There are three box
sizes: 0.3 h−1 Mpc, 0.45 h−1 Mpc and 0.6 h−1 Mpc (comoving). One of the 0.45 h−1 Mpc
simulations has been omitted since the simulation crashed before reaching a comparable
density value. Top left panel: All 11 simulations plotted together. Top right panel: 0.3
h−1 Mpc box simulations. Bottom left panel: 0.45 h−1 Mpc box simulations. Bottom
right panel: 0.6 h−1 Mpc box simulations.
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Figure 4.20: Mass-weighted, spherically-averaged enclosed baryon mass as a function
of radius for 11 different cosmological random realizations, chosen at an output time
where peak baryon density values are approximately the same. There are three box
sizes: 0.3 h−1 Mpc, 0.45 h−1 Mpc and 0.6 h−1 Mpc (comoving). One of the 0.45 h−1 Mpc
simulations has been omitted since the simulation crashed before reaching a comparable
density value. Top left panel: All 11 simulations plotted together. Top right panel: 0.3
h−1 Mpc box simulations. Bottom left panel: 0.45 h−1 Mpc box simulations. Bottom
right panel: 0.6 h−1 Mpc box simulations.

139



Figure 4.21: Mass-weighted, cylindrically-averaged baryon circular velocity as a function
of radius for 11 different cosmological random realizations, chosen at an output time
where peak baryon density values are approximately the same. There are three box
sizes: 0.3 h−1 Mpc, 0.45 h−1 Mpc and 0.6 h−1 Mpc (comoving). One of the 0.45 h−1 Mpc
simulations has been omitted since the simulation crashed before reaching a comparable
density value. Top left panel: All 11 simulations plotted together. Top right panel: 0.3
h−1 Mpc box simulations. Bottom left panel: 0.45 h−1 Mpc box simulations. Bottom
right panel: 0.6 h−1 Mpc box simulations.
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onto protostellar forming in halos in larger simulation volumes, which can be seen in
Figure 4.23. For a wide range of enclosed mass, the average accretion rate of halos in the
0.6 h−1 Mpc simulations is more than an order of magnitude less than that of halos in the
0.3 h−1 Mpc boxes. As discussed in Section 4.4.1, this can be understood using the Shu
isothermal sphere model, where subsonic collapse of gas onto the core of the sphere occurs
at a rate controlled by the sound speed. Since the core temperatures are lower overall
in the large simulation volumes, this translates to a lower sound speed and overall lower
accretion rate. The implications of this are extremely significant – a lower accretion rate
implies a lower overall Population III IMF in larger boxes. Applying the same estimates
for the bounds of the stellar masses used in Section 4.4.1, we obtain a mass range of
roughly 10− 500 M� for all four of the halos that form in simulations with a box size of
0.3 h−1 Mpc, and ∼ 10 − 100 M� for the halos that form in simulations with a box size
of 0.6 h−1 Mpc, though the mean maximum mass (based on the Kelvin-Helmholz time)
in the smaller box is ' 200 M� and in the larger box is ' 30 M�.

4.4.4 The formation of a Population III star in the presence of

a soft UV background

Another important scenario for the formation of Population III stars involves the presence
of a soft ultraviolet (SUV) background. As discussed in Section 4.2, massive primordial
stars are copious emitters of ultraviolet radiation, particularly in the Lyman-Werner band
(11.18 − 13.6 eV) which is responsible for the photodissociation of molecular hydrogen.
Since this radiation is below the ionization energy of atomic hydrogen it is predicted
that photons in the Lyman-Werner band would form a nearly uniform background of
soft ultraviolet light, which could significantly affect the formation of later generations
of Population III stars due to the dissociation of molecular hydrogen. Previous work has
been done on this subject by Machacek, Bryan & Abel [71] – however, the work presented
here uses higher resolution calculations and examines more fully the evolution of a single
halo.

The simulations are set up as described in Section 4.3 in an 0.3 h−1 Mpc box. A
single cosmological realization is resimulated assuming a constant Lyman-Werner soft
UV background with intensities of FLW = 0, 10−24, 10−23, 3 × 10−23, 10−22, 10−21 and
10−20 ergs s−1 cm−2 Hz−1, which covers a much wider range of parameter space than
the results described by Machacek et al. The simulations are initialized at z = 99 and
are evolved until the collapse of the core of the largest halo, which occurs at a range of
redshifts. The simulations with the two highest SUV fluxes do not collapse before z = 10,
when these two simulations are stopped.

Figure 4.24 shows mean halo quantities for several of these simulations at the redshift
of collapse of the halo core. The top left panel shows the Lyman-Werner flux vs. halo
collapse redshift for all of the simulations whose halos actually collapsed. The top right

141



Figure 4.22: Mass-weighted, spherically-averaged baryon radial velocity as a function
of radius for 11 different cosmological random realizations, chosen at an output time
where peak baryon density values are approximately the same. There are three box
sizes: 0.3 h−1 Mpc, 0.45 h−1 Mpc and 0.6 h−1 Mpc (comoving). One of the 0.45 h−1 Mpc
simulations has been omitted since the simulation crashed before reaching a comparable
density value. Top left panel: All 11 simulations plotted together. Top right panel: 0.3
h−1 Mpc box simulations. Bottom left panel: 0.45 h−1 Mpc box simulations. Bottom
right panel: 0.6 h−1 Mpc box simulations.
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Figure 4.23: Mass-weighted, spherically averaged baryon accretion time as a function
of radius for 11 different cosmological random realizations, chosen at an output time
where peak baryon density values are approximately the same. There are three box
sizes: 0.3 h−1 Mpc, 0.45 h−1 Mpc and 0.6 h−1 Mpc (comoving). One of the 0.45 h−1 Mpc
simulations has been omitted since the simulation crashed before reaching a comparable
density value. Top left panel: All 11 simulations plotted together. Top right panel: 0.3
h−1 Mpc box simulations. Bottom left panel: 0.45 h−1 Mpc box simulations. Bottom
right panel: 0.6 h−1 Mpc box simulations. The baryon accretion time is defined as
Tacc ≡ Menc/Ṁ , where Menc is the enclosed baryon mass and Ṁ ≡ 4πr2ρ(r)v(r), with
ρ(r) and v(r) being the baryon density and velocity as a function of radius, and v(r)
defined as being positive towards the center of the halo. The dot-long dashed line in each
panel is the Kelvin-Helmholz time for a Population III star with a mass identical to the
enclosed mass, as calculated from the results given by Schaerer. The dot-short dashed
line in each panel is the baryon accretion time for the result in Abel, Bryan & Norman.
The upper and lower diagonal solid black lines correspond to constant accretion rates of
10−3 and 10−3 M�/yr, respectively. 143



panel shows the Lyman-Werner flux vs. virial mass of the eventual halo that formed for
each simulation. Finally, the bottom panel shows the virial mass vs. collapse redshift for
each of these calculations. The collapse redshift of the “control” simulation (FLW = 0) is
shown as a vertical blue dashed line in the top two panels and as a blue square in the
bottom panel.

This figures shows that there is a clear relationship between the Lyman-Werner flux
intensity and the collapse redshift and virial mass of the halo. A larger Lyman-Werner
flux results in a later collapse time because the halo must be larger in order to have core
densities high enough that significant amounts of molecular hydrogen can form in them.
The final mass of the halo in the simulation with FLW = 10−22 is approximately five
times that of the control simulation, and collapses significantly later in time. This agrees
qualitatively with the results seen by Machacek, Bryan and Abel [71], who suggest that
there is a “minimum halo mass” which is a function of the strength of the UV background.
The practical effect of this is that as the Lyman-Werner UV background builds up the
minimum halo mass which is necessary to form significant amounts of molecular hydrogen
climbs, causing an overall suppression of the formation of Population III stars in halos
with masses that are ∼ 106 M�. When the Lyman-Werner flux becomes extremely
large, the formation of molecular hydrogen is almost entirely suppressed, resulting in
termination of Pop III star formation in halos in this mass range. In this situation,
primordial star formation cannot occur in halos this small – rather, the star formation
must occur in halos that are massive enough that the mean gas temperature in the halo
is at least 104 Kelvin, at which point the gas can cool efficiently via atomic line cooling.
When a high enough density is reached through this cooling mechanism, the formation
of molecular hydrogen can take place essentially independent of the strength of the UV
background, allowing primordial star formation to occur. This mode of star formation
has not been explored in depth by any published numerical calculations (though Bromm
& Loeb [211] use a relatively poorly resolved calculation of the evolution of these halos to
examine the possible formation of the first supermassive black holes), and the resulting
IMF is unknown.

It is worth noting that we do not see the same functional form for the “threshold
mass” of Machacek et al. They predict that the lowest halo mass that can collapse in a
simulation with a uniform Lyman-Werner flux is

MTH(M�) = 1.25 × 105 + 8.7 × 105
(

FLW

10−21

)0.47

(4.2)

Where FLW is the Lyman-Werner flux in the same units as above. Our calculations
agree with this result qualitatively: The Machacek fitting form is of the lowest possible
halo mass that can collapse, whereas our halo is more representative of a “typical” halo,
in the sense that its mass is approximately the average halo mass (as determined from
previous sections). Of the halos that do collapse in our calculations, the halo mass at the
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time of collapse is well-fit by the power law M(FLW ) = 4.35 × 105 (FLW/10−24)0.27 M�

(excluding the FLW = 0 case). Both of these functional forms are plotted in the top
right panel of Figure 4.24, with the Machacek et al. result as a green dashed line and our
fitting form as a red dashed line. The apparent lack of agreement is due to our simulation
of a “typical” halo, whereas Machacek plots a threshold mass. Additionally, they use
a cosmological model with somewhat different values for σ8, Ωm, ΩΛ, Ωb and h, which
may contribute to the lack of agreement.

Figure 4.25 through 4.27 show spherically-averaged, mass weighted radial profiles of
several baryon quantities of all simulations, including those whose largest halo did not
collapse. Radial profiles for simulations which did undergo halo collapse are plotted when
the central density reaches a set density (n ' a few times 1010 cm−3). Simulations which
did not undergo halo collapse are shown at the last data output, z = 10.

Figure 4.25 shows the spherically-averaged radial profiles of baryon number density,
baryon temperature, and enclosed mass as a function of radius. As in Section 4.4.3, the
baryon density profiles and enclosed mass profiles are similar between the different calcu-
lations, which can be explained by the cooling properties of a primordial gas. The tem-
perature profiles of the collapsed gas are similar at large radii, but in the center of the halo
there is a trend towards simulations with higher Lyman-Werner fluxes having a higher
core temperatures, with the results being separated essentially into two populations. The
overall core temperature of the population with fluxes FLW ≤ 10−24 ergs s−1 cm−2 Hz−1

is roughly 500 Kelvin, while the population with fluxes of 10−23 ≤ FLW ≤ 10−22 has a
central core temperature of approximately 1000 K. Simulations with FLW > 10−22 do not
collapse by the end of the simulation and have significantly higher overall temperatures.
The reason for this can be seen by examination of Figure 4.26, which plots the molecular
hydrogen fraction, H− fraction, and electron fraction of the baryon gas as a function of
radius. The overall H2 fraction in simulations with FLW ≤ 10−24 ergs s−1 cm−2 Hz−1 is
a factor of a few higher than the population with 10−23 ≤ FLW ≤ 10−22, and simulations
with a higher UV flux have very little H2 overall. This trend is due to the photodisso-
ciation of molecular hydrogen by the soft UV background, which delays collapse of the
halos by affecting cooling rates. Once the center of a halo reaches some critical density
(which is a function of FLW ), H2 formation can continue as before. However, at lower
densities the H2 fraction reaches some equilibrium with the UV background, where the
rates of photodissociation and creation of H2 are equal. This can be clearly seen outside
of r ∼ 0.1 parsec in the plot of H2 fraction as a function of radius, where there is a
monotonic decrease in the H2 fraction outside the core with increasing UV flux.

As one might expect, the spread in halo core central temperatures produces somewhat
different end results. Figure 4.27 shows the radial and circular baryon velocities as a
function of radius, and the accretion time as a function of enclosed mass. Predictably,
simulations with a lower core temperature tend to have a lower overall infall velocity of gas
onto the central protostar, though there is some scatter in the result. This is most likely
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Figure 4.24: Mean halo quantities for several simulations with the same cosmic realization
but a range of Lyman-Werner molecular hydrogen photodissociating flux backgrounds.
Top left: Lyman-Werner flux vs. halo collapse redshift. Top right: Lyman-Werner
flux vs. halo virial mass at collapse. Bottom: halo virial mass vs. collapse redshift.
Simulations with values for the soft UV background of FLW = 10−21 and 10−20 did not
collapse and are not shown. In the top two panels the collapse redshift/virial mass of
the FLW = 0 “control” result are shown as vertical blue dashed lines. In the top right
panel the green dashed line corresponds to the fitting function for threshold mass from
Machacek et al. (eqtn. 8), and the red dashed line corresponds to a simple power law,
M(FLW ) = 4.35 × 105 (FLW/10−24)0.27 M�.
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Figure 4.25: Mass-weighted, spherically-averaged baryon quantities as a function of ra-
dius for 7 simulations of the same cosmological realization and a range of soft UV back-
grounds. Top left: number density as a function of radius. Top right: temperature as
a function of radius. Bottom: enclosed mass as a function of radius. In all panels, the
black long-dashed line corresponds to FLW = 0, the black solid line to FLW = 10−24, the
blue solid line to FLW = 10−23, the green solid line to FLW = 3×10−23, the red solid line
to FLW = 10−22, the black short-dashed line to FLW = 10−21, and the blue short-dashed
line to FLW = 10−20. All simulations with FLW ≤ 10−22 are shown at their redshift of
collapse, while simulations with values for the soft UV background of FLW = 10−21 and
10−20 did not collapse and are shown at the last available redshift.
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Figure 4.26: Mass-weighted, spherically-averaged baryon quantities as a function of ra-
dius for 7 simulations with the same cosmological realization and a range of soft UV
backgrounds. Top left: molecular hydrogen fraction as a function of radius. Top right:
H− fraction as a function of radius. Bottom: electron fraction as a function of radius.
In all panels, the black long-dashed line corresponds to FLW = 0, the black solid line to
FLW = 10−24, the blue solid line to FLW = 10−23, the green solid line to FLW = 3×10−23,
the red solid line to FLW = 10−22, the black short-dashed line to FLW = 10−21, and the
blue short-dashed line to FLW = 10−20. All simulations with FLW ≤ 10−22 are shown at
their redshift of collapse, while simulations with values for the soft UV background of
FLW = 10−21 and 10−20 did not collapse and are shown at the last available redshift.
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due to the fact that the halos in these calculations do not exist in isolation – during
the significant amount of time that the collapse of the halo core is delayed, structure
formation is still taking place and the overall halo mass is being substantially increased
by accretion, which may have some nonlinear effects on the halo temperature, molecular
hydrogen fraction, and as a result the accretion rate onto the protostar. Regardless, the
final estimate for the mass of the star, using the same criteria as in Section 4.4.1, suggests
that the overall spread of final stellar masses is significantly enlarged by the addition of
a soft UV background. Halos with larger SUV fluxes tend to have higher temperatures,
and thus higher accretion rates and possibly higher stellar masses.

Figures 4.28 through 4.30 show two-dimensional, mass weighted distribution functions
of several quantities which illustrate the overall effects of the photodissociating flux. All
panels are shown at their redshift of collapse or (for those that do not collapse) the
final output of the simulation at z = 10. Each panel has 10 contours spaced equally in
logarithmic intervals between the lowest and highest values in the panel.

Figure 4.28 shows the two-dimensional distribution function of baryon temperature
vs. baryon overdensity (δ) for all of the simulations simulations discussed in this section,
and Figure 4.29 shows the two-dimensional distribution of molecular hydrogen fraction
as a function of overdensity. These two plots illustrate the important density thresholds
related to the chemistry and cooling properties of molecular hydrogen. The “knee”
seen in the temperature-overdensity plot at δ ∼ 100 corresponds to a critical density
at which the molecular hydrogen formation time scale becomes less than the Hubble
time. This is due to the molecular hydrogen formation rate increasing with density.
There is a corresponding “knee” in the H2 - baryon overdensity distribution function
at this overdensity. At overdensities between 102 and 105 the temperature decreases
with increasing density, and the molecular hydrogen fraction continues to grow. At an
overdensity of approximately 105 the ro-vibrational levels of H2 are populated at their
equilibrium value and the cooling rate becomes independent of density, which corresponds
to an increase in gas temperature with increasing density. Finally, at number densities
of n ∼ 109 − 1010 cm−3 (overdensities of ∼ 1011) the three-body molecular hydrogen
formation becomes dominant and H2 is formed very rapidly with increasing density.
This can be seen as another “knee” in the H2 − δ distribution function at overdensities
of ∼ 1011, though the cooling properties of the gas still remains density independent.
Simulations with a Lyman-Werner background flux that is high enough to completely
suppress the formation of molecular hydrogen (FLW ≥ 1021) cannot cool efficiently and
therefore cannot collapse to overdensities higher than ∼ 103.

From the standpoint of Population III star formation,the practical effects of the cool-
ing properties of H2 can be summed up in Figure 4.30, which is the two-dimensional
mass-weighted distribution function of the Jeans mass (which scales as ∼ T 3/2/ρ1/2) ver-
sus overdensity. The Jeans mass (or, more precisely, the Bonnor-Ebert critical mass,
which differs from the Jeans mass by a numerical constant) controls the mass scale at
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Figure 4.27: Mass-weighted baryon quantities for 7 simulations with the same cosmo-
logical realization and a range of soft UV backgrounds. Top left: spherically-averaged
radial velocity as a function of radius. Top right: cylindrically-averaged circular velocity
as a function of radius. Bottom: Accretion time (defined as in Figure 4.23) as a function
of enclosed mass. In all panels, the black long-dashed line corresponds to FLW = 0, the
black solid line to FLW = 10−24, the blue solid line to FLW = 10−23, the green solid
line to FLW = 3 × 10−23, the red solid line to FLW = 10−22, the black short-dashed line
to FLW = 10−21, and the blue short-dashed line to FLW = 10−20. All simulations with
FLW ≤ 10−22 are shown at their redshift of collapse, while simulations with values for
the soft UV background of FLW = 10−21 and 10−20 did not collapse and are shown at the
last available redshift.
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which fragmentation of the gas via gravitational instability can occur. At low densities,
the overall temperature is high and therefore the Jeans mass is quite high – at least
105 M� for δ ∼ 102−103. However, at higher densities the temperature drops rapidly up
to δ ∼ 105, resulting in a corresponding rapid drop in the Jeans mass. At these density
scales the Jeans mass is still too high for efficient fragmentation. Once the cooling rate
becomes independent of density the temperature begins to climb as a function of overden-
sity, but at a fairly low rate, so the Jeans mass continues to drop, though not as rapidly.
Finally, at an overdensity of ∼ 1011 (after the 3-body process begins to dominate) the
Jeans mass drops below 100 M�, which is roughly equivalent to the total amount of gas
that has reached that overdensity. In principle one might suppose that the gas in the
halo core could begin to fragment at this point, but no evidence of fragmentation has
been found in any of the simulations that we have examined.

4.5 Discussion

In this chapter we have explored several aspects of the formation of Population III stars
in a ΛCDM universe. This section summarizes some of the processes neglected in our
calculations and also attempts to put some of the results in context.

The results presented in Section 4.4.3 demonstrate that there is a great deal of scatter
between the bulk halo properties such as overall virial mass, collapse redshift, and mean
halo temperature among the twelve simulations shown. However, the final state of the
density profile is extremely similar between all of the calculations. This is entirely due to
the chemical and cooling properties of the primordial gas – the minimum temperature of
the gas (which is determined by its chemical composition) creates a density profile that
goes as r−2 for any gas cloud which is only supported by thermal pressure. This seems
to be true for the gas contained in the halos out of which Population III stars form, so it
is reasonable to expect consistent density profiles on halo scales.

Though there is consistency in the bulk halo properties, a detailed examination of the
gas properties which may contribute significantly to the final Pop III star mass, such as
the core baryon temperature and accretion rate onto the forming primordial protostar,
show a tremendous amount of scatter. This scatter appears to be due to variations in the
molecular hydrogen content of the halo on large scales, which is brought on by differences
in halo temperature as a result of varied merger rates between simulations. There appears
to be a systematic effect between the simulation box size and the mean temperature,
with larger boxes (which have more large-scale power and overall a more rapid merger
history) having higher overall halo temperatures and lower accretion rates. The higher
temperatures result in somewhat larger molecular hydrogen mass fractions, which cause
the halo core to cool more rapidly during its eventual collapse. Since the accretion onto
the primordial protostar is primarily subsonic, the accretion rate depends on the sound
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Figure 4.28: Mass-weighted two-dimensional distribution functions of baryon tempera-
ture vs. baryon overdensity for seven simulations with the same cosmological realization
and a range of soft UV backgrounds. The strength of the UV background is marked in
each panel. All simulations with FLW ≤ 10−22 are shown at their redshift of collapse,
while simulations with values for the soft UV background of FLW = 10−21 and 10−20 did
not collapse and are shown at the last available redshift. Each panel has 10 contours
equally spaced in logarithmic intervals between the maximum and minimum values in
that panel.
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Figure 4.29: Mass-weighted two-dimensional distribution functions of molecular hydro-
gen fraction vs. baryon overdensity for seven simulations with the same cosmological
realization and a range of soft UV backgrounds. The strength of the UV background
is marked in each panel. All simulations with FLW ≤ 10−22 are shown at their redshift
of collapse, while simulations with values for the soft UV background of FLW = 10−21

and 10−20 did not collapse and are shown at the last available redshift. Each panel has
10 contours equally spaced in logarithmic intervals between the maximum and minimum
values in that panel.
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Figure 4.30: Mass-weighted two-dimensional distribution functions of cell Jeans mass vs.
baryon overdensity for seven simulations with the same cosmological realization and a
range of soft UV backgrounds. The strength of the UV background is marked in each
panel. All simulations with FLW ≤ 10−22 are shown at their redshift of collapse, while
simulations with values for the soft UV background of FLW = 10−21 and 10−20 did not
collapse and are shown at the last available redshift. Each panel has 10 contours equally
spaced in logarithmic intervals between the maximum and minimum values in that panel.
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speed cubed, with lower core temperatures directly resulting in lower accretion rates.

After the onset of collapse, the evolution of the core of the halo (roughly the inner
few thousand solar masses) becomes effectively decoupled from the halo envelope since
the time scales become much shorter within the halo core. This tells us that while the
formation of the initial primordial protostellar cloud is strongly coupled to the time scales
associated with cosmological structure formation, once the cloud has collapsed we can
treat the core of the halo separately from the rest of the calculation. This decoupling will
become highly useful when more detailed calculations of the evolution of Population III
protostars, including more complicated physics such as radiative transfer and protostellar
accretion models, are performed, and will save us significant computational cost.

The observation that the rate of accretion onto the primordial protostar varies sys-
tematically as a function of box size, with larger box sizes having an overall lower ac-
cretion rate, has significant implications for both reionization and metal enrichment of
the early universe. The accretion rate results cannot be proven to be converged yet,
due to noise and small number statistics, though the 0.45 and 0.6 h−1 Mpc boxes seem
to have overall similar accretion rates. We make an estimate of the minimum possi-
ble accretion rate by observing that molecular hydrogen is only effective at cooling the
primordial gas down to approximately 200 Kelvin, which gives us an accretion rate of
Ṁ∗ ' 5 × 10−4 M�/year, which is reasonably close to the lower envelope of accretion
rates observed in the 0.6 h−1 Mpc box calculations. Though this implies convergence, it
would be prudent to perform another suite of calculations at an even larger box size to
be sure.

If in fact a lower overall accretion rate results in a less massive population of stars,
these objects will be much less effective at ionizing the intergalactic medium (since they
produce overall fewer UV photons per baryon) and will produce a completely different
nucleosynthetic signature. This is important because the measurement of the polarization
of the cosmic microwave background by the WMAP satellite implies early reionization,
which possibly implies a significant contribution from extremely massive Population III
stars, whereas observations of ultra metal poor stars in the galactic halo see abundance
ratios that do not agree with numerical predictions for the abundance ratios of extremely
massive primordial stars. At this point it is difficult to say what accretion rate is most
common during Population III star formation. In particular, once a soft ultraviolet
background begins to build up and cause the photodissociation of molecular hydrogen
the overall halo core temperatures may rise, causing an increase in the baryon accretion
rate. Wise & Abel [97] use Press-Schechter models of Population III star formation to
predict a slowly rising Lyman-Werner background which provides some support to this
idea. This suggests that further calculations including larger simulation volumes as well
as a soft UV background will be necessary to make a definitive statement about the most
common accretion rates. Additionally, these calculations completely neglect the mode of
primordial star formation that takes place in halos whose virial temperatures are above
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104 K. Cooling in these systems is dominated by atomic hydrogen line emission and,
particularly in the presence of a strong soft UV background, may result in a much larger
amount of cold gas distributed in a different manner than in the systems simulated in
this thesis, which have mean virial masses of a few times 105 M� and virial temperatures
of around 1000 K.

In Section 4.4.2 we examined angular momentum transport in the collapsing halo
core. This appears to be a robust result, and the primary mode of angular momentum
redistribution appears to be due to turbulence. Unfortunately it is somewhat difficult
to analyze this effect using the standard analytical formalism for angular momentum
transport in accretion disks since the collapsing halo core is approximately spherical. It
seems that a more complicated method of analyzing the turbulence properties within
the halo core, such as structure functions, may be in order. Additionally, the efficiency
of turbulent angular momentum transport in a quasistatically collapsing spheroid has
not been studied analytically or numerically, and a better physical understanding of the
situation may result from developing new analytics and idealized numerical test problems.

It is not completely clear what drives the turbulence in the halo core. There is
accretion of gas into the core of the halo, and this provides a possible mechanism for
driving turbulence. Also, during the quasistatic collapse of the halo core the gas is subject
to significant cooling, which may drive turbulence via thermal instabilities. This seems
less likely, because the sound speed is comparable to the speed of collapse, which serves
to smooth the overall density perturbation. More investigation is necessary, perhaps
using idealized numerical simulations, to understand the precise mechanism for driving
the turbulence seen in the collapsing halo core.

Unlike galactic star formation at the present epoch, the collapsing cosmological halo
core has little angular momentum from the outset – the “angular momentum problem”
that plagues present-day star formation simply doesn’t appear to be an issue in the
Population III star formation scenario. During the quasi-static collapse of the halo core
the gas is never rotationally supported – the gas is essentially completely held up by
thermal pressure. It appears that the small amount of angular momentum that is actually
transported is not a critical factor in the cloud core’s collapse.

As discussed in Section 4.4.2, the angular momentum transport result does not appear
to be due to numerical effects. Unfortunately, it is particularly difficult to quantify
numerical viscosity due to finite resolution in an adaptive mesh refinement code, since
the overall grid resolution can vary tremendously. Essentially the only reliable way to
quantify numerical viscosity in an AMR code is to pose a problem with an analytical
solution that explicitly includes a physical viscosity and then simulate it with adaptive
mesh code using the Eulerian equations for fluid flow. Since these equations assume
zero physical viscosity, any viscous effects observed are completely numerical, and the
analytical problem can be used to extract a value for the numerical viscosity. This is a
challenging task, and the measured numerical viscosity is most likely dependent on the
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details of the test problem and can vary strongly depending on the physical system being
modeled.

The primordial chemistry model used in these calculations ignores the effects of deu-
terium, lithium, and the various molecules they form between these elements and ordinary
hydrogen. Deuterium and lithium have been shown to be unimportant in the tempera-
ture and density regimes that we have examined in this chapter. However, it is possible
that they may be relevant in other situations of importance to Population III star for-
mation – in particular, regions which have been ionized to very high electron fractions
may experience significant cooling from the HD molecule, which due to its permanent
dipole moment makes it more than 100 times more effective as a cooling agent than
molecular hydrogen (per molecule), and has the potential to cool gas down to approxi-
mately the temperature of the cosmic microwave background, which scales with redshift
as Tcmb(z) = 2.73 × (1 + z) K. This gives a minimum baryon temperature of approxi-
mately 55 Kelvin at z = 20 and could further reduce the minimum accretion rate onto a
primordial protostar by a factor of two, to Ṁmin ' 2.5 × 10−4 M�/year.

The effects of magnetic fields are completely ignored in the simulations discussed in
this thesis. We can justify this by examining the magnetic field necessary to delay the
collapse of the halo core. If one assumes that the halo core can be represented reasonably
well by an isothermal sphere of constant density (which is reasonable at the onset of halo
collapse), we can use the virial theorem to estimate the strength of the magnetic field
which is necessary to support the collapse of the halo against gravity. Assuming flux
freezing and a uniform magnetic field, a magnetically critical isothermal sphere has a
mass-to-flux ratio of

Mcl

ΦB

=
1√
31G

(4.3)

Where Mcl is the mass of the halo, Φb = πR2
clBcl is the magnetic flux in the cloud

(with Rcl and Bcl being the cloud radius and magnetic field strength, respectively), and
G is the gravitational constant. Reasonable values for Mcl and Rcl are ' 2×103 M� and
4 parsecs, respectively, which gives us a value of the magnetic field of Bcl = 1.21 × 10−5

G. The mean density of the cloud is ncl ' 300 cm−3 and the mean density of the universe
at z = 18 (the redshift that our cloud collapses) is ' 0.003 cm−3, so if we assume a
spherical collapse from the mean cosmic density assuming flux freezing, we see that the
ratio of the magnetic field in the cloud to the mean universal magnetic field is

Bcl

Bigm
=

(

ncl

nigm

)2/3

(4.4)

This gives us a mean magnetic field of BIGM ' 3.5 × 10−9 G at z ' 18. Since
there are no known objects that may produce magnetic fields between recombination
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(z ∼ 1100) and the epoch of Pop III star formation, and the magnetic field scales with
the expansion of the universe as (1 + z)2, we estimate that in order for magnetic fields
to be dynamically important in the formation of Population III stars the magnetic field
strength at recombination must be Brec ∼ 10−5 G. The current observational upper
limit to magnetic field strength at recombination (albeit at large scales) is B ≤ 3 x
10−8 G as measured at the present epoch [29], which corresponds to a magnetic field at
recombination of approximately 4×10−2 G. This is three orders of magnitude higher than
needed to be dynamically relevant for Population III star formation! However, there are
no known mechanisms that can produce a magnetic field of that magnitude that have
not been ruled out due to other observational limitations. Currently, the most plausible
mechanisms for creating magnetic fields at recombination suggest that field strengths are
on the order of 10−23 G at recombination [33]. Given the observational uncertainty, it
seems reasonable to ignore this effect, though future simulations will certainly include
magnetic fields with a variety of field strengths and physical scales..

Assuming that the magnetic field at that epoch was strong enough to be dynamically
important, we can calculate the effect that this has on the collapse of the star. Due to
the low electron fraction in the halo core (which has electron densities comparable to or
lower than that observed in present-day molecular cloud cores), the assumption of flux
freezing in the magnetic field is not valid. Magnetic fields couple to charged particles
(electrons and ions), and these charged particles interact with the neutral medium. At
high levels of ionization collisions between charged and neutral particles are frequent,
implying that the magnetic field is strongly coupled to the gas. However, at low levels
of ionization there are few charged particles, and the coupling with the neutral gas is
weak. In an object that is subject to a gravitational acceleration this produces a relative
drift of charged and neutral particles which allows the neutral gas to decouple from
the magnetic field. This effect is known as “ambipolar diffusion,” and is believed to
be an extremely important process in galactic star formation. The retardation effect
that ambipolar diffusion may have on the collapse of the halo core can be estimated by
examining the relative timescales of ambipolar diffusion and halo collapse. The ambipolar
diffusion timescale can be estimated as

τAD =
L

vD
' 2 × 106 xi

10−7
years (4.5)

Where L and vD are a characteristic length scale and the neutral-ion relative drift
velocity, respectively, and xi is the overall ionization fraction. A proxy for the halo
collapse time scale is the free fall time, which for a spherical system is

τff =

(

3π

32Gρ

)1/2

' 5 × 107

n1/2
years (4.6)
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where n is the particle number density in particles per cubic centimeter and G is the
gravitational constant. The relevance of ambipolar diffusion can be estimated by taking
the ratio of these two quantities, which is known as the “collapse retardation time,” νff .
Substituting in equations 4.5 and 4.6, we see that

νff ≡ τAD

τff

' 4 × 105xin
1/2 (4.7)

Examination of figures 4.4 and 4.5 show that at the final timestep in the calculation,
the number density can be fitted by a power law and is roughly n(r) ' 103 (r/pc)−2 cm−3

while the ionization fraction scales roughly as xi(r) ' 10−6 (r/pc). Plugging these into
equation 4.7 shows that νff ' 13 is constant with radius. This is only a crude approxi-
mation, since the free fall time really should depend on the mean number density instead
of the number density at a given radius. However, considering the rapid falloff of density,
n(r) is a reasonable approximation of n – strictly speaking, for a cloud with a density pro-
file that scales as r−2 over many orders of magnitude in radius, the mean density is equal
to 3 n(r), so our estimate of the free fall time is too high by a factor of

√
3. Plugging this

in to the equation, we get that νff ' 23 everywhere, which indicates significant delay in
collapse with respect to the free fall time. However, the relevant time scale in this case is
more appropriately the quasistatic collapse time, which is approximated as τqs ' L/vr.
Figure 4.6 shows that the mean radial velocity at the scales of interest (∼ 2− 3 parsecs)
is roughly 0.5 km/s. This corresponds to τqs ∼ 4×106 and scales linearly with the radius.
Comparison with the ambipolar diffusion time scale shows that τAD and τqs are within a
factor of two of each other, which suggests that the presence of a magnetic field would
not significantly impede the collapse of the halo core for the quasistatic collapse case.

Section 4.4.4 discusses the formation of Population III stars in simulations with a
constant soft UV background. Our results agree well qualitatively with that of Machacek,
Bryan & Abel [71] – we both find that a soft UV background can delay the cooling and
collapse of small (∼ 106 M�) halos, and that increasing the soft UV background increases
the minimum halo mass required for a halo to collapse. Machacek et al. derived a mass
threshold for collapse as a function of the Lyman-Werner background flux that agrees
well with our simulations, though the halo masses in our calculation are significantly
higher. This is due to the halo that we examine being an average halo rather than at
the plausible halo minimum mass. If we perform these calculations for large number of
stars in a range of cosmological realizations it seems reasonable that the results from our
lower-mass halos would agree more completely with their work. Future large volume,
high-resolution calculations will further test the results of Machacek et al. at large boxes
and for more halos. Our work is an improvement upon that of Machacek et al. because
our simulations are much more highly resolved and we examine the evolution of a single
halo over a much wider range of soft UV background fluxes.

In the calculations that we performed using a constant soft UV background we com-
pletely ignore self-shielding by molecular hydrogen. Though this effect could in principle
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be important, the actual column densities of molecular hydrogen are typically far too
small to actually block the soft UV flux. According to Machacek et al. (and references
therein), a column density of 5×1014 cm−2 is enough for shielding to become important.
However, this was derived for a static distribution of H2, while the Lyman-Werner band
consists of hundreds of individual lines whose width in this case is dominated by Doppler
broadening. It is useful to note in this case that the average line width is ∼ 2 km/s and
the RMS baryon velocity in our calculations are ∼ 4 km/s. In order for self-shielding
to be important in the case of a turbulent medium the column density must be much
higher. Typical maximum H2 column densities in our calculations are on the order of
1016−17 cm−2, but these occur late in the collapse of the core, and in the highest density
regions the cooling and H2 production times are much shorter than the photodissociation
time scale, at which point self-shielding becomes unimportant.

As discussed previously, the simulation volumes used by our soft UV background
calculations are rather small. The results of this is that the largest halo in our calculation
has a virial temperature which is significantly below 104 K, which is when cooling via
atomic hydrogen lines becomes an effective means of cooling halos. It is possible to
produce halos that are this large without them having undergone previous epochs of star
formation by having a very strong soft UV background. When the center of this type of
halo cools via atomic lines to a large enough density, rapid molecular hydrogen formation
will take place essentially independent of the strength of the soft UV background and the
gas will be able to cool down to ' 200 K very quickly. Since these halos are more than an
order of magnitude larger than those that we have considered in this project, presumably
the reservoir of cold, dense gas in the center of the halo will also be correspondingly large.
In this case, the amount of cold, dense gas will almost certainly exceed the Jeans mass
by large factors, which in principle would make it possible for multiple Population III
stars to form in a single halo, as opposed to the single star that we see forming at the
center of halos in the simulations analyzed in this work. Further work will be necessary to
understand how these larger halos form stars, and the potential IMF of the stars forming
in them.
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Chapter 5

Formation of primordial stars in a

WDM universe

5.1 Summary

In this chapter I discuss aspects of primordial star formation in a universe with a generic
warm dark matter (WDM) cosmology. After describing the theory and general effects of
a warm dark matter power spectrum, I compare the results of simulations done with a
single cosmological realization but using a wide range of warm dark matter particle masses
which have not yet been ruled out by observation. The main effect of the WDM is that
the addition of a warm dark matter component to the initial power spectrum results in a
delay in the collapse of the gas at the center of the halo which forms a primordial protostar
and an increase in the virial mass of the halo at the onset of collapse. Both of these effects
become more pronounced as the WDM particle mass becomes smaller. A cosmology using
a warm dark matter spectrum assuming a particle mass of mWDM ' 40 keV is effectively
indistinguishable from the cold dark matter case, and a reasonable lower limit to a warm
dark matter particle mass of ' 15 keV is suggested in order for Population III stars to
contribute significantly to the polarization result observed by the WMAP satellite. There
is remarkably little scatter in the final properties of the primordial protostar which forms
at the center of the halo, possibly due to the overall low rate of halo mergers which
is a result of the WDM power spectrum. I also describe the detailed evolution of the
collapsing halo core in two representative WDM cosmologies. Once the gas in the center
of the halo reaches relatively high densities (n ∼ 105 cm−3), the overall evolution is
essentially identical in the two calculations.
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5.2 Motivation and theory

As discussed in Section 1.5, there are some apparent flaws in the ΛCDM paradigm at
small scales. These include a lack of observation of dark matter “cusps,” which are
predicted by theory and numerical simulations in the CDM universe, the absence of the
very large number of dwarf galaxies predicted by the cold dark matter paradigm, and
others. However, at large scales (greater than 1 megaparsec or so) the CDM model seems
to describe the evolution of the universe and the structure within it incredibly well. The
problem, therefore, is to come up with some physical explanation for the apparent lack of
power on small scales while retaining the desirable qualities of the CDM model on large
scales.

Many models have been proposed that do this, with a wide variety of mechanisms. A
generic feature of these models is that they suppress the cosmological power spectrum on
small scales, while leaving large scales alone. In this chapter I will discuss the ramifica-
tions of the most general possible model, referred to as “warm dark matter.” The effects
of a general warm dark matter cosmology are discussed by Bode, Ostriker & Turok [115],
who derive the relevant linear perturbation theory and perform several N-body calcula-
tions of warm dark matter cosmologies to understand the general effects of suppression
of power on small scales. They find that replacing cold dark matter with warm dark
matter results in the smoothing of massive halo cores, which lowers core densities and
increases core radii, lowers the characteristic density of low-mass halos, reduces the over-
all total number of low-mass halos, suppresses the number of low-mass satellite halos in
high-mass halos, and results in the formation of low-mass halos almost entirely within
caustic sheets or filaments connecting larger halos – voids are almost completely empty,
in contrast to CDM. They also find that low-mass halos tend to form at late times, in
a top-down process (as opposed to the bottom-up process of halo formation one would
expect from a CDM cosmology), and that halo formation is suppressed overall at early
times (high redshift), with an increased evolution of halos at low redshifts relative to the
CDM model. Furthermore, they suggest that a reasonable minimum warm dark matter
particle mass would be 1 keV.

Other constraints on the minimum mass of a warm dark matter particle have been
placed by various groups. Barkana, Haiman & Ostriker [212] use an extended Press-
Schechter model to constrain warm dark matter based on constraints from cosmological
reionization. They calculate that in order for super massive black holes to exist at
z ' 6, and if massive galaxies are responsible for the nearly complete reionization of
the universe by the same redshift, a reasonable minimum mass for a warm dark matter
particle is mWDM ≥ 1.2 keV. Dalal & Kochanek [213] show that constraints on small-
scale linear power using strong gravitational lensing find agreement with agreement with
ΛCDM models, and place a minimum bound on a possible warm dark matter mass of
mWDM > 5.2 keV. Additionally, Yoshida et al. perform a SPH cosmological simulation of
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structure formation in the early universe assuming a WDM particle mass of 10 keV. They
find that this calculation is inconsistent with the high Thomson optical depth observed
by the WMAP satellite, and suggest that any successful WDM model will have a particle
mass greater than 10 keV [214].

Bode et al. derive a formula for the power spectrum cutoff due to the existence of
a generic warm dark matter particle. They provide the following transfer function that
models the smoothing of small-scale density perturbations:

TX
k = [1 + (αk)2]−5 (5.1)

Where α = 0.05(Ωx/0.4)0.15(h/0.65)1.3(keV/mX)1.15(1.5/gx)
0.29 and k is in units of h

Mpc−1. In this equation ΩX is the contribution of the warm dark matter species to the
energy density of the universe, in units of the critical density, mX is the WDM particle
mass in keV, h is the Hubble constant in units of 100 km/s/Mpc, and gx is a parameter
meant to represent the effective number of relativistic species present at decoupling, and
is taken to be 1.5 for light neutrinos. This is considered to be the fiducial value for gx for
the warm dark matter particle. This transfer function corresponds to a strong rollover
in the power spectrum, corresponding to a smoothing scale of:
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This smoothing scale corresponds to the comoving half-wavelength of the mode for
which the linear perturbation amplitude is suppressed by a factor of 2. This results in
a characteristic mass scale below which structure forms by the top-down fragmentation
of halos, rather than by the bottom-up hierarchical structure formation associated with
the cold dark matter paradigm. This mass scale can be quantified as:
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Figure 5.1 contains several panels demonstrating the effects of the warm dark matter
cosmology discussed above. The top left panel shows the cosmological power spectrum
P (k) at z = 0 for a CDM cosmology as well as for when the WDM transfer function
has been applied for several different warm dark matter masses ranging from 0.1 − 100
keV. The top right panel shows the dimensionless linear power ∆2(k) ∼ k3P (k) with the
same particle masses. The bottom left panel shows the suppression mass as a function of
radius, and the bottom right panel shows the comoving smoothing scale. In the bottom
two panels the red dashed line indicates the mass and radius corresponding to a halo
of mass 4 × 105 M�, which is approximately the mean halo mass of all of the CDM
simulations discussed in Chapter 4. This mass scale corresponds to a WDM particle
mass of ∼ 15 keV.
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Figure 5.1: Plots showing various effects of a generic warm dark matter particle. Top left
panel: The dark matter power spectrum P (k) as a function of wavenumber k ≡ 2π/λ
for a CDM cosmology and a range of warm dark matter masses. Top right panel: The
dimensionless power, ∆2(k) ∼ k3P (k), versus k. Bottom left panel: The “suppression
mass” as a function of WDM particle mass. Bottom right panel: The “smoothing scale”
as a function of WDM particle mass. In the bottom two plots the red dashed line indicates
the mass and radius corresponding to a halo of mass 4×105 M�, which is approximately
the mean halo mass from the simulations discussed in Chapter 4.
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5.3 Problem setup

The simulations discussed in this chapter use a similar setup to those in Chapter 4.
A single cosmological realization in a box size of 0.3 h−1 Mpc is chosen at random
from the four available CDM calculations. This calculation is initialized at z = 99
assuming a “concordance” cosmological model: Ωm = 0.3, Ωb = 0.04, ΩDM = 0.26,
ΩΛ = 0.7, h = 0.7 (in units of 100 km/s/Mpc), σ8 = 0.9, and using an Eisenstein
& Hu power spectrum [194] with a spectral index of n = 1. At this point, we gener-
ate several sets of initial conditions with the same large-scale structure by smoothing
the CDM initial conditions with the warm dark matter transfer function described in
Equation 5.1, assuming Ωx = ΩDM = 0.26, gx = 1.5, and warm dark matter masses
of mx = 10, 12.5, 15, 17.5, 20, 25, 30, 35, and 40 keV. The initial conditions are generated
with both dark matter and baryons such that the Lagrangian volume in which the halo
in the CDM case formed is resolved at high spatial and mass resolution using the nested
initial condition method described in Section 2.1.2, with a 1283 root grid and three static
nested grids, for an overall effective grid size of 10243. The highest resolution grid is 2563

grid cells, and corresponds to a volume 75 h−1 comoving kpc on a side. The dark matter
particles in the highest resolution grid are 1.81 h−1 M� and the spatial resolution of the
highest resolution grid is 293 h−1 parsecs (comoving). Previous work shows that this
particle mass resolution is more than adequate to fully resolve the collapse of the halo.

All simulations are performed using the adaptive mesh cosmology code Enzo, de-
scribed in detail in Section 2.2. The simulations are started at z = 99 and allowed to
evolve until the collapse of the gas within the center of the most massive halo, which oc-
curs at a range of redshifts. The equations of hydrodynamics are solved using the PPM
method with a dual energy formulation, as described in Section 2.2.2. The nonequilibrium
chemical evolution and optically thin radiative cooling of the primordial gas is modeled
as described in Section 2.2.5, following 9 separate species including molecular hydrogen
(but excluding deuterium). Adaptive mesh refinement is used such that cells are refined
by factors of two along each axis, with a maximum of 22 total levels of refinement. This
corresponds to a maximum spatial resolution of 115 h−1 astronomical units (comoving)
at the finest level of resolution, with an overall spatial dynamical range of 5.37× 108. To
avoid effects due to the finite size of the dark matter particles, the dark matter density
is smoothed on a comoving scale of ∼ 0.5 pc. This is reasonable because at that radius
in all of our calculations the gravitational potential is dominated by the baryons.

Grid cells are adaptively refined based upon several criteria: baryon and dark matter
overdensities in cells of 4.0 and 8.0, respectively, as well as criteria to ensure that the
pressure jump and/or energy ratios between adjoining cells never exceeds 5.0, that the
cooling time in a given cell is always longer than the sound crossing time of that cell,
and that the Jeans length is always resolved by at least 16 cells. This guarantees that
the Truelove criterion [217] is always maintained by a comfortable margin.
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5.4 Results

5.4.1 Comparison of realizations with many WDM particle masses

In this section we discuss the results of a comparison of all of the WDM simulations,
along with the cold dark matter “control” simulation. Figure 5.2 shows bulk properties
of the halo in which the Population III protostar forms as a function of the warm dark
matter particle mass. The top left and right panels plot the WDM particle mass versus
the redshift at which the halo core collapses. The CDM result in each case is shown by
a vertical blue line. These panels demonstrate that decreasing the warm dark matter
particle mass delays the formation of the protostar. The 40 keV calculation forms at
essentially the same time as the CDM simulation, while collapse of the halo core in the
calculation assuming a 12.5 keV WDM particle mass is delayed by approximately 130
million years. The simulation with a 10 keV particle mass does not collapse by z = 10
(the end of the simulation) and is not shown here. The delay of the halo collapse appears
to be smoothly varying as a function of WDM particle mass.

The bottom panel of Figure 5.2 shows the virial mass of the halo (at the redshift of
collapse) as a function of WDM particle mass. A reduction in the WDM particle mass
leads to an increase in the halo virial mass, which is related to the delay in collapse of
the halo core – by the time the halo core collapses in the lower particle mass simulations,
the halo has had time to accrete more mass.

Figures 5.3 and 5.4 show several spherically-averaged, mass-weighted radial profiles
of baryon quantities as a function of radius or enclosed mass of the simulations. All
profiles are taken at a constant point in the evolution of the protostellar cloud (when
the central number density is n ∼ 1010 cm−3) rather than at a constant point in time,
since the halos collapse over a wide range of redshifts. Figure 5.3 shows the baryon
number density as a function of enclosed mass (top left panel), baryon temperature as
a function of enclosed mass (top right panel), molecular hydrogen fraction as a function
of enclosed mass (bottom left panel), and enclosed mass as a function of radius (bottom
right panel). As expected, the number density profiles of all of the simulations are very
similar over the entire range of WDM (and CDM) particle masses. This is a result of the
cooling properties of a gas of primordial composition, as explained in Chapter 4. The
simulation assuming a WDM particle mass of 10 keV does not collapse by the time the
simulation is stopped at z = 10, and the density profile at the last output time is shown.
The plot of enclosed mass as a function of radius shows a strong similarity between the
different calculations as well, which is to be expected since it is essentially another way
of viewing the number density plot. The plots of temperature and molecular hydrogen
fraction vs. enclosed mass show a significant amount of scatter. Ignoring the 10 keV
case, the overall spread in temperature in the core of the halo is a factor of ∼ 3 and the
spread in molecular hydrogen fraction is roughly 1.5 orders of magnitude. Interestingly
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Figure 5.2: Dark matter halo properties as a function of WDM particle mass for sev-
eral simulations with the same cosmological realization but different warm dark matter
particle masses. Top left: WDM particle mass vs. collapse redshift of halo core. Top
right: WDM particle mass vs. collapse time of halo core (measured in millions of years
after the big bang). Bottom: halo virial mass at collapse vs. WDM particle mass. In
the top two panels the collapse redshift/time of the cold dark matter (CDM) simulation
is shown by a vertical, dashed blue line. In the bottom panel the virial mass of the halo
in the CDM simulation is shown by a solid blue circle, while the WDM simulations are
represented by open black squares.
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enough, the CDM “control” simulation has one of the higher core temperatures.
Figure 5.4 shows the specific angular momentum as a function of enclosed mass (top

left panel), circular velocity as a function of radius (top right panel), radial velocity as
a function of enclosed mass (bottom left panel), and accretion time as a function of
enclosed mass (bottom right panel). The angular momentum distributions are extremely
similar for all of the calculations (disregarding the 10 keV case since it does not collapse),
as is the circular velocity. The Keplerian orbital velocity is plotted in this panel (upper
thin black line), and all of the simulations display circular velocities that are significantly
below this velocity. The plot of radial velocity as a function of enclosed mass shows
that the CDM simulation has the greatest infall velocity at the output time in question,
which corresponds to the largest accretion rate overall (as shown in the plot of accretion
time vs. enclosed mass). The rest of the calculations have similar infall velocities and
accretion rates, except for the 15 keV model, which has a much lower overall infall
velocity and accretion rate. The reason for this is not obvious at the present time. The
overall accretion rates for the WDM calculations are slightly less than that of the CDM
calculation, suggesting that the final stellar masses may be slightly lower.

5.4.2 Comparison of the evolution of two representative WDM

realizations

In this section we compare the evolution of two representative warm dark matter sim-
ulations. We somewhat arbitrarily choose the calculations with WDM particle masses
of 12.5 and 25 keV. Figures 5.5 shows mass-weighted projections of dark matter density,
baryon density, and baryon temperature at z = 20.38 for the two representative WDM
calculations and a CDM calculation of the same cosmological realization. All panels
show a volume that is ∼ 300 pc (proper) across and are centered on the point in space
where the first Population III protostar will form. There is a huge difference between the
calculations at a fixed point in time – the cold dark matter calculation (right column)
shows a great deal of clumpy dark matter structure, including knots along the cosmolog-
ical filaments and even dark matter halos in void regions, with corresponding variety in
the baryon density and temperature plots. The 25 keV calculation shows the effects of
smoothing - two halos are forming, but there are no halos in the voids, and no substruc-
ture around the halos that form. This is reflected in the baryon temperature and density
plots, where the accretion shocks onto the filaments show little small-scale structure and
the gas is quite smooth. The 12.5 keV calculation is an even more striking example of the
effects of small-scale smoothing – though an overdensity in the dark matter is apparent,
no halos are visible at this redshift and there is no smaller scale structure whatsoever.
This particle mass corresponds to a smoothing scale of a few times 106 M�, below which
top-down fragmentation takes place. This mass is roughly equivalent to the coalescing
halo shown in this image.
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Figure 5.3: Mass-weighted, spherically-averaged baryon quantities for several simulations
with the same cosmological realization but different warm dark matter particle masses.
Top left: baryon number density as a function of enclosed mass. Top right: baryon
temperature as a function of enclosed mass. Bottom left: molecular hydrogen fraction
as a function of enclosed mass. Bottom right: enclosed baryon mass as a function of
radius. Output times are chosen such that the peak baryon density in each simulation
is approximately the same. In each panel, the CDM simulation is represented by a solid
black line. Solid red line: MWDM = 35 keV. Solid blue line: MWDM = 30 keV. Solid
green line: MWDM = 25 keV. Dashed black line: MWDM = 20 keV. Dashed red line:
MWDM = 17.5 keV. Dashed blue line: MWDM = 15 keV. Dashed green line: MWDM =
12.5 keV. Dot-dashed black line: MWDM = 10 keV. The halo in the MWDM = 10 keV
does not collapse by the end of the simulation and is shown at the last available output
time.
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Figure 5.4: Mass-weighted baryon quantities for several simulations with the same cosmo-
logical realization but different warm dark matter particle masses. Top left: spherically-
averaged baryon angular momentum as a function of enclosed mass. Top right:
cylindrically-averaged circular velocity a function of radius. Bottom left: spherically-
averaged radial velocity as a function of enclosed mass. Bottom right: spherically-
averaged accretion rate as a function of enclosed mass. Output times are chosen
such that the peak baryon density in each simulation is approximately the same. In
each panel, the CDM simulation is represented by a solid black line. Solid red line:
MWDM = 35 keV. Solid blue line: MWDM = 30 keV. Solid green line: MWDM = 25 keV.
Dashed black line: MWDM = 20 keV. Dashed red line: MWDM = 17.5 keV. Dashed blue
line: MWDM = 15 keV. Dashed green line: MWDM = 12.5 keV. Dot-dashed black line:
MWDM = 10 keV. The halo in the MWDM = 10 keV does not collapse by the end of the
simulation and is shown at the last available output time. In the bottom right panel the
dot-long dashed line is the Kelvin-Helmholz time calculated from Population III stellar
properties from Schaerer and the upper and lower diagonal solid black lines correspond
to constant accretion rates of 10−3 and 10−3 M�/yr, respectively.
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Figure 5.5: Mass-weighted projections of dark matter density, baryon density and baryon
temperature for 3 simulations with the same cosmological realization and a range of warm
dark matter (WDM) particle masses at z = 20.38. The field in each calculation is the
same, though the color tables are relative for each panel in order to highlight density
differences. Left column: MWDM = 12.5 keV. Center column: MWDM = 25 keV. Right
column: Cold dark matter realization (corresponds to MWDM → ∞). Top row: projected
dark matter density. Middle row: projected baryon density. Bottom row: projected
baryon temperature. The spatial scale is ∼ 300 pc (proper) in each volume.
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Figure 5.6 shows the same quantities and spatial volume as Figure 5.5, though instead
of the outputs all being at the same point in time, they are at the time when the halo core
collapses in each simulation. This corresponds to z = 18.001 for the CDM calculation,
z = 16.54 for the WDM calculation with mWDM = 25 keV, and z = 12.09 for the WDM
calculation with mWDM = 12.5 keV. At the time of collapse the 12.5 keV calculation
has formed a halo which is more massive than the CDM halo by a factor of ∼ 5 (and
collapses approximately 130 million years later). Very little substructure is evident in
the projected dark matter distribution of the 12.5 keV calculation. Some is apparent in
the 25 keV run, but not nearly as much as in the CDM calculation. As predicted by
Bode et al., the warm dark matter calculations have suppressed substructure and satellite
halos, and there is significant evidence that the halo in the 12.5 keV calculation forms by
top-down fragmentation of a filament rather than hierarchical merging of smaller halos.

Figures 5.7 through 5.9 show the time evolution of several spherically averaged, mass-
weighted radial quantities for the two representative warm dark matter calculations. The
CDM run is the one discussed in Section 4.4.1, and its evolution is shown in Figures 4.4
through 4.8. The plots are chosen such that the central densities of the collapsing halo
core are matched between the two calculations.

Figure 5.7 shows the evolution of number density as a function of enclosed mass for
the 12.5 keV and 25 keV WDM calculations. The lowest-density line corresponds to
z = 13.16 for the 12.5 keV run and z = 18.05 for the 25 keV calculation. Intriguingly, it
takes the 12.5 keV calculation about 4 × 107 years to advance to a core baryon number
density of n ∼ 106 cm−3, while the 25 keV calculation only requires ∼ 2 × 107 years to
get to that point. However, once the calculations reach ∼ 106 cm−3 they take extremely
similar amounts of time to evolve to the highest number density shown. As discussed in
previous sections, this reflects the fact that the halo evolution on small scales is controlled
by the chemistry and cooling properties of the primordial gas, which is the same in the
two calculations.

Figure 5.8 shows the evolution of baryon temperature and molecular hydrogen frac-
tion as a function of enclosed mass for the two WDM simulations. The overall tem-
perature evolution is very similar between the two calculations, though the calculation
with mWDM = 12.5 keV ends up with a slightly lower molecular hydrogen fraction and
slightly higher central temperature. The evolution of radial infall velocity and angular
momentum as a function of enclosed mass (shown in Figure 5.9) is also quite similar
between the two calculations. As shown in Figure 5.4, the final accretion rates are also
essentially the same.

The purpose of this section was to demonstrate that the evolution of the halo collapse,
and the resulting protostar, is quite similar for two simulations with significantly different
warm dark matter particle masses. The large-scale structure evolves somewhat differently
in these two cases – the halo that forms in the 12.5 keV calculation is approximately the
same mass scale as the suppression mass, meaning that this dark matter halo is roughly
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Figure 5.6: Mass-weighted projections of dark matter density, baryon density and baryon
temperature for 3 simulations with the same cosmological realization and a range of
warm dark matter (WDM) particle masses at the redshift at which the Population III
protostar collapses in each simulation. The comoving size of the projected volume in
each calculation is the same, though the color tables are relative for each panel in order
to highlight density differences. Left column: MWDM = 12.5 keV, zcoll = 12.09. Center
column: MWDM = 25 keV, zcoll = 16.54. Right column: Cold dark matter realization
(corresponds to MWDM → ∞), zcoll = 18.001. Top row: projected dark matter density.
Middle row: projected baryon density. Bottom row: projected baryon temperature. The
spatial scale is ∼ 300 pc (proper) for the CDM and MWDM = 25 keV WDM simulation
and ∼ 450 pc (proper) for the MWDM = 12.5 keV WDM simulation; the comoving scales
are the same in each panel.
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Figure 5.7: Evolution of spherically-averaged, mass-weighted baryon number density as a
function of enclosed mass in halos with two representative warm dark matter simulations.
The cosmological realization is the same for each calculation, and output times are chosen
such that the baryon densities are approximately the same. Left column: simulation with
MWDM = 12.5 keV. Right column: simulation with MWDM = 25 keV. The realization
is the same as the simulation discussed in Section 4.4.1 and these panels are directly
comparable to Figures 4.4 through 4.8. Lines for the MWDM = 12.5 keV (25 keV)
simulations as follows. Black solid line: t = 319 Myr/z = 13.163 (t = 204 Myr/z =
18.05). Red solid line: 3.12 × 107 years later (1.04 × 107 years later). Green solid line:
8.15×106 years later (1.04×106 years later). Blue solid line: 98, 345 years later (5.73×106

years later). Black short-dashed line: 2.86× 105 years later (2.63× 105 years later). Red
short-dashed line: 1.25 × 105 years later (82, 433 years later). Green short-dashed line:
45, 152 years later (38, 738 years later). Blue short-dashed line: 22, 697 years later (24, 865
years later). Black long-dashed line: 2691 years later (3332 years later).
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]

Figure 5.8: Evolution of spherically-averaged, mass-weighted baryon temperature (top
row) and molecular hydrogen fraction (bottom row) as a function of enclosed mass in
halos with two representative warm dark matter simulations. The cosmological realiza-
tion is the same for each calculation, and output times are chosen such that the baryon
densities are approximately the same. Left column: simulation with MWDM = 12.5 keV.
Right column: simulation with MWDM = 25 keV. The realization is the same as the sim-
ulation discussed in Section 4.4.1 and these panels are directly comparable to Figures 4.4
through 4.8. The lines are at the same times as in Figure 5.7.
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Figure 5.9: Evolution of spherically-averaged, mass-weighted baryon properties in halos
with two representative warm dark matter simulations. The cosmological realization is
the same for each calculation, and output times are chosen such that the baryon densities
are approximately the same. Left column: simulation with MWDM = 12.5 keV. Right
column: simulation with MWDM = 25 keV. Top row: baryon radial velocity as a function
of enclosed baryon mass (velocity is positive away from the center of the halo). Bottom
row: baryon angular momentum as a function of enclosed mass. The realization is the
same as the simulation discussed in Section 4.4.1 and these panels are directly comparable
to Figures 4.4 through 4.8. The lines are at the same times as in Figure 5.7.
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the smallest object that can directly form at that mass scale. The halo that forms
in the 25 keV WDM model is significantly larger than the suppression mass, implying
that it formed out of the merging of smaller objects. Despite this, the final protostellar
properties are similar, which is due to the collapse dynamics being controlled at small
scales primarily by the properties of the primordial gas rather than by the large scale
structure.

5.5 Discussion

In this chapter we show how the suppression of small-scale power, which is meant to mimic
the effect of a warm dark matter cosmological model, affects the formation of a Population
III protostar. We use an identical cosmological realization, but apply smoothing to the
initial conditions according to the WDM transfer function given by Bode et al. We
find that, for a wide range of warm dark matter particle masses, the main effect of the
smoothing is to delay the collapse of the halo core, while the properties of the protostar
that forms in the center of the halo remains largely unaffected, and appears to have
approximately the same mass range as the reference CDM calculation.

Warm dark matter models are somewhat analogous to CDM calculations with a soft
UV background, in that both cause an overall delay in collapse of the halo core and
result in halos with a somewhat larger virial mass (corresponding to the later collapse
time). This is due to different physical reasons, of course. One striking difference in the
warm dark matter calculations is that for WDM particle masses below ' 15 keV, the
suppression mass is actually at the mass of the halo in which the primordial protostar
forms (at a few times 105 M�) so a different paradigm for structure formation occurs: the
halos at this scale will form by town-down fragmentation of larger objects rather than
bottom-up formation via hierarchical mergers.

Examination of the delay of halo collapse allows us to introduce a new constraint on
the warm dark matter particle mass. A warm dark matter cosmology with a particle
mass of mWDM ' 15 keV delays the formation of the first star in the simulation volume
by approximately 108 years (compared to the CDM case with the same cosmological
realization). If this delay is representative of the overall delay in structure formation
experienced due to small-scale smoothing from the warm dark matter then the 15 keV
case is still marginally acceptable when compared against polarization measurements
of the CMB from the WMAP satellite, which suggests that the universe was at least
partially reionized by z = 17 ± 5 [64], suggesting that a reasonable constraint on the
minimum warm dark matter mass from Population III star formation ismWDM ≥ 15 keV.
However, this estimate is somewhat crude, and a large number of cosmological realizations
with varied warm dark matter masses should be run in order to test this hypothesis.
Our simulations also show that a warm dark matter model with mWDM = 40 keV is
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indistinguishable from the CDM case, making this something of an upper limit of particle
masses that have any conceivable effect on large-scale structure.
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Chapter 6

The formation of second-generation

primordial objects

6.1 Summary

There has been considerable theoretical debate over whether photoionization and super-
nova feedback from the first Population III stars facilitate or suppress the formation of
the next generation of stars. We present results from an Eulerian adaptive mesh refine-
ment simulation demonstrating the formation of a primordial star within a region ionized
by an earlier nearby star. Despite the higher temperatures of the ionized gas and its flow
out of the dark matter potential wells, this second star formed within 23 million years
of its neighbor’s death. The enhanced electron fraction within the HII region catalyzes
rapid molecular hydrogen formation that leads to faster cooling in the subsequent star
forming halos than in the first halos. This “second generation” primordial protostar has
a much lower accretion rate because, unlike the first protostar, it forms in a rotationally
supported disk of ∼ 10− 100 M�. This is primarily due to the much higher angular mo-
mentum of the halo in which the second star forms. In contrast to previously published
scenarios, such configurations may allow binaries or multiple systems of lower mass stars
to form. These first high resolution calculations offer insight into the impact of feedback
upon subsequent populations of stars and clearly demonstrate how primordial chemistry
promotes the formation of subsequent generations of stars even in the presence of the en-
tropy injected by the first stars into the IGM. This chapter has been previously published
as a paper in the Astrophysical Journal [3].
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6.2 Motivation

Calculations performed by Abel, Bryan and Norman ([39], hereafter referred to as ABN02)
show that rapid accretion rates driven by molecular hydrogen cooling cause the formation
of solitary massive protostars in the range of 30 to 300 M� in minihalos of 105 − 106 M�

at redshifts >∼ 20. Simulations indicate that the hard UV spectra of these 105 K zero-
metallicity stars will envelop them in large HII regions several kiloparsecs in diameter
[76, 215]. Over the main sequence lifetime of the central star (on the order of 2-6 Myr
for the range of 30− 300 M�) half of the baryons within the minihalo are driven beyond
its virial radius by ionized flows that quickly steepen into shocks. These shocks exhibit
expansion rates of up to ten times the escape velocity of the halo. After the death of the
central star, cooling and recombination are out of equilibrium in the ionized gas, which
results in significant electron fractions even after its temperature has dropped to 1000
- 2000 K after 20 - 50 Myr. One dimensional, nonrotating calculations [61] predict two
possible fates for the primordial stars themselves: complete destruction by the pair insta-
bility (140 M� < M∗ < 260 M�) which is very energetic and leaves no remnant, or direct
collapse to black holes above and below this mass range, with the added possibility of
SN-like precollapse mass ejection by pulsational pair instabilities from 100-140 M� stars
[60].

An important question is whether later generations of stars can efficiently form in the
relatively high temperatures and ionization fractions of the relic HII regions left by the
first stars. One analytical study [73] found that the first stars injected sufficient entropy
into the early IGM by photoheating and supernova explosions to prevent further local
star formation in their vicinity. Lyman-Werner SUV background radiation is also thought
to have contributed negative feedback by photodissociating primordial H2 and quenching
the molecular hydrogen cooling processes allowing the first stars to form [216, 71]. In this
chapter we present fully resolved simulations which show that a second primordial star
can form in the relic HII region of an earlier Pop III star. We determine its properties,
considering the effect of Lyman-Werner radiation from the resultant black hole assuming
accretion rates consistent with the density fields left by ionized outflows from the parent
minihalo.

6.3 Simulation Setup

We carried out simulations using Enzo, an Eulerian adaptive mesh refinement (AMR)
hydrodynamics + N-body code described in Chapter 2. We initialized a box of size
300 h−1 kpc at z = 99 for a cosmology with (ΩM , ΩΛ, ΩB, h, σ8, n) = (0.3, 0.7, 0.04, 0.7, 0.9, 1).
We first ran a simulation with 1283 dark matter particles in a 1283 root grid with 6 total
levels of adaptive mesh, refining on a dark matter overdensity of 4.0. This model was
run with dark matter alone in order to identify the most massive halo that evolves in the
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simulation volume, which at z ∼ 18 had a mass ∼ 5 × 105M�.

We then re-initialized the calculation in the original simulation volume at z = 99 with
both baryons and dark matter using a 1283 root grid and three static nested subgrids,
each of which was twice as refined as its parent grid and was centered on the Lagrangian
volume of the peak that later evolved into the identified halo. The effective root grid
resolution was 10243 in this volume, which corresponds to a comoving spatial resolution
of ∼ 300 h−1 pc and a dark matter particle mass of 1.8 h−1 M� in the most highly
refined region. Every dark matter particle that later enters into dark matter halos of
interest was within this most highly refined grid at the start of the simulation.

We started the simulation with this set of initial conditions at z = 99 and followed the
collapse of the first star, which occurred at a redshift of 17.76. As a refinement criteria
we used a baryon overdensity of 4.0 and a dark matter overdensity of 8.0. In addition,
to ensure appropriate simulation resolution we mandated that the Jeans length must be
resolved by at least 16 cells at all times, which exceeds the Truelove criterion by a factor
of 4 along each axis [217]. At the collapse redshift the three dimensional structure was
resolved with 8727 grids on nine levels containing a total of 49,641,744 unique resolution
elements.

To compute the extent of the HII region of the 120 M� Pop III star assumed to form in
the collapse, we interpolated the density, energy, and velocity fields from the entire Enzo
simulation volume at the formation redshift of this star onto a three dimensional grid of
fixed resolution with 2563 cells for import into a static radiative transfer code. The code
utilizes the ionization front tracking technique of Abel [218] to calculate the boundary of
the HII region along rays cast outward from the central star by the adaptive ray tracing
technique of Abel & Wandelt [219]. Within the HII region we set the ionization fraction to
unity and the H2 and H− fractions to zero. We assume that the mean energy of ionization
for the gas is 2.4 eV, which results in a post-ionization temperature of ∼ 18, 000 K when
calculated in our multispecies ZEUS simulations. This is somewhat cooler than one might
expect due to the relatively hard spectrum of massive primordial stars, and is a result
of our use of monochromatic radiative transfer in the ZEUS code, which underestimates
the UV photoheating of the halo by not taking into account contributions from very high
energy photons. Whalen et al. [76] show that an increase in post-front temperatures
results in somewhat higher sound speeds. These yield higher shock speeds that promote
the photoevaporative flow of gas from the halo in which the first star is formed and
could in principle affect the dynamics of nearby halos. We show below that in this case
the outflow of gas has a negligible effect on the formation of a second primordial star,
which suggests that our result is at worst only weakly affected by post-front temperature.
Higher post front temperatures will not significantly retard the cooling and recombination
crucial to the formation of molecular hydrogen.

We approximated the dynamics of the HII region by imposing the one dimensional
velocity, ionization, density and temperature profiles for a 120 M� star at the end of its
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main sequence lifetime from Whalen et al. [76] along every line of sight from the central
star. We modified baryon densities and velocities out to ∼ 120 pc (corresponding to the
location of the shock wave in the 1D calculation) but changed only ionization fractions
and temperatures beyond this radius out to the boundary of the HII region determined
by the ray tracing code. We then mapped this HII region onto the full hierarchy of
grids in the Enzo calculation, centering it on the location of the first protostar. This
state corresponds to only 2.5 million years after the initial star formed (z ' 17.4), so we
assume that instantaneous ionization is a reasonable approximation for all gas outside
the first halo (which has had the hydro profiles from the 1D simulations imposed in
it). An important question is whether the satellite halos are also ionized by the I-front
propagating outward from the first star, an issue investigated in detail at later redshifts
by Shapiro et al. [220]. Simulations we performed in 1D in ZEUS-MP indicate that the
neighboring halos are photoionized by the parent star by the end of its main sequence
lifetime.

We then continued the simulation until the collapse of the next protostar, which occurs
at z = 16.44, 22.8 million years later. The final time that we analyzed contains 10,710
grid patches on 24 levels with 54,996,560 unique resolution elements. In this calculation
we neglect the pulsational pair instability that may eject the hydrogen envelope for this
star [60].

As a check on our simulation setup we also ran a simulation where we simply in-
stantaneously ionized the entire simulation volume by raising the baryon temperature to
∼ 10, 000 K and setting ionization fractions to one and H2 fractions to zero. This simu-
lation tests whether the addition of the one dimensional radial profiles from the Whalen
et al. [76] calculations changed the properties of the second protostar appreciably. We
find that the collapse time and accretion rate of the protostar formed in this simulation
are essentially identical to the results of our full setup, and only discuss results from the
full setup in the rest of this chapter.

6.4 Results

The second primordial protostar forms in a neighboring minihalo approximately 265
proper parsecs from the location of the halo in which the first star formed (and where
the HII region originated). The halo in which this second protostar forms was completely
ionized by the first star to a temperature of ∼ 1.7 × 104 K. Due to its relatively high
density, the center of this halo cools very rapidly and molecular hydrogen formation is
catalyzed by the extremely high electron fraction. After only a few million years the core
of the halo has a molecular hydrogen fraction of ∼ 5 × 10−3, well above what one would
expect for a halo which has not been ionized. This halo is significantly smaller than the
first: ∼ 2 × 105 M� rather than ∼ 5 × 105 M�.
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6.4.1 Comparison of the First and Second Stars

Figure 6.1 compares the mass accretion times of the initial and second Population III
stars formed in this simulation. In addition, this figure shows the mass accretion time
of the halo in ABN02 and an estimate of the Kelvin-Helmholz timescale as a function
of mass, using values of luminosity and effective temperature taken from Schaerer [59].
The upper and lower dotted lines correspond to an object with constant accretion rates
of 10−3 and 10−2 M�/year, respectively. Our calculation of accretion timescales for the
initial protostar agrees well with that of ABN02. The fact that the two results are in good
agreement even though the ABN02 calculations assumed a lower baryon fraction supports
the analysis of Ripamonti and Abel [47] showing that all mass scales in these calculations
are set by molecular physics. Comparison of the accretion rates to the Kelvin-Helmholz
timescale provides an estimate of ∼ 200 M� for the upper bound of the mass of the
star. The accretion timescales suggest a reasonable lower bound of ∼ 80 M�, since this
much gas will accrete in 104 years, an insufficient time for fusion to begin. In contrast,
the accretion rate of the second protostar is over an order of magnitude lower. This is
because the second protostar has a much more pronounced thick disk structure than the
first protostar. The disk is rotationally supported past a radius ∼ 0.01 pc (corresponding
to an enclosed mass of ∼ 10 M�), whereas the disk around the first star in the volume
is not. Similar accretion timescale arguments as before suggest a mass of ∼ 5 − 20 M�

for the second star, although accretion physics will ultimately determine the true mass,
particularly given the presence of this more pronounced disk.

Examination of the net angular momentum of the two halos is illuminating. The
angular momentum of a cosmological halo can be described by the dimensionless spin
parameter: λ ≡ J |E|1/2/GM5/2 where J is angular momentum, E is the total energy,
G is the gravitational constant and M is the halo angular momentum. This is roughly
equivalent to the ratio of the angular momentum in the halo to the angular momentum
needed for the halo to be completely rotationally supported [123]. Typical values of the
spin parameter for cosmological halos are ∼ 0.02−0.1, with a mean of λ ' 0.05 [221, 222].
We find that the halo in which the first primordial protostar forms has a spin parameter
for the gas and dark matter of (λgas, λdm) = (0.0275, 0.0363), which is slightly lower than
the mean. The spin parameter of the second halo is (λgas, λdm) = (0.1079, 0.1607), which
is atypically high. Examination of the evolution of angular momentum in the gas of the
halos as the two protostars form shows that the angular momentum distributions are
different in the two clouds, and if angular momentum is conserved one would expect to
see a centrifugally supported disk that is approximately four times larger in the second
halo.
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Figure 6.1: Mass accretion time ta = M(r)/Ṁ ≡ M(r)/(4πr2ρvr) as a function of
enclosed gas mass. This is at the final output corresponding to z = 16.437. The dashed
line is the corresponding data dump of the initial star which had formed at z = 17.67.
The red dashed line corresponds to the first star to form in this simulation. The blue
dot-dashed line corresponds to the first star calculated in ABN02. The solid black line
corresponds to the second star forming in this simulation, and the green long-dashed line
corresponds to the Kelvin-Helmholz time of a representative star. The upper and lower
black dotted lines correspond to objects with constant mass accretion rates of 10−2 and
10−3 M�/yr, respectively.
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6.4.2 Black Hole Accretion

Here we consider whether accretion onto a relic black hole could generate enough pho-
todissociative radiation to inhibit H2 formation in the second star’s halo. We assume
Bondi-Hoyle accretion [223] for the 120 M� black hole that forms after the collapse of
the first star to estimate the Lyman-Werner flux from its accretion. This rate depends
on the mass of the accretor as well as the local gas temperatures, densities, and relative
velocities it encounters. To sample the local environment the black hole would traverse
over the duration of the simulation, we followed the 40 dark matter particles closest to
the first protostar (within ∼ 0.1 proper pc) from the end of its main sequence lifetime
until the collapse of the second protostar. We tallied the cell quantities they crossed to
compile the accretion rate history each particle would have if it were the black hole. The
histories for the 40 black hole proxies appear in Figure 6.2. The mass accretion rates
grow from 10−11 M�/yr to 10−8.5 M�/yr for most of the tracer particles.

To estimate the effect of Lyman-Werner radiation from the black hole on molecu-
lar hydrogen formation in nearby halos we assume a canonical 10% radiative efficiency
for the accretion. The uppermost accretion curve yields 2.2 × 1037(M/100 M�) erg/s
(∼ 4500 L�) for an upper limit to the total luminosity (which is much lower than the
Eddington luminosity of this object, 1.5 × 1040 erg/s, or ∼ 4 × 106 L�). Taking this
to be a blackbody spectrum, the flux in the Lyman-Werner band (11.1-13.6 eV) reach-
ing the second protostar is ∼ 1.6 × 10−25(M/100 M�) erg s−1 cm−2 Hz−1, resulting in
photodissociation rates that are significantly lower than the formation rates of molecular
hydrogen there. The expulsion of gas by ionized flows from the first halo prevents higher
accretion rates and greater Lyman-Werner fluxes. A star in this mass range may shed its
envelope just prior to collapse, resulting in a smaller black hole and making the results
discussed here an upper limit.

6.5 Discussion

This first high resolution three dimensional simulation of the evolution of gas within a
primordial HII region demonstrates the crucial role of H2 chemistry driven by photoion-
ization in the formation of the next generation of stars. While this has been addressed
in previous work [224] our simulations are the first with sufficient resolution to directly
examine the formation of individual protostars. Further investigation will be necessary
to determine if the lower accretion rates leading to the smaller mass of the second star
are a coincidental feature of this calculation or a general trend of early star formation
in halos preprocessed by HII regions. The low accretion rate that we observe in this
calculation is primarily due to the high initial angular momentum of the second halo.

One possible source of error lies in the method and assumptions determining whether
the neighboring halos are photoionized. While our 1D results indicate that these halos
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Figure 6.2: Bondi-Hoyle mass accretion rate around the black hole calculated from the
local gas temperature, density and relative velocity. Integration of these curves lead to
estimates of growth of the black hole (initially 120 M�) of that range from 0.009 to
0.032 M� over 23 Myrs
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will be ionized, this issue merits further investigation with fully 3D simulations. We
further assume that this ionization occurred instantaneously and simply ionize the gas
outside of the initial halo without changing the total density or velocity profiles of nearby
halos. Instantaneous ionization appears to be a reasonable approximation since the sound
crossing time of all of the ionized halos is longer than the main-sequence lifetime of the
parent star. Again, full 3D radiation photo-evaporation simulations will be necessary to
determine whether the hydrodynamic evolution of these halos during the main sequence
lifetime of the parent star is unimportant.

We note that our HII region enveloped roughly a dozen minihalos similar to the
one that formed the second star. More calculations will be required to see if these
too form stars. The evolution of the massive disk also merits examination to ascertain
whether it breaks up into a multiple system or fully accretes to form a single star.
The situation realized in our cosmological simulation may lead to objects with initial
conditions similar to the cases studied by Saigo et al. [225]. Lower mass second generation
stars or the possibility of binaries or multiple systems of primordial stars would have
strong implications for the observability of such objects and their impact on subsequent
structure formation. Less massive stars might have different nucleosynthetic signatures
than those of the pair-instability supernovae that may occur in the first generation of
primordial stars. The immense size of early HII regions could also make the scenario
of primordial stars forming in a relic HII region much more common than extremely
massive stars forming in pristine halos. These two facts taken together may account
for the lack of detection of the characteristic odd-even abundance pattern from pair-
instability supernovae expected in observations of ultra metal poor halo stars ([226] and
references therein). How HII regions from the first stars may regulate local star formation
by suppressing the collapse of gas in local halos which have not reached relatively high
densities also remains to be explored.
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Chapter 7

Formation of metal-enriched 2nd

generation objects

7.1 Summary

In this chapter we discuss very preliminary results concerning the dispersal of metals
into the IGM and nearby halos from two representative Population III supernovae: a 30
M� star with an explosion energy of ESN = 1.2 × 1051 ergs, and a 250 M� star with an
explosion energy of ESN = 8 × 1052 ergs. Despite the amount of gas in the Population
III halo and the relatively high density of the IGM at z ' 18, the explosion of the 30 M�

star spread metals over a region several hundred proper parsecs in radius within fifty
million years. The simulation of the supernova from the 250 M� star is ongoing, but
due to the preprocessing of the halo in which the star forms by the star’s HII region and
the much higher explosion energy suggests that the more massive star will spread metals
over a much larger volume of space.

7.2 Motivation

Observations of quasar absorption spectra show that the universe at the present day is
uniformly polluted with metals, even at the lowest observed column densities, which cor-
respond to regions of very low overdensity which are know as the Lyman-α forest [84, 85].
The primordial composition of the universe is well understood, and post-BBN nucleosyn-
thesis is believed to take place only in stars and cataclysmic events associated with them.
Because of this, it is apparent that this period of enrichment must have taken place be-
tween the epoch of first star formation and the present day.

The metals produced by Population III supernovae would have a very important effect
on the following generations of stars. The addition of metals greatly enhances the cooling
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properties of the gas – molecular hydrogen is a relatively poor coolant compared to dust
grains and metal-based molecules such as CO, both of which are produced in significant
quantities by both primordial Type II supernovae and pair-instability supernovae, with
the fractional quantity of dust increasing as the stellar mass increases [89, 90, 91]. Very
little metal is required for gas to cool efficiently – analytical work and simulations sug-
gest that the presence of carbon and oxygen at levels 10−4 − 10−3 Z� would be sufficient
for enhanced fragmentation of collapsing gas clouds, signifying a change from the top-
heavy Population III IMF to a mass function resembling that observed in the galaxy
today [93, 94]. As with their HII regions, the metals ejected from Population III super-
novae, particularly if the stars fall into the mass range that produces highly energetic
pair-instability supernovae, can propagate to great distances – simulations indicate that
the ejecta from a massive PISN can eject metal into a sphere of ∼ 1 kpc diameter at
z ∼ 20, producing a metallicity floor above that needed for enhanced cooling to take
place [95]. However, these calculations were done using SPH calculations with poor spa-
tial and mass resolution, and cannot accurately resolve such important properties such
as the degree to which the supernova ejecta mixed with the primordial gas and also the
dispersion of metallicities in the enriched gas. Furthermore, previous calculations did
not follow the ejected gas to the point where the metals reached nearby halos, and due
to their use of SPH, even if they did allow the calculation to progress for a long enough
time they would not have been able to make any statements about the degree to which
metals may have enriched nearby halos.

This chapter presents very preliminary results from two calculations done with the
Enzo AMR code (described in detail in Chapter 2). These calculations are of the explo-
sions of two Population III stars: one with a mass of 30 M� and an explosion energy
of 1.2 × 1051 ergs (corresponding to the Population III equivalent of a standard Type II
supernova), and a second with a mass of 250 M� and an explosion energy of 8×1052 ergs
(corresponding to a massive pair-instability supernova). These two calculations bracket
the plausible range of Population III supernova energies presented by Heger et al. [60, 61].
The purpose of the calculations is to model the ejection of metals from these representa-
tive Pop III supernovae into the IGM and to follow the mixing history of the supernova
ejecta. The ultimate goal is to predict the overall dispersal of metals into the IGM by
these stars, and also to attempt to understand the formation site of the first generation
of metal-enriched stars.

7.3 Problem setup

In order to obtain the initial conditions for our supernova calculations, we perform a
standard Population III star formation calculation, as described in detail in Chapter 4.
This calculation was set up in a 0.3 h−1 Mpc box, as described in Section 4.3, with
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identical cosmological parameters, initialization strategy, and spatial and mass resolution.
In this calculation we use the ZEUS hydro method (Section 2.2.3) instead of the PPM
method (Section 2.2.2) because it is more stable in situations where the overall pressure
jump between adjacent cells is extremely high. This does not change the results of the
star formation calculation appreciably. The simulation was followed until z ' 18, at
which point the halo core collapsed and began to form a Population III protostar. At
this point, we stop the calculation and put a Pop III supernova into the calculation by
hand in the simulation volume and the simulation is then allowed to continue.

The 30 M� supernova is set up as follows: We assume that the evolution of the star
along the main sequence occurs much more rapidly than the evolution of cosmological
structure, and place the supernova into the calculation at the redshift at which we stopped
the calculation. One dimensional calculations by Dan Whalen (private communication)
suggest that in the spherically symmetric case, the HII region produced by a 30 M�

primordial star will not escape the halo – it remains as a completely bound HII region
with a maximum radius of ∼ 0.1 pc (proper). For this reason, we do not concern ourselves
with the HII region, since it will not affect the dynamics of the supernova remnant in
any significant way. Using the mean density and temperature of the inner few parsecs of
the halo at this time, we calculate the Sedov blast profile of the supernova at a radius
of 2 proper parsecs assuming ESN = 1.2 × 1051 ergs. The mean density of the inner two
parsecs of the halo is nmean ' 1800 cm−3 and the mean temperature is approximately
500 K. At this radius the velocity of the supernova shock is 171 km/s. We assume that
the supernova is spherically symmetric, and overlay the Sedov blast profile over the inner
two parsecs of the halo, centered on the cell with the highest baryon density at the time
of collapse. The calculation is then allowed to evolve for approximately 50 million years,
with snapshots of the state of the simulation taken at regular intervals over this time.

The 250 M� supernova is set up in a somewhat different way. One dimensional
calculations by Whalen, Abel and Norman [76] show that in the spherically symmetric
case the HII region from a 250 M� primordial star will extend out to several proper
kiloparsecs at z = 20, and additionally the increase in gas pressure in the cosmological
halo will cause most of the gas in the halo to be ejected by the end of the main sequence
lifetime of the star. At the end of the star’s life, this gas will be in a thick, dense
shell at roughly the virial radius with a velocity of approximately 30 km/s, which is
roughly a factor of ten greater than the halo’s escape velocity. Due to this, we set up
our supernova calculation assuming that the 250 M� supernova goes off within a HII
region which is set up using an identical method to that described in Section 6.3. We
then calculate the Sedov blast profile of a supernova with ESN = 8× 1052 ergs exploding
in an ambient medium with a density of ' 0.4 cm−3 and a temperature of 17,000 K,
which is approximately the mean density and temperature of the gas left over in the halo
by the HII region at the end of the star’s main sequence lifetime. At this density, the
supernova will sweep up its own mass of gas in the ambient medium at r ' 20 pc (which
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is approximately the mass scale at which it makes the transition from the free-expansion
to Sedov-Taylor phase), and will not encounter significant density increases until the gas
reaches ∼ 60 pc. We somewhat arbitrarily decide to put the Sedov profile in with a radius
of 40 proper parsecs. At this radius the supernova explosion is propagating outward at
a speed of ' 1800 km/s.

Both supernova calculations are then restarted, assuming a maximum refinement
level of 10 (corresponding to a spatial resolution of approximately 0.17 proper parsecs at
z = 18) and allowed to continue until the velocity of the supernova ejecta drops below
the sound speed of the ambient medium, which approximately corresponds to the point
at which the supernova ejecta and ambient medium reach pressure equilibrium. This
takes slightly more than fifty million years for the 30 M� calculation. At the time that
this chapter is being written the 250 M� calculation has not yet been completed, since
the overall computational cost is much greater, due to the higher shock velocities and
hotter average temperature of the ambient medium due to the HII region. Therefore, we
only present results from the 30 M� supernova calculation below.

7.4 Preliminary results

Due to time constraints, only very preliminary results are presented in this chapter. Fig-
ures 7.1 and 7.2 show the evolution of the supernova remnant over approximately 60
million years. Figure 7.1 shows the evolution of the remnant over approximately the first
half million years after the supernova occurs. In this figure, the left, center and right
columns show the initial conditions for our supernova (the Sedov blast profile), 2.68×105

years after the initial explosion, and 5.51 × 105 years after the initial explosion, respec-
tively. The rows correspond to (from top to bottom) log baryon density, log metallicity,
and log baryon temperature. In all cases the color table is fixed such that all panels
in a given row can be directly compared. In the plots of log metallicity the color ta-
ble spans a range of metallicities from 10−4 Z� and below (black, essentially unenriched
gas) to 10 times solar metallicity (bright yellow). The majority of gas contained within
the actual remnant in the second two timesteps is at a few times solar metallicity. The
temperature color table ranges from 100 K (black) to 104 K (bright white). The mean
temperature of the gas within the supernova remnant at late times is a few thousand K.
The box is a projection of a field of view 93 proper parsecs on a side (at z ' 18) and
93 proper parsecs deep. The development of non-perturbations can be seen very clearly
as the supernova remnant expands. Though the initial conditions for the supernova as-
sume spherical symmetry at small scales, inhomogeneities in baryon density outside of
the halo core introduce asymmetries which are magnified as the remnant expands, re-
sulting in small “bullets” of gas and significant variations in density, temperature and
metallicity in the remnant shell. Unfortunately, some numerical artifacts can be seen –
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the supernova remnant shows some signs of a cross-like symmetry, aligned with the grid
axes. Most of the “bullets” of high density gas also appear to be preferentially traveling
along the axes. The effect is relatively subtle, fortunately, and may not have a significant
effect on the results.

Figure 7.2 shows the evolution of the remnant at later times and on a much larger
scale. The projected volume is now 1.5 proper kpc on a side and 1.5 proper kpc deep
at z ∼ 18. The columns correspond to (from left to right) 5.51 × 105, 5.79 × 106,
and 6.3 × 107 years after the supernova is initialized, respectively. The final timestep
corresponds to z ' 15. The rows and color tables are identical to Figure 7.1. As the
supernova remnant expands it becomes less spherically symmetric, eventually becoming
pressure-balanced with the IGM after metal has spread several hundred parsecs from
the initial halo. Comparison of the leftmost and rightmost columns shows that metal
has spread to at least the distance of the nearest neighboring halos, though it is unclear
at present how much metal has managed to get to the center of the neighboring halos,
where one presumes star formation would take place.

Figures 7.3 and 7.4 show several spherically-averaged, mass weighted baryon quan-
tities as a function of radius. The lines correspond to the five time outputs shown in
Figures 7.1 and 7.2. Figure 7.3 shows the number density, enclosed mass, radial velocity
and baryon temperature as a function of radius. The shock starts out at r = 2 pc with a
maximum speed of approximately 100 km/s and an overall temperature of 105 K (which
is too high to see on this plot). The r−2 density profile of the halo can be clearly seen at
larger radii. As time goes by, the shock rapidly cools and slows down, and a shell of gas
with a thickness of several parsecs forms that is rushing out of the halo. The extreme
thickness of this shell may be due to the poor cooling properties of the gas – in this
calculation, we assume a primordial cooling function for simplicity. The relatively low
molecular hydrogen fraction (discussed below) and temperature (∼ 103 K) suggest that
the gas is not cooling efficiently. The use of a cooling function that assumes a metallicity
consistent with that observed in the remnant (also discussed below) would result in much
colder gas and presumably a thinner shell. It is also interesting to note the feature in the
radial velocity plot at early times where the outgoing gas has a double-peaked profile,
with an inner shock that has a slower velocity than the outer one. The inner shock is
actually traveling backwards in the rest frame of the main shock, and corresponds to
gas which has caught up to the decelerating outer shock and has reflected off of it. This
feature is common to calculations of supernova remnant expansion.

Figure 7.4 shows the time evolution of spherically averaged radial profiles of the mass-
weighted metallicity and metal dispersion (in units of solar metallicity), as well as the
molecular hydrogen mass fraction. In this case what we call the “metal dispersion” is
really the square root of the mass-averaged metal dispersion calculated in spherical shells,
so that it also has units of solar metallicity (instead of the square of solar metallicity). As
one might expect, the metallicity drops rapidly as the remnant expands and mixes with
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Figure 7.1: Early time evolution of the supernova at t = tSN (left column), t = tSN +
2.68 × 105 years (center column) and t = tSN + 5.51 × 105 years (right column). Rows
correspond to (from top to bottom) projected, mass-weighted baryon density, metallicity,
and temperature. The projected region is 93 proper parsecs across at z ' 18. Images of
all quantities have fixed color tables and the columns are directly comparable.
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Figure 7.2: Late time evolution of the supernova at t = tSN+5.51×105 years (left column),
t = tSN + 5.79 × 106 years (center column) and t = tSN + 6.3 × 107 years later (right
column). Rows correspond to (from top to bottom) projected, mass-weighted baryon
density, metallicity, and temperature. The projected region is ' 1.5 proper kiloparsecs
across at z ' 18. Images of all quantities have fixed color tables and the columns are
directly comparable.

194



the pristine gas. However, after the initial time shown the variance of the metallicity
remains on the same order of magnitude as the actual metallicity, suggesting that the
metallicity of the gas in spherical shells varies strongly, indicating that the gas is poorly
mixed. This is clearly true at late times, since the supernova remnant is no longer
spherically symmetric.

7.5 Discussion

This chapter presents results from a representative Population III supernova. Two calcu-
lations were initialized (supernovae from 30 M� and 250 M� primordial stars) but only
the 30 M� case was completed by the time that this thesis was due. The 250 M� is a
significantly more costly calculation since the higher temperatures and blast velocities
directly correspond to a lower Courant time, making the simulation more than an order
of magnitude more expensive overall.

These calculations make several simplifying assumptions that may affect the overall
results. In both of the calculations we make the assumption that the supernova remnant
is spherically symmetric at the radius at which we put in the Sedov blast profile. While a
reasonable assumption for a first calculation of Population III supernovae, this is clearly
not true for supernovae from rotating stars, and may affect the overall results. The trend
in a rotating star would be towards more metal mixing early in the explosion, resulting
in a greater overall distribution of metallicities in the gas polluted by these supernovae,
making the scatter in metal distributions in these calculations a lower limit. This being
said, the supernovae encounter many thousands of times their own initial mass in gas
outside of the radius at which the Sedov profile is put in the gas. This gas is not of
uniform composition, and causes a great deal of metal mixing. This can be seen in the
figures in Section 7.4, where the remnant shows distinctly non-spherical features and a
high degree of metal mixing at both early and late times, so even though the initial
setup assumes spherical symmetry the result may not be significantly different than if
the initial setup was of an aspherical supernova.

An additional simplifying assumption concerns the cooling rate of the supernova rem-
nant. In this calculation we assume a nonequilibrium primordial chemistry, which pre-
dicts a cooling rate that is far lower than that of a metal-enriched gas. This lower cooling
rate results in a thicker remnant shell, which then becomes less likely to be affected by
the Vishniac instability [227]. This instability is significant in that it can cause frag-
mentation in the shell of the remnant, which may lead to the development of a second
generation of stars which are metal-enriched. This level of fragmentation is not seen in
this calculation, due to the choice of cooling function. Future work using simulations
whose cooling tables assume metal line cooling will be done, and will show whether this
effect is significant.
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Figure 7.3: Evolution of spherically-averaged, mass weighted baryon properties of the
supernova remnant as a function of time. Black line: t = tSN . Red line: t = +2.68× 105

years. Blue line: t = tSN + 5.51 × 105 years. Green line: t = tSN + 5.79 × 106 years.
Cyan line: t = tSN + 6.3 × 107 years. Top left panel: number density as a function of
radius. Top right: enclosed mass as a function of radius. Bottom left: radial velocity as
a function of radius. Bottom right: temperature as a function of radius. The x-axis in
all plots is identical.
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Figure 7.4: Evolution of spherically-averaged, mass weighted baryon properties of the
supernova remnant as a function of time. Black line: t = tSN . Red line: t = +2.68× 105

years. Blue line: t = tSN + 5.51 × 105 years. Green line: t = tSN + 5.79 × 106 years.
Cyan line: t = tSN + 6.3 × 107 years. Top left panel: metallicity (in units of solar
metallicity) as a function of radius. Top right: metal dispersion as a function of radius.
Bottom: molecular hydrogen mass fraction as a function of radius. The x-axis in all plots
is identical.
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It is interesting to note that the 30 M� supernova completely disrupts the halo that
it occurs in, and drives the majority of the baryons in the halo into the intergalactic
medium. This can be understood simply by comparing the energy of the supernova with
the binding energy of the halo. The 30 M� supernova has a total energy of 1.2 × 1051

ergs, more than 95% of which is kinetic energy at the time at which the Sedov blast
profile is assumed. At this point in time the total mass of the halo is 4.15×105 M�, with
4.7×104 M� of this being in baryons. The virial radius of a halo with this mass is ' 125
proper parsecs at z = 18. Altogether, this corresponds to a binding energy of 7 × 1049

ergs for the entire halo. However, the dark matter does not directly feel the effects of
the supernova explosion, so the relevant component of the halo is simply the baryon
gas. This component of the halo has a binding energy of approximately 8 × 1048 ergs,
which is more than two orders of magnitude less than the supernova explosion energy!
This calculation of the binding energy makes the simplifying assumption that the density
of the halo is uniform, and somewhat underestimates the overall binding energy of the
halo, which has a density profile that scales as r−2. Still, we obtain a reasonable order-of-
magnitude estimate that agrees with the simulation results and provides a simple physical
understanding of the situation.

The calculations described in this section are considered to be preliminary “scoping”
calculations for a more advanced series of simulations involving output from calculations
looking at the three-dimensional evolution of supernovae from rotating Population III
stars done by Fryer & Rockefeller. Additionally, these calculations will include a cooling
table which correctly incorporates cooling due to metal molecules and dust, and will be
done at higher spatial resolution to more accurately determine metal mixing in the inter-
galactic medium and nearby halos, and to examine the formation of the first generation
of metal-enriched stars.
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Chapter 8

Pre-galactic enrichment of the IGM

8.1 Summary

We examine the dynamical evolution and statistical properties of the supernova ejecta
of massive primordial stars in a cosmological framework to determine whether this first
population of stars could have enriched the universe to the levels and dispersions seen
by the most recent observations of the Lyman-α forest. We evolve a ΛCDM model in
a 1 Mpc3 volume to a redshift of z = 15 and add “bubbles” of metal corresponding to
the supernova ejecta of the first generation of massive stars in all dark matter halos with
masses greater than 5 × 105M�. These initial conditions are then evolved to z = 3 and
the distribution and levels of metals are compared to observations. In the absence of
further star formation the primordial metal is initially contained in halos and filaments.
Photoevaporation of metal-enriched gas due to the metagalactic ultraviolet background
radiation at the epoch of reionization (z ∼ 6) causes a sharp increase of the metal volume
filling factor. At z = 3, ∼ 2.5% of the simulation volume (≈ 20% of the total gas mass) is
filled with gas enriched above a metallicity of 10−4Z�, and less than 0.6% of the volume is
enriched above a metallicity of 10−3Z�. This suggests that, even with the most optimistic
prescription for placement of primordial supernova and the amount of metals produced by
each supernova, this population of stars cannot entirely be responsible for the enrichment
of the Lyman-α forest to the levels and dispersions seen by current observations unless
we have severely underestimated the duration of the Pop III epoch. However, comparison
to observations using carbon as a tracer of metals shows that Pop III supernovae can be
significant contributors to the very low overdensity Lyman-α forest. This chapter has
been previously published as a paper in the Astrophysical Journal [1].

199



8.2 Motivation

Recent observations by Schaye et al. and Aguirre et al. [84, 85] have shown that the
Lyman-α forest is polluted with metals at very low densities. The distribution of metal
is very strongly dependent on overdensity, with median metallicity values ranging from
[C/H] = −4.0 at log δ = −0.5 (where δ is defined as (δ ≡ ρ/ρ̄) to [C/H] = −2.5
at log δ = 2.0 using their fiducial UV background model. Their observations show
little evidence for metallicity evolution of the Lyman-α forest over the redshift range
z = 1.5 − 4.5.

The lack of observed evolution in metallicity is suggestive of a very early epoch of
stellar evolution. Recent observations by the Wilkinson Microwave Anisotropy Probe
suggest an epoch of star formation in the redshift range of z = 11 − 30 [64], which is
consistent with the simulation results of Abel et al. [39] and Bromm et al.[42], which
suggest that the first generation of stars (known as Population III, or Pop III) formed in
the redshift range z = 20 − 30. The Abel et al. results, which are the highest-resolution
simulations of formation of the first generation of primordial stars to date, also suggest
that Pop III stars are very massive - on the order of ∼ 200M�. Stars that are in this
mass range will die in extremely energetic pair-instability supernovae and can eject up to
57 M� of 56Ni [60, 61]. The formation site of Pop III stars is in halos with total masses
of ∼ 106M�. [39, 228]. These halos have escape velocities which are on the order of
a few km/s. Due to the shallowness of the potential wells that Pop III stars form in,
Ferrara [229] suggests that ejecta from a massive Pop III supernova can propagate to
very large distances (far greater than the halo virial radius), a result which is supported
in simulations performed by Bromm et al.[95].

In this chapter we describe the results of cosmological hydrodynamic simulations
which address whether or not a population of massive primordial stars can be responsible
for metal enrichment of the Lyman-α forest to the level and dispersion seen today. We
examine the most optimistic possible scenario for Pop III star formation and enrichment
in order to establish an upper limit on metal enrichment of the Lyman-α forest due to
Population III stars.

8.3 Problem Setup

The simulations were set up using the concordance cosmological model (Ωm = 0.3,ΩΛ =
0.7, Ωb = 0.04 and a Hubble parameter of h = 0.7 where h is in units of 100 km s−1

Mpc−1. Initial perturbations in the dark matter and baryon density were created with
an Eisenstein & Hu [194] power spectrum with σ8 = 0.9 and n = 1 using the Zel’dovich
approximation [125] in a box which is 0.7 h−1 comoving Mpc on a side. In our simulations
we use a computational box with 2563 grid cells with a comoving spatial resolution of
2.7h−1 kpc and a dark matter mass resolution of 1477 h−1 M�.
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The simulation was initialized at z=99 and was allowed to evolve to z=15 using the
Eulerian adaptive mesh refinement code Enzo (as described in Chapter 2). The simulation
was stopped at z = 15 and all halos with dark matter mass MDM ≥ 5 × 105 M� were
found using the HOP halo-finding algorithm [196]. This yielded 184 halos, each of which
we assume produces one pair instability supernova. Note that we are ignoring negative
feedback, which raises the minimum halo mass which can form Pop III stars [?]. This
is consistent with our desire to simulate a best-case scenario. We discuss this and other
assumptions in Section 8.5.

At this point, two separate cases are considered. In the first case (referred to as
Case ‘A’), spheres of uniform metal density 1 kpc (proper) in radius with 127 M� of
metal are placed in the simulation, centered on the cell of highest dark matter density
of each halo. This corresponds to a mass averaged metallicity in the volume of < Z >≡
MZ/MB = 4.02 × 10−5 Z� (where MZ and MB are total metal and baryon masses in
the simulation volume), which remains constant throughout the simulation. No other
modifications to the data were made – in particular, the baryon density, temperature
and peculiar velocities and dark matter density were unmodified.

In the second case (Case ‘B’), the spheres of uniform metal density are placed down in
the same manner. In addition, the baryon gas in the corresponding volume is smoothed
to the cosmic mean (< ρ >= Ωbρc), and the temperature of the baryon gas is set to 104

K. This corresponds to the net smoothing and heating of baryons in primordial halos
due to pair-instability supernovae. The mass averaged metallicity in this case is slightly
greater, < Z >= 4.11 × 10−4 Z�. This is due to a small net loss in baryon mass when
the densities are smoothed. As in Case A, peculiar velocities and dark matter density
are unmodified.

The simulations are then evolved to z=3, following the evolution of the gas using non-
equilibrium chemistry and cooling from hydrogen and helium and their ions [152, 153].
Metal line cooling is ignored. At z = 7 we initialize a uniform metagalactic ultraviolet
background field [230] with a slope of qα = −1.8 that is ramped to a pre-computed
value by a redshift of z = 6. Zhang et al. [231] determined that such a prescription
can reproduce the Gunn-Peterson effect in the hydrogen Ly-α lines by a redshift of 5.5.
Self-shielding of the gas is not explicitly included in the assumed UV background.

It is important to note that the box size, at 0.7 h−1 Mpc, is somewhat small. Statistical
results are reliable at z = 15. However, by z = 3 (when the simulations are terminated)
the box is too small to be statistically reliable. We also performed a simulation in eight
times the volume at the same mass and spatial resolution (i.e. 5123 cells/particles), which
gave results indistinguishable from what follows. Nonetheless, all results at late times
should be considered qualitative.
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Figure 8.1: Projected log metal density (Case A). The area viewed is a projection of
the entire simulation volume. The four panels correspond to (from left to right) z=15,
7, 5 and 3. The Pop III supernova remnants are placed in the volume at z=15 and
advect along the filaments. Photoevaporation of gas in the filaments, driven by the
metagalactic UV background, causes the volume filling factor of the metal-enriched gas
to increase substantially by z=3.

8.4 Results

The general evolution of our simulation after injection of metal bubbles at z = 15 is as
follows: Beginning at z = 15, the bubbles of metal track the flow of gas onto and along
dark matter filaments. The competing effects of advection along the filaments and the
collapse of filaments during this period essentially cancel out, with little net effect on the
fraction of the volume occupied by metal enriched gas (also referred to as the volume
filling factor, or VFF). Regions of relatively high metallicity (Z ≥ 10−3Z�), corresponding
to the densest regions of filaments, decrease their volume filling factor significantly from
z=15 to z=6. Case A shows more of a decrease in VFF at relatively high metallicities
(from a VFF of 10−2.5 to 10−3.2) than Case B does (which has a minimum VFF of 10−2.9)
due to the higher initial densities and lower initial temperatures of polluted regions in
Case A. Figure 8.1 shows snapshots of the metal distribution in the simulation volume
taken at 4 different redshifts, and Figure 8.2 shows the volume filling factor for three
metallicity thresholds as a function of redshift.

A uniform metagalactic ultraviolet background is switched on at z = 7. Photoheating
raises the mean temperature of the baryon gas. In the Lyman-α forest overdensity
regime (1 ≤ δ ≤ 10), which roughly corresponds to the filamentary structure observed in
Figure 8.1, the temperature is raised to ∼ 10,000 K. The local thermal speed of the baryon
gas then exceeds the escape velocity of the filaments, resulting in significant expansion
of the volume occupied by the gas in those filaments. This includes the gas polluted
by metals. This effect can be clearly seen in the third and fourth panels of Figure 8.1.
Figure 8.2 shows the sharp increase in metal VFF in a more quantitative way. Gas
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(a) (b)

Figure 8.2: Volume filling factor. The lines describe the fraction of the simulation volume
filled to a metallicity of at least 10−6 Z� (black), 10−4 Z� (blue) and 10−3 Z� (red). Panel
(a) corresponds to the simulation where spheres of uniform metal density are added and
no other changes are made. Panel (b) corresponds to the simulation where, in addition
to uniform spheres of metal density, the baryon density in the corresponding volume is
smoothed to the mean density of the simulation and the gas temperature of the sphere
is raised to 104 K.
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which has been polluted above a metallicity of 10−6Z� (corresponding to essentially the
entire volume of gas polluted by metals) increases in VFF to 0.048 for both Case A and
0.046 for Case B. This corresponds to 28% (26%) of the baryon mass being enriched
for Case A (Case B). The two cases are essentially indistinguishable with regards to
the total mass and volume of gas polluted by metals. Examination of gas with higher
metallicity (Z ≥ 10−3Z�) shows some difference between the cases, with a maximum
VFF of 5.2 × 10−3 for Case A and 5.8 × 10−3 for Case B (corresponding to 1.5% and
1.9% of the total gas mass, respectively). This difference is due to the initial smoothing
and heating of baryons in Case B.

In Figure 8.3 we estimate the amount of carbon contained within the primordial
metallicity field at z = 3. We assume that the carbon abundance in the metal density
is equal to XC = 0.027, which is taken from the supernovae metal yield of a massive
primordial star of approximately 260 M� as computed by Heger et al. [?]. We then
compute the mean and median carbon metallicity, [C/H] = log (nC/nH)−[C/H]� (where
[C/H]� = −3.45) in bins of constant logarithmic overdensity between log δ = −0.5− 2.0
and plot this in Panel A of Figure 8.3. Altering the effects of XC results in this figure
being scaled along the y-axis by a factor of log(XC/0.027). The solid green line is the fit
to the observations of Schaye et al. [84] using their fiducial model. The dashed-green line
is the fit of the lower bound lognormal scatter of their data. The results of our simulation
yield that the Population III carbon content in the IGM at z = 3 is below the observed
limits across the entire overdensity range.

In Panel B of Figure 8.3 we plot the probability distribution function (PDF) for
both simulation cases in the overdensity range log δ = −0.5 to +2.0. The vertical lines
correspond to the mean (solid) and median (dashed) values of the [C/H] values. The
distributions corresponding to the two cases are statistically indistinguishable within one
standard deviation. The small variation between the two cases in the range [C/H]=-4
to -2 is due to the difference in their mean initial metallicity per bubble (caused by the
difference in treatment of of the baryon density field in the region initially polluted by
metals in the two cases).

In order to determine the observability of the primordial metallicity field, we post-
process our data to compute the fraction of CIV to neutral hydrogen (HI) for each
cell in our computational volume. Obtaining the quantity log F = log (nCIV /nHI)
within constant overdensity bins, in the range log δ = −0.5 − 2.0, allows the determi-
nation of the lognormal average < log F > at each redshift. At z=3 our analysis yields
< log F >= −3.78 ± 0.91(−3.78 ± 0.92) for Case A (B). We can then approximate
the CIV optical depth due to Pop III stars as τ popIII

CIV ≈ (fCIV λCIV

fHIλHI
) · 10<log F>τHI , where

fCIV,HI and λCIV,HI are the oscillator strengths and rest-frame absorption wavelengths
for the two species (CIV & HI). Using our mean values for < log F > at z=3 we obtain an
estimated optical depth, due to CIV, of τ popIII

CIV = 0.977.86
0.12×10−4 τHI (0.978.13

0.11×10−4τHI).
Schaye et al. [84] computed τCIV = 10−2 τHI in the Ly-α forest overdensity range. If
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Figure 8.3: In panel (a) we plot the volume averaged [C/H] in solar units within constant
logarithmic overdensity bins in the range of 1 ≤ δ ≤ 102 at z = 3. The profiles for the
two cases discussed in the text show no statistical difference. In panel (b) we plot the
probability distribution function (PDF) of [C/H] within the overdensity range 1 ≤ δ ≤
102. The y-axis measures the fraction of the metal polluted volume with [C/H] values
between [C/H] and [C/H]+∆[C/H]. The result is computed with XC = 0.027. The two
distributions yield < [C/H] >= −4.68± 0.80 for Case A and < [C/H] >= −4.68± 0.81
for Case B. Median values for the two PDFs are -4.53 and -4.56 respectively. The two
cases are indistinguishable within one standard deviation.
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the above value corresponds to the total metallicity at z=3 then the contribution of the
primordial component to the total optical depth of CIV is about τ popIII

CIV = 0.01 τCIV .
This result is somewhat sensitive to the shape of the UV background – see Schaye et
al. [84] for more details. Statistical correlations between Pop III CIV and HI absorbers
and more detailed examination of spectra due to ejecta from Population III stars will be
discussed in a forthcoming paper.

8.5 Discussion

In this chapter we use cosmological hydrodynamic simulations to examine the evolution
of metals ejected by an early population of massive primordial stars. We show that,
in the absence of further star formation, photoevaporation of baryons bound to dark
matter filaments during reionization is the most important mechanism in determining
the volume filling fraction by z = 3. Our two study cases, although different in their
initial setup, give the same results for the global distribution of the primordial metal field
by z = 3, suggesting that our result is insensitive to small-scale dynamics.

Comparison of our results to observations of carbon in the Lyman-α forest by Schaye
et al. [84] show that at z = 3 the median value of the Pop III carbon metallicity
for both cases considered fall within the low end of the scatter range of the observed
data for log δ ≤ 0. For log δ ≥ 0 the Population III carbon metallicity is below the
observed values, with the Schaye result showing a much stronger increase in metallicity
with overdensity, resulting in the median value of [C/H]PopIII becoming an increasingly
smaller fraction of the total observed [C/H].

Our results depend strongly on two factors, namely, the total number of Population
III stars formed in our volume and the metal yield per star. In these simulations we make
the assumption that all halos with mass MDM ≥ 5 × 105M� form a massive primordial
star by z = 15, which was guided by the simulations performed by Abel et al. [?] and
Yoshida et al. [228], which show that this is the characteristic dark matter mass of
a halo which forms a star in the early universe. Simulations by Machacek et al. [71]
and semianalytical calculations by Wise & Abel [97] show that a soft UV background
produced by the first Pop III stars effectively dissociates H2, which is the primary cooling
mechanism in primordial star formation. This so-called negative feedback effect raises the
minimum halo mass that can form a primordial star within it and therefore reduces the
number of halos which will form Population III stars at a given epoch. Wise & Abel [97]
find that negative feedback reduces the number of star forming halos by a factor of 5-10
relative to what we used. On the other hand, suppression of Pop III star formation by
negative feedback would be compensated by an extended epoch of Pop III star formation.
At present, we do not know when Pop III star formation ceases. We view our choice of
Mmin = 5 × 105M� at z = 15 as a hedge between competing effects.
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The decision to place spheres of metal in the simulation volume at z = 15 was guided
primarily by the WMAP polarization results [64]. This choice may have resulted in an
underestimation of the number of Population III stars (and therefore metal pollution due
to Pop III supernovae) because there are dark matter halos which form after z = 15 but
may still be unpolluted by metals. However, results by Bromm et al. [93] suggest the
existence of a “critical metallicity” of ∼ 5× 10−3Z� above which a solar IMF dominates,
and it has been argued that this metallicity is reached by z ∼ 15 − 20 [232, 233]. The
choice of z = 15 for our epoch of instantaneous metal enrichment seems to be a reasonable
compromise.

The physical properties of the metal “bubbles” can have a possible effect on our
results. The choice of a 1 kpc (proper) radius for the metal bubbles is somewhat arbitrary.
Several calculations have been performed that suggest that ejecta from the most massive
pair-instability supernovae can propagate to large distances [95, 234], but the maximum
propagation distance is unclear. Additionally, Bromm et al. [95] suggest that the ejecta
from pair-instability supernovae still has substantial peculiar velocities (∼ 50 km/s) at
500 pc. The metal spheres in this calculation have no initial outward peculiar velocity,
which may result in a smaller volume filling factor than if this were taken into account.

The second factor that strongly affects our result is the choice of the amount of metals
created per Population III supernova. Abel et al. [39] and Bromm et al. [42] both suggest
that the first population of stars will be very massive. The mass function of the first
generation of stars is unclear, due to lack of resolution and appropriate physics. The
main-sequence mass of the star strongly affects its ultimate fate: Stars with the range of
∼ 140 − 260M� detonate in pair instability supernovae, which are much more energetic
(up to ∼ 1053 ergs compared to 1051 ergs for a standard Type I or Type II supernova) and
produce more metal (up to 57 M� of 56Ni and almost 130 M� of total metals for a 260
M� primordial star). However, stars between ∼ 50 − 140M� and above ∼ 260M� form
black holes without first ejecting significant quantities of nucleosynthesized material [61].
The amount of metals placed into the simulation volume is scalable - if the mean amount
of metals ejected by Population III stars were lower (due to some substantial fraction
collapsing directly into black holes, for instance), all of the results shown in Figure 8.2
and Panel A of Figure 8.3 scale linearly with the mean amount of metal produced per
star.

Our results for [C/H] vs. overdensity (using carbon as a proxy for metallicity) agree
with the results of Schaye et al. [84] to within one standard deviation for the lowest
observed densities (log δ < 0). These are the densities that are the most likely to remain
unpolluted by later generations of stars, which form in deeper potential wells. Further
study of the lower density regions of the Lyman-α forest could yield more constraints on
the mass and total number density of massive Population III stars.

An additional factor to consider is that the nucleosynthetic yields of very massive
primordial stars are much different than that of metal-enriched stars [61]. Due to this,
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it may be possible to disentangle the effects of massive primordial stars and their metal-
polluted descendants, as discussed by Oh et al. [235].

Due to our choices of low minimum halo mass and high metal yield per supernova, our
result is a strong upper limit on the pollution of the Lyman-α forest due to Population III
stars, unless we have severely underestimated the duration of the Population III epoch.

The simulation volume is relatively small. Though a reasonable statistical represen-
tation of the universe at z = 15, the results obtained at later times (z ∼ 3) should be
considered qualitative due to the small box size. A much larger simulation volume is
required for adequate statistics at z ∼ 3. However, simulating a much larger volume
which would still have reasonable spatial and dark matter mass resolution on a single
grid is computationally prohibitive at the present time.

All of the simulation results described in this paper are performed without further star
formation or feedback. Having a single episode of star formation at z = 15 means that
metal evolution after that time is passive, whereas in reality there would be continuous
star formation and feedback. A logical extension of this work is the inclusion of later
epochs of star formation and their resulting feedback of metals and energy into the IGM.
These results will be presented in a forthcoming paper.
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Chapter 9

Summary and future Work

9.1 Summary

Population III stars play an important role in the formation of large-scale structure in the
universe through their feedback of metals, kinetic energy, and radiation, and are possible
seeds for the super massive black holes (SMBHs) that are observed at the centers of most
massive galaxies. These stars are the first luminous objects to form after the Big Bang,
and are believed to play a significant role in the ensuing generations of star formation
by preprocessing large volumes of the universe with ionizing radiation and metals, which
greatly enhance the ability of gas to cool, radically changing the properties of the gas
out of which later generations of stars form. Their critical role in structure formation in
the early universe makes an understanding of the Population III mass function and the
feedback properties of these stars crucial to be able to model the formation of the first
generation of galaxies from first principles. At present there are no direct observational
constraints on the mass function of Population III stars. Some indirect evidence has
been obtained from observations of extremely metal poor stars in the galactic halo,
the extragalactic infrared background, and measurements of polarization in the cosmic
microwave background. Though future observations by facilities such as the Square
Kilometer Array (SKA), the Low Frequency Array (LOFAR) and the James Webb Space
Telescope (JWST) may directly observe these stars, at present the only way to study
their properties directly is by the use of numerical simulations.

In this thesis I have used the adaptive mesh refinement cosmology code Enzo (de-
scribed in detail in Chapter 2) to study aspects of the formation and feedback processes
of the first generation of stars in the universe. Chapter 3 describes the results of an
extensive comparison of Enzo with the smoothed particle hydrodynamics (SPH) code
GADGET. This comparison, in the context of cosmological simulations of galaxy forma-
tion, shows that it is possible to achieve very similar results with methodologies that are
extremely different when one is performing simulations with only dark matter, and also
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when one includes non-radiative (“adiabatic”) hydrodynamics. This comparison helps
to verify the correctness of both codes and also lends credibility to simulation results
performed in regimes where direct observational evidence is not currently available (e.g.
structure formation in the early universe).

Chapter 4 presents results from high dynamical range simulations of the formation
of Population III stars in a ΛCDM universe. I performed simulations varying both the
simulation box sizes and random seeds (effectively changing the pattern of large scale
structure in the simulation), as well as choosing a single realization and varying simulation
parameters, in order to obtain further constraints on the formation and ultimate stellar
mass of Population III stars. I show that the mean formation redshift of these stars, as
well as the overall accretion rate onto the primordial protostar, varies systematically with
the volume of the cosmological simulation, with larger box sizes tending towards lower
overall accretion rates, and in principle lower overall stellar masses. The implications of
this are significant – the mass estimates of Population III stars that are most commonly
used in the literature have been based primarily upon the results of three-dimensional
cosmological simulations using very small simulation volumes, and as a result much work
has been based on assumptions of a Population III mass range that may be more massive
than is implied by this work. The range of supernova energies, as well as nucleosynthetic
yields, varies significantly between the inferred mass range for the largest simulation
volumes described in this work (∼ 10−100 M�) and from previous work (∼ 30−300 M�).

Chapter 4 also presents results from simulations of the formation of Population III
stars assuming a constant Lyman-Werner background. This soft ultraviolet background
will photodissociate molecular hydrogen, the primary coolant in primordial gas. I demon-
strate that increasing the strength of this UV background will delay the onset of Popu-
lation III star formation, and may even completely prevent the formation of primordial
stars in halos whose virial temperatures are less than ∼ 104 K.

In Chapter 5, I discuss results from simulations of the formation of Population III
stars assuming a simple warm dark matter (WDM) model. This model is quite generic
in that it makes no assumptions about the mechanism which suppresses power on small
physical scales. I apply suppression to the power spectrum over a range of assumed
warm dark matter particle masses in order to present a more reasonable lower limit on
a possible warm dark matter particle mass, and also run a cold dark matter version as
a control sample. This suppression is applied on multiple simulations which all have the
same large scale structure (all other simulation parameters are also identical) so that
we can directly compare results. I show that simulations of the formation of Population
III stars in a warm dark matter cosmology are effectively identical to the results from
the fiducial ΛCDM case at mWDM ' 35 keV, and that observations of polarization in
the cosmic microwave background (which imply partial reionization of the universe at
z ' 17 ± 5) suggest a lower limit on the warm dark matter particle mass of ∼ 15 keV,
which is a factor of ∼ 3 greater than previous published lower limits. This significantly
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tightens constraints on a possible warm dark matter particle mass.

I present results of the formation of a second generation of Population III stars in a
halo which has been ionized by the formation of a nearby extremely massive primordial
star in Chapter 6. This scenario is a likely one, as ∼ 106M� halos are highly clustered
in the early universe, and it is plausible that several nearby halos will be ionized by
the first Pop III star to form in a given cluster of halos, assuming that this star is very
massive (at least ∼ 100 M�). In this chapter I show that the ionization of gas due to the
first star to form in a region actually enhances the formation of molecular hydrogen in
nearby halos (after the death of the first star) and allows star formation to take place in
a halo that would not otherwise form a Population III. This suggests a possible positive
feedback effect due to Population III star formation. Additionally, the star that forms
in the ionized halo has a much lower accretion rate than the first star to form in the
simulation volume, which is most likely due to the higher overall angular momentum of
the halo that this star forms in. This lower accretion rate implies a relatively low stellar
mass (∼ 5 − 20 M�) and presents an additional plausible scenario for the formation of
Population III stars with masses lower than the “fiducial” range of 30 − 300 M� that is
typically assumed in the literature.

Chapter 7 presents very preliminary results of adaptive mesh refinement simulations
of the supernovae from Population III stars. We examine the enrichment of metals in a
cosmological context by applying a standard Sedov-Taylor supernova solution to the core
of a halo in which a Population III protostar forms for two representative stellar masses,
30 and 250 M�, which effectively bracket the range of possible Population III supernova
energies (1051−1053 ergs). The less massive star is capable of spreading metals throughout
a region almost a proper kiloparsec across (at z ∼ 18), and it seems reasonable that the
more energetic supernova will have a proportionally greater effect. Initial analysis of the
30 M� supernova simulation indicates that though a very large mass of gas is enriched
by the supernova, the level of enrichment varies widely. It is unclear at present if the
cores of neighboring halos (which are presumably the sites of the next generation of star
formation ) are appreciably enriched with metals. Though these results are qualitative
at present, this method is a very promising approach to determine the metallicities of
the first generation of metal-enriched stars.

The results of simulations which model the feedback of metals from a large number of
Population III stars are presented in Chapter 8. This work, which attempts to model the
effects of Population III stars on the overall metallicity of the Lyman-α forest, assumes
a very optimistic scenario for Population III metal enrichment: every halo with a dark
matter mass of at least 5 × 105 M� or higher is assumed to form a Population III star
with a mass of 260 M� at z = 15. These stars are assumed to produce ∼ 130 M�

of metals which are spread uniformly over a sphere one proper kiloparsec in radius.
The evolution is then followed to z = 3 and the metallicity of the IGM is compared
to current observations of the Lyman-α forest. This work shows that, even with an
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extremely optimistic scenario, it is impossible to explain the metallicity of the Lyman-α
forest (as inferred by measurements of CIV absorption lines) at densities higher than the
cosmological mean density by metal enrichment from Population III stars alone.

The work presented in this thesis, and summarized in the previous paragraphs, con-
tributes directly to the greater understanding of the formation of Population III stars and
the effects that they have on their surroundings via radiative, chemical, and mechanical
feedback. This work is critical to the accurate modeling of the formation and evolution of
galaxies from first principles, since Population III stars are responsible for preprocessing
regions of space which will eventually become galaxies. Additionally, Population III stars
may be the seeds of the super massive black holes that are observed at the centers of
many galaxies. Thus, understanding the mass range of these stars is also significant for
research in both the formation and evolution of super massive black holes, as well as work
with active galactic nuclei (AGN), which are believed to be powered by these black holes.
Finally, understanding the Pop III IMF and the resulting feedback from these stars can
be useful in interpreting observations the extragalactic infrared background as well as the
recent WMAP observations of polarization in the cosmic microwave background. Popu-
lation III stars may also be the progenitors of extremely high redshift gamma ray bursts
(GRBs), and predictions of the IMF may place constraints on the frequency of Pop III
GRB events which are observable by the current and future generations of gamma ray
satellites.

9.2 Future Work

The work presented in this thesis is extendible in many ways. The code comparison
project in Chapter 3 discusses simulations that have dark matter only, or have dark mat-
ter with a non-radiative gas component. While an important first step, galaxy formation
(which is the context of the comparison) is heavily dependent upon the cooling processes
of gas in the collapsing dark matter halos as well as the formation of stars and their
feedback of metal and thermal energy into the interstellar and intergalactic medium. An
obvious extension of this project would be to incrementally include radiative cooling,
star formation, and then star formation plus feedback, with the goal at each step of
understanding and attempting to reconcile the differences between the two simulation
methods. A portion of this work (simulations that include radiative cooling) is already
in progress.

The study of Population III stars in a ΛCDM universe discussed in this thesis (Chap-
ter 4) is limited by physics when the gas in the dark matter halo that the stars formed
in reaches approximately 1012 particles per cubic centimeter. At this point one of the
main assumptions concerning the cooling in the gas, namely, that the gas is optically
thin to cooling radiation, becomes invalid. Recent work by Ripamonti & Abel [47] has
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shown that for several more orders of magnitude in density the effects of opacity are local,
meaning that minor corrections to the chemical rate equations are all that is necessary to
accurately model the collapsing cloud. These fixes are already implemented into Enzo,
and are a logical extension of the work presented here. In addition, all of the work in this
thesis completely ignores the effects of magnetic fields. While it is widely assumed that
B-fields are dynamically unimportant in the formation of Population III stars, this can be
tested. The equations of magnetohydrodynamics are currently being implemented into
the Enzo code, and the examination of the effect of magnetic fields on the formation of a
Pop III protostar will be one of the first applications of this code. Finally, it is unclear if
the observed relationship between increased box size and decreased protostellar accretion
rate has converged at the largest box size studied in this work. Extension of the study
to even larger box sizes would help to determine whether this result is converged.

The simulations of the collapse of a halo in a cosmology with warm dark matter
(Chapter 5) are of a single cosmological realization. A straightforward (though computa-
tionally expensive) extension to make the predictions in Chapter 5 more robust would be
to perform the same set of simulations for multiple random realizations and for several
different box sizes, as was done in Chapter 4. This would serve to reduce issues involving
small-number statistics and would also provide an attempt to disentangle the effects of
the suppression of the power spectrum and issues involving the box size. Similarly, the
results involving the formation of a second generation of primordial stars (Chapter 6)
should be extended by performing multiple random realizations in order to increase the
statistical robustness of the results. The HII region models that are used are also very
simple, and rely on the one-dimensional output from a radiation transport code. This
presents an inherent problem, since the universe is manifestly three-dimensional! Also, to
accurately model the evolution of the HII region (particularly when the ionization front
encounters nearby halos) it is important to model the time-dependent three dimensional
evolution of the HII region rather than using a static density field, since hydrodynamic
effects may be significant, particularly in the neighboring halos which are of most interest
in this situation. Unfortunately, this is currently beyond the capabilities of our cosmol-
ogy code (not to mention incredibly expensive computationally, even if the tools existed).
However, one can perform computationally feasible models in two dimensions and possi-
bly even in somewhat idealized three dimensional situations that will lend insight to the
problem.

The simulations of Pop III supernovae shown in Chapter 7 are first attempts, and can
stand to be improved in many ways. In particular, the models that we are using for the
supernovae are somewhat simplistic, being Sedov-Taylor blast waves. Work is in progress
to take the output from three dimensional models of supernova explosions and use this as
the initial conditions for cosmological simulation. This work is already in progress. Addi-
tionally, the metal-enriched gas from these supernovae would have significantly enhanced
cooling compared to gas of primordial composition. Implementing cooling models that
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include the cooling effects from metals would allow one to study the enhanced fragmen-
tation of enriched gas, and improve our estimates of the properties of second generation
metal-enriched stars. Finally, the existence of several grid-related numerical artifacts
suggests that these calculations are somewhat under-resolved. Improving the spatial res-
olution of the calculations, though computationally costly, is important if we wish to
accurately model the mixing of metals into the intergalactic medium and in neighboring
halos, which is crucial to the understanding the properties and metal distribution of the
first generation of metal-enriched stars.

Finally, the simulations of the pre-galactic enrichment of the IGM by Population III
stars discussed in Chapter 8 can be extended in several significant ways. The simulation
volumes used in the study presented are somewhat small, and it is computationally
feasible to increase the size of the volume to 10243 cells at the same physical resolution,
allowing us to increase the overall volume by a factor of 64 and significantly improving
our statistics. In addition, it would be useful to explore scenarios where the simulations
are enriched by Pop III stars at multiple epochs rather than only once. Finally, since we
know that star formation took place after the Population III epoch was over, it would be
useful to do similar calculations with the effects of post-Pop III star formation included
so that one can understand their relative effects on metal enrichment of the IGM, as well
as to explore the possibility of differences in QSO spectra that might allow observers
to attempt to separate Lyman-α clouds which have been enriched only by Population
III stars from those which have been enriched by a combination of Pop III and later
generations of star formation. Much of this work is already in progress, and the results
will be presented in a forthcoming paper.
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Appendix A

The Enzo Primordial Chemistry

Reaction Network

The primordial chemistry network implemented in Enzo is discussed in Section 2.2.5 and
also in much more detail by Abel et al. [152] and Anninos et al. [153]. These papers
describe the chemistry and cooling behavior of low-density primordial gas (n ' 104

and below), as well as the steps that are necessary to obtain fast and accurate numerical
solutions of the nonequilibrium chemical reaction rate network. This network is extended
by Abel, Bryan & Norman [39] to include the 3-body molecular hydrogen creation process,
which becomes important at higher densities, and extends the validity of the reaction
network several more orders of magnitude in density, essentially until the gas becomes
optically thick to cooling by H2 line emission. For the sake of completeness, and because
the properties the primordial gas are so crucial to the results that are discussed in this
work, we describe the chemistry network in this appendix.

Tables 2.1 and 2.2 summarize the collisional and radiative processes solved in the
Enzo nonequilibrium chemistry routines. Abel et al. [152] show that accurate results can
be obtained if several unnecessary reactions are eliminated and the reaction network is
reduced to the following:

dnH

dt
= k2nH+ne − k1nHne + 2k31nH2

(A.1)

dnH+

dt
= k1nHne − k2nH+ne (A.2)

dnHe

dt
= k4nHe+ne − k3nHene (A.3)

dnHe+

dt
= k3nHene + k6nHe++ne − k4nHe+ne (A.4)

dnHe++

dt
= k5nHe+ne − k6nHe++ne (A.5)
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dnH2

dt
= k8nH−nH + k22n

3
H − nH2

(k31 + k11nH+ + k12ne) , (A.6)

where the number density of H− is given by the equilibrium condition

nH− =
k7nHne

k8nH + k16nH+ + k14ne
. (A.7)

The H− number density can be calculated in equilibrium because the timescale at
which the reactions controlling its number density occur are much shorter than the rest
of the reactions in this system. The rate coefficients used in the equations above are
defined as follows:

k1 = exp[−32.71396786 + 13.536556 ln(T ) − 5.73932875 ln(T )2

+1.56315498 ln(T )3 − 0.2877056 ln(T )4 + 3.48255977× 10−2 × ln(T )5

−2.63197617 × 10−3 × ln(T )6 + 1.11954395× 10−4 ln(T )7

−2.03914985 × 10−6 ln(T )8] cm3 s−1 (A.8)

k2 = exp[−28.6130338 − 0.72411256 ln(T ) − 2.02604473× 10−2 ln(T )2

−2.38086188 × 10−3 ln(T )3 − 3.21260521× 10−4 ln(T )4

−1.42150291 × 10−5 ln(T )5 + 4.98910892 × 10−6 ln(T )6

+5.75561414× 10−7 ln(T )7 − 1.85676704 × 10−8 ln(T )8

−3.07113524 × 10−9 ln(T )9] cm3 s−1 (A.9)

k3 = exp[(−44.09864886 + 23.91596563 ln(T ) − 10.7532302 ln(T )2

+3.05803875 ln(T )3 − 0.56851189 ln(T )4 + 6.79539123× 10−2 ln(T )5

−5.00905610 × 10−3 ln(T )6 + 2.06723616 × 10−4 ln(T )7

−3.64916141 × 10−6 ln(T )8) cm3 s−1 (A.10)

k4r = 3.925 × 10−13T−0.6353 cm3s−1 (A.11)

k4d = 1.544 × 10−9T−
3

2 exp
(

−48.596 eV

T

)

×
[

0.3 + exp
(

8.10 eV

T

)]

cm3 s−1 (A.12)
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k5 = exp[−68.71040990 + 43.93347633 ln(T ) − 18.4806699 ln(T )2

+4.70162649 ln(T )3 − 0.76924663 ln(T )4 + 8.113042 × 10−2 ln(T )5

−5.32402063 × 10−3 ln(T )6 + 1.97570531 × 10−4 ln(T )7

−3.16558106 × 10−6 ln(T )8] cm3 s−1 (A.13)

k6 = 3.36 × 10−10T−
1

2

(

T

1000 K

)−0.2
(

1 +
(

T

106 K

)0.7
)−1

cm3 s−1 (A.14)

k7 for T ≤ 6000 K:

k7 = 1.429 × 10−18T 0.7620T 0.1523 log10(T )T−3.274×10−2 log2
10(T ) cm3 s−1

(A.15)

k7 for T > 6000 K:

k7 = 3.802 × 10−17T 0.1998 log10(T )

dex
(

4.0415 × 10−5 log6
10(T ) − 5.447 × 10−3 log4

10(T ) cm3 s−1
)

(A.16)

T > 0.1 eV : k8 = exp[−20.06913897 + 0.22898 ln(T ) + 3.5998377

×10−2 ln(T )2 − 4.55512 × 10−3 ln(T )3 − 3.10511544× 10−4 ln(T )4

+1.0732940× 10−4 ln(T )5 − 8.36671960× 10−6 ln(T )6 + 2.23830623

×10−7 ln(T )7] cm3 s−1. (A.17)

T < 0.1 eV : k8 = 1.428 × 10−9 cm3 s−1 (A.18)

ln(k11) = −24.24914687 + 3.40082444 ln(T ) − 3.89800396 ln(T )2

+2.04558782 ln(T )3 − 0.541618285 ln(T )4 + 8.41077503× 10−2 ln(T )5

−7.87902615× 10−3 ln(T )6 + 4.13839842× 10−4 ln(T )7

−9.36345888× 10−6 ln(T )8cm3s−1 (A.19)
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k12 = 5.6 × 10−11T
1

2 exp(−102, 124K

T
)cm3s−1 (A.20)

k14 = exp[−18.01849334 + 2.3608522 ln(T ) − 0.28274430 ln(T )2

+1.62331664× 10−2 ln(T )3 − 3.36501203× 10−2 ln(T )4

+1.17832978× 10−2 ln(T )5 − 1.65619470× 10−3 ln(T )6

+1.06827520× 10−4 ln(T )7 − 2.63128581× 10−6 ln(T )8)cm3s−1 (A.21)

k16 = 7 × 10−8
(

T

100K

)−
1

2

cm3s−1 (A.22)

k22 For T < 300 K:

k22 = 1.3 × 10−32(T/300K)−0.38cm6s−1 (A.23)

k22 for T ≥ 300 K:

k22 = 1.3 × 10−32(T/300K)−1cm6s−1 (A.24)

The photodissociation of molecular hydrogen by Lyman-Werner radiation (as dis-
cussed in Section 4.4.4) is controlled by the k31 parameter:

k31 = 1.13 × 108 FLW |t| (A.25)

where |t| ≡ (4πGΩmρc(1+ zi)
3)−1/2 and has units of seconds, and FLW is the Lyman-

Werner background flux in units of erg s−1 cm−2 Hz−1.
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