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Abstract

We investigate the non-linear response of an anharmonic monostable quantum mechanical resonator to strong external periodic
driving. The driving thereby induces an effective bistability in which resonant tunneling can be identified. Within the framework of a
Floquet analysis, an effective Floquet-Born—-Markovian master equation with time-independent coeflicients can be established
which can be solved straightforwardly. Various effects including resonant tunneling and multi-photon transitions will be described.
Our model finds applications in nano-electromechanical devices such as vibrating suspended nano-wires as well as in non-destructive
read-out procedures for superconducting quantum bits involving the non-linear response of the read-out SQUID.
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1. Introduction

Classical non-linear systems subjected to strong peri-
odic external driving often have several stable stationary
states for which the amplitudes and phases of the forced
vibrations differ in size [1-3]. One of the simplest theoret-
ical models which show the coexistence of two stable
states induced by external driving is the well-known clas-
sical Duffing oscillator. An anharmonic statically mono-
stable potential can be driven into a dynamically
bistable regime showing various interesting features of
non-linear response [1-3], such as hysteresis, period dou-
bling, and thermal activation when finite temperatures are
considered. The external driving field with frequency w in-
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duces an effective dynamic bistability which is manifest by
the non-monotoneous dependence of the amplitude A of
the stationary vibrations for varying w. For the classical
system where all potential energies are allowed, this re-
sponse curve A(w) is smooth showing only two points of
bifurcation for the related bistabilty. If the control param-
eter w is additionally varied adiabatically, hysteretical
jumps between the two stable states occur. If additional
thermal noise is added to the system, the regime of bista-
bilty shrinks due to thermal escape of the metastable state.

The main subject of this work is to investigate the
corresponding driven quantum mechanical system. The
presence of time-dependent driving typically adds sev-
eral interesting features to the properties of the time-
independent quantum system, see for instance [4,5]. In
this work, the focus is laid on the non-linear response
of the driven quantum mechanical anharmonic oscilla-
tor in the presence of an Ohmic heat bath. We show that
the non-linear response curve A(w) displays beyond its
characteristic shape additional quantum mechanical
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resonances which are related to multi-photon absorp-
tions. Additionally, we show that there exists a separa-
tion of time-scales indicating that the stationary state
is reached by quantum tunneling from the dynamically
induced metastable to the globally stable state. In fact,
by tuning the control parameter o, several resonant tun-
neling transitions can be identified as resonances in the
corresponding tunneling rate.

The paper is organized in the following way: In Sec-
tion 2, the system Hamiltonian is introduced. The latter
is periodic in time, which allows the application of Flo-
quet theory. Since we are interested in the stationary
state in presence of (weak) dissipation, we introduce also
a set of harmonic oscillators representing an Ohmic heat
bath. An efficient way to determine the dynamics of the
system is the use of a Born—-Markovian master equation
in the Floquet picture (Section 3) yielding a simple mas-
ter equation with time-independent rate coefficients.
After straight forward digitalization, the stationary
oscillation amplitude 4 and the phase ¢ follow. In Sec-
tions 4 and 5, the non-linear response of 4 and ¢
depending on the various parameters is studied in detail.
In Section 6, resonant tunneling is investigated. Finally,
in Section 7, we discuss the applicability of our model to
experimental systems before we conclude.

2. The quantum Duffing oscillator

The Hamiltonian for the driven anharmonic oscilla-
tor has the form

2 2
Hs(t) =§—m+m7%x2+%x4+xfcos(wt). (1)
Here, m and wg are the mass and the harmonic fre-
quency of the resonator, respectively, while o gives the
strength of the non-linearity. We focus on the case
o> 0 of hard non-linearities, where the undriven poten-
tial is monostable. The external driving is characterized
by the amplitude f and the frequency w. As it will be-
come clear below, the driving induces an effective bista-
bility in which quantum tunneling can be identified.

We include the effect of the environment by a bath of
harmonic oscillators which are bilinearly coupled to the
system with the coupling constants ¢; [6]. The Hamilto-
nian for the bath and the coupling to the system is given
by its standard form
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We focus on the generic case of an Ohmic bath with the
spectral density
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with damping constant y and cut-off frequency w.. The
total Hamiltonian is H(t) = Hs(t) + Hp.

To proceed, we scale H(¢) to dimensionless quantities
such that the energies are in units of Zw, while the
lengths are scaled in units of xp = %UO The non-linear-
ity parameter o is scaled in units of oy = %y /x;, while
the driving amplitude is given in units of f; = fiwoe/xo.
Moreover, we scale temperature in units of Ty = g/
kg while the damping strengths are measured with re-
spect to wo.

To investigate the dynamical behavior of the driven
resonator, it is convenient to use the periodicity of
Hg(t) with respect to time and switch to the Floquet pic-
ture [7], the later being equivalent to a transformation to
the rotating frame. The Floquet or quasienergies ¢, fol-
low from the solution of the eigenvalue equation

1500 = i 5| 16,00) = 016, 0) @)

with the Floquet states |¢,(¢)). The quasienergies ¢, are
defined up to a multiple integer of 74w, i.e., the state
10\ (£)) = €| ¢, (1)) is also an eigenstate of the Floquet
Hamiltonian, but with the eigenvalue ¢,, = ¢, + nho.
This feature prevents us from a global ordering of the
quasienergies which, however, can be achieved with
the mean energies obtained after averaging over one
driving period, i.e.,

E, = (e + nho)(cynlcsn) (5)
with the Fourier components of the Floquet states [7]
2n/w
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3. Dynamics of the quantum Duffing oscillator
3.1. Floquet—Born—Markovian master equation

The dynamics of the resonator in the regime of weak
coupling to the bath can be efficiently described by a
Born-Markovian master equation in the Floquet picture
[7] for the elements p,4(t) = (Pu(1)lplpp(f)) of the re-
duced density operator p after the harmonic bath has
been traced out in the usual way. For weak damping,
the dissipative influence of the bath is relevant only on
a time scale much larger than the driving period
T,, = 2r/w. Thus, the time-dependent coeflicients which
are periodic in time with period T, can safely be re-
placed by their average over one driving period (moder-
ate rotating wave approximation [7]). This yields a
simplified master equation with time-independent coeffi-
cients which reads

Pap(t) = Z Mg Pup (1) (7)

o'
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with

i
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The first term on the r.h.s. describes the coherent time
evolution of the pure system while the second term con-
tains the transition rates describing the influence of the
dissipative bath. It reads [7]
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with the coefficients:
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The operator .# in Eq. (8) is a M? x M*matrix, when
the total Hilbert space of the anharmonic resonator
has been truncated to the AM-dimensional subspace.
For practical purposes, we set M = 12 throughout this
work. Note that we have confirmed convergence with re-
spect to M for all results shown below. With that, .# can
be readily diagonalized numerically by standard means.
This can be formalized in terms of the diagonalization
transformation S by the eigenvalue equation

> (S gt Syiv oy = Aapadpp. (11)
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Here, A,z denote the eigenvalues of the operator ./.
Since the probability distribution is normalized to one,
there is an eigenvalue A7 = 0 which characterizes the
stationary solution pj;. The remaining eigenvalues all
have a negative real part leading to a decay of the corre-
sponding mode with time. The eigenvalues can be or-
dered according to their real parts. As it turns out, the
smallest non-zero eigenvalues are clearly separated from
the remaining ones. These eigenvalues are responsible
for the tunneling dynamics as will be discussed in Sec-
tion 6. Finally, the solution of the master equation (7)
can be formally written as

pa/}(t) = p;?} + Z SO‘/}-J‘V(S_I)pv,y’v’eAMtPH’V’(t = O) (12)
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For convenience, we have chosen the initial time ¢ = 0.
3.2. Observable: stationary oscillation amplitude

We are interested in calculating the asymptotic expec-
tation value (x),,s of the position operator. This is the

quantity which can directly be compared to its classical
counterpart being the solution of the classical Duffing
equation. It reads

<x>tAas = Z Cﬂeimo[ (13)

n

with the coefficients
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Since the oscillator is driven by a cosine-shaped external
force, it will oscillate in the asymptotic limit also with a
phase-shifted cosine if the excitation frequency w re-
mains close to wg. Higher harmonics could be generated
in this non-linear system but they are not in the focus of
our interest in this work. Thus, only the terms n = +1
contribute in the Fourier expansion and we obtain

(), = A cos(ot + 9), =~ (15)

with the amplitude 4 = 24, and the phase ¢ = ¢; of the
first harmonic of the Fourier expansion. These two
quantities are used to study the non-linear response of
the anharmonic resonator in the stationary long-time
limit. The short time dynamics of such a type of master
equation is an interesting issue by itself since it is related
to the question of complete positivity and to the ques-
tion of factorizing initial conditions [8,9]. Moreover,
we note that the master equation (7) is valid only in
the case of weak system-bath coupling. For the opposite
limit of strong coupling (quantum Smoluchowski limit),
different techniques [10-14] have to be applied.

3.3. Classical Duffing oscillator

The corresponding classical oscillator (at zero tem-
perature) is the well-known Duffing oscillator [1-3]. It
shows a rich variety of features including regular and
chaotic motion. In this work, we focus on the parameter
regime where only regular motion occurs. The non-lin-
ear response of its amplitude A4 can be calculated pertur-
batively [1]. One obtains the response A(w) as the
solution of the equation

2 22\ 1/2
©— =32 Azi( S —/—) . (16)
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Its characteristic form is shown in the inset of Fig. 1. For
weak driving strengths, the response as a function of the
driving frequency w has the well-known form of the har-
monic oscillator with the maximum at w = w,. For
increasing driving strength, the resonance grows and
bends away from the w = wy-axis towards larger frequen-
cies (since o > 0). The locus of the maximal amplitudes is
given by the parabola [1] w — wy = % mj)oAz, which is
often called the backbone curve. Most importantly, a
bistability develops with two adjacent stable branches
and one intermediate unstable branch. This bistability
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Fig. 1. Amplitude A4 of the expectation value (x(¢)) in units of
X0 = meO for varying the driving frequency . Parameters are
kT = 0.1hwo, o= 0.1, f=0.1fy, 7 =0.005w¢. Dashed line: results
of the classical Duffing oscillator at 7=0 with the remaining
parameters being the same. (Inset) Amplitude 4 of the classical
Duffing oscillator for varying driving frequencies. The driving strength

f increases from bottom to top.

is connected with a hysteretical jump phenomenon which
can be probed if the driving frequency w is adiabatically
increased or decreased. The hysteresis is maximal for zero
temperature. At finite temperature, it is reduced since the
particle can escape from the metastable local minimum to
the adjacent global minimum via thermal hopping [15—
17] before the deterministic switching point is reached
[18,19]. Note that for stronger driving amplitude, also
bifurcations and period doublings can occur [1-3] which
we do not address in the present work.

The non-linear response of the phase ¢ can be deter-
mined perturbatively in a similar way. One obtains [1]

24 , (17)

2(( — wo)d — 3 25

(p = —arctan

where A is the solution of Eq. (16). The curve ¢(w) also
has two stable branches with an unstable intermediate
branch and displays similar hysteretic jump phenomena
as the amplitude response.

As we will show in the following, the non-linear re-
sponse is qualitatively different in the corresponding
quantum system. The discrete quasienergy spectrum al-
lows for multi-photon excitations which yield discrete
resonances in the amplitude response profile. Moreover,
the dynamically generated bistability allows for an escape
of the system out of the metastable state via resonant
quantum tunneling. This generates characteristic reso-
nances in the tunneling rate when the external frequency
, which plays the role of a control parameter, is tuned.

4. Amplitude response

A typical response profile for the amplitude A(w) is
shown in Fig. 1. The shoulder-like shape is a remnant

of the classical form of the response which is indicated
by the dashed line. In the quantum case, clear reso-
nances can be observed at particular values of the driv-
ing frequency.

The resonances can be understood as discrete multi-
photon transitions occurring when the Nth multiple of
the field quantum 7w equals the corresponding energy
gap in the anharmonic oscillator. By inspection of the
associated quasienergy spectrum shown in Fig. 2, one
can see that the distinct resonances occur at multiple
degenerate avoided level crossings of the quasienergy le-
vel ey of the Nth Floquet state with the quasienergy level
gy of the Floquet groundstate. In physical terms, multi-
photon excitations occur in the resonator and the corre-
sponding populated Floquet state dominates then the
position expectation value (x) with its large value of
the amplitude, see Eqs. (13) and (14).

The width of the Nth resonance is determined by the
minimal splitting at the avoided quasienergy level cross-
ing which is equal to the N-photon Rabi frequency. The
latter can be evaluated perturbatively for weak driving
amplitudes [20,21] upon applying a rotating-wave
approximation (RWA). For the resulting Hamiltonian,
one finds that to lowest order in f/(w — wy), the N-pho-
ton Rabi frequency at wy decreases exponentially with
N implying that the resonances are sharper for larger
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Fig. 2. Average energies E, (top), quasienergy levels ¢, (middle) and
amplitude A of the fundamental mode for varying driving frequencies
. The remaining parameters are o = 0.1, /= 0.1f5 and y = 0.005w.
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N. For small frequencies, the broad peaks overlap
strongly and lead to a shoulder-like profile which is sim-
ilar to the classical result (dashed line in Fig. 1(a)).
Although the RWA yields a qualitatively correct pic-
ture, a quantitative comparison shows noticeable devia-
tions from the results for the full anharmonic resonator
and is not pursued further in this work. Note that a sim-
ilar system has been investigated in [22] in the context of
a dispersive optical bistability. There, a non-linear Ham-
iltonian has been derived from the Duffing oscillator
using a RWA, similar to that used in [23,20]. A rather
involved matrix continued-fraction method also re-
vealed a bistability. However, the numerical procedure
to obtain those results is rather cumbersome. In con-
trast, our approach is numerically straightforward since
it only involves a simple numerical diagonalization of a
matrix.

4.1. Tuning system parameters

Since the location of the multi-photon resonances is
determined by the system Hamiltonian, it is interesting
to see how they depend on varying the system parame-
ters o and f.

4.1.1. Varying the non-linearity coefficient o

The spectrum of the system and therefore, the Flo-
quet spectrum, depends strongly on the non-linearity
coefficient o. Increasing o increases the energy gaps be-
tween the succeeding eigenstates. Thus, the multi-pho-
ton absorption processes occur at larger frequencies of
the driving field. This behavior is shown in Fig. 3. The
increase of o leads in general to a shift of the response
curve A(w) towards larger frequencies w. Moreover,
we observe that the height of the N-photon peak de-
creases for increasing o. This observation is qualitatively
in agreement with a perturbative treatment for weak
driving within a rotating wave approximation [20].

A/ X

1.12 1.14 1.16 1.18 1.2
o/ @

Fig. 3. Response curve 4(w) for different values of the non-linearity a.
Remaining parameters are kg7 = 0.1%wy, f=0.1fy, y = 0.005w.

4.1.2. Varying the driving amplitude f: multi-photon
antiresonance

The Floquet spectrum of the uncoupled system de-
pends on the value of the driving amplitude f. A pertur-
bative analysis [20] shows that the N-photon Rabi
frequency Qg _y which is given by the minimal splitting
of the quasienergy at the avoided quasienergy level
crossing depends crucially on N and f. This, in turn,
determines the behavior of the N-photon resonance.
The detailed results of the dependence on the f are
shown in Fig. 4. The N = 5-photon peak grows for
growing f. Most interestingly, the N = 6-photon peak
displays a non-trivial behavior. For weak driving, a 6-
photon antiresonance, i.e., a dip, develops. When the
field amplitude is increased the antiresonance turns into
a true resonance which grows further for growing f.
The particular dependence of the local extrema are
shown in the inset of Fig. 4. As follows from Egs.
(13) and (14), the amplitude A is determined by the
sum ¢; = ) 035X s, 1. Thus, the product of the weights
pss (which also contains the influence of the bath) and
the matrix elements Xp,; (which is a property of the
coherent driven system alone) determines the full shape
of the amplitude. Notice that p3; is in general not diag-
onal. This is different from the system considered in [20]
where only a coherent system without bath has been
investigated.

By varying the system parameters, we have modified
implicity both pj; and Xpg, ;. In the following section,
only bath parameters and thus p3; will be modified, leav-
ing Xpg, ; unchanged.

1.17 1.18 1.19
(o/(no

Fig. 4. Five- and six-photon resonance of the response curve A(w) for
different values of the driving amplitude f. (Inset) Local extremum of
the N-photon resonance for varying driving strength. The six-photon
resonance develops from an antiresonance for small driving strengths
to a true resonance for larger values of f. Remaining parameters are
kgT = 0.1%wg, o = 0.10, y = 0.005w.
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4.2. Dependence on bath parameters

The cross-over from antiresonant to resonant behav-
ior occurs when an increased driving amplitude f in-
creases the population of higher-lying Floquet states.
In this section, we investigate the role of the dissipative
environment by tuning the bath temperature and the
damping constant.

4.2.1. Varying temperature T

Since increasing temperature 7 leads also to an in-
creased population of other Floquet modes, the transi-
tion from antiresonant to resonant behavior can also
be expected to occur for growing 7, at least in a certain
temperature regime. The result is shown in Fig. 5 for the
5-photon and 6-photon-resonance. The resonant peak
for N=15 grows and broadens if temperature is in-
creased. In contrast, the antiresonant dip for N =06
shrinks for growing T and turns into a resonant peak.
This peculiar behavior can be interpreted as thermally
assisted cross-over from antiresonant to resonant behav-
ior. The inset in Fig. 5 shows the local extrema for N =5
and N = 6. For even larger temperature kg7 ~ hw,, the
characteristic peak structure is completely smeared out
due to thermal broadening, see also Fig. 2, lower panel.
Then, the peaks overlap and the dynamic bistability is
smeared out by thermal transitions between the two
(meta-)stable states.

4.2.2. Varying the damping constant y

The results for different damping constants y are
shown in Fig. 6. The five-photon resonance decreases
when 7 is increased from y =0.00lwy to y = 0.01w,.
As also shown in the inset of Fig. 6, the peak maximum
decreases monotonously for N = 5. For the six-photon

A/ X,

|
1.17 1.18 1.19
o/ 0y

Fig. 5. Five- and six-photon resonance of the response curve A(w) for
different values of the temperature 7. (Inset) Local extremum of the N-
photon resonance for varying temperature. The six-photon resonance
develops from an antiresonance for low 7" to a true resonance for
higher 7. Remaining parameters are f= 0.1fy, o = 0.10g, y = 0.005w.
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Fig. 6. Five- and six-photon resonance of the response curve A(w) for
different values of the temperature 7. (Inset) Local extremum of the N-
photon resonance for varying temperature. The six-photon resonance
develops from an antiresonance for low 7" to a true resonance for
higher 7. Remaining parameters are /= 0.1f, o = 0.10, y = 0.005w.

(anti-)resonance, we find a different behavior. For weak
damping, a sharp resonance occurs which is turned into
an antiresonance for larger damping. The non-monoto-
nous dependence of the six-photon resonance is also
shown in the inset of Fig. 6. As it is the case for very
large temperature (see above), the influence of a strong
coupling to the bath gradually smears out and finally de-
stroys the resonances.

5. Phase response

Next, we address the non-linear response of the phase
¢. The corresponding classical Duffing oscillator shows
an interesting non-linear phase response ¢(w) including
two stable branches [1]. The characteristic multi-photon
transitions in the quantum version of the Duffing oscil-
lator also shows up in the phase response profile. The re-
sults for different driving strengths f are shown in Fig. 7
for the regime where the five- and six-photon transition
occur. For w < wq a phase shift ¢ = —n is found. For
® > wy, the phase shift vanishes, ¢ = 0. In the interme-
diate region w = wg, the multi-photon resonances
induce also an antiresonance in the phase shift. The
five-photon antiresonance is enhanced and broadened
if the driving strength f is increased from f'= 0.09f; to
f=0.1fy. Increasing the driving further to f=0.11f,
wipes out the antiresonance completely and the transi-
tion ¢ = —m to ¢ =0 is shifted to larger values of w,
where this development is repeated at the succeeding
six-photon resonance.

This behavior is also found when temperature is var-
ied, see Fig. 8. Increasing 7 leads to a suppression of the
transition of the phase shift ¢ = —t — ¢ =0. In con-
trast, increasing damping favors this transition at lower
frequencies w, see Fig. 9.
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Fig. 7. Phase shift ¢(w) for the five- and six-photon resonance for
different driving amplitudes f. The dashed vertical lines mark the
N = 5-photon and the N = 6-photon transition. Remaining parame-
ters are 7= 0.17), o = 0.10, y = 0.005w.
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Fig. 8. Phase shift ¢p(w) for different values of the temperature 7. The
dashed vertical lines mark the N = 5-photon and the N = 6-photon
transition. Remaining parameters are ' = 0.1/, o = 0.10p, y = 0.005w.
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Fig. 9. Phase shift ¢(w) for different values of the damping constant y.
The dashed vertical lines mark the V = 5-photon and the N = 6-photon
transition. Remaining parameters are f'= 0.1fy, o = 0.1y, 7= 0.17,.

6. Resonant tunneling in the driving induced bistability

The dynamic bistability of the steady-state of the
classical Duffing oscillator does not survive in the quan-
tum system. The reason is that the system will escape the
metastable state asymptotically via tunneling, similar to
the case of the driven double-well potential [24]. Note
also that, as a consequence, the hysteretic behavior is
suppressed if the control parameter w is varied truly
adiabatically.

Nevertheless, signatures of the dynamic bistability
and tunneling can be found if we consider how the stea-
dy-state is reached. For this, we show in Fig. 10 the time
evolution of the amplitude 4 (local maxima of the vibra-
tions) starting with the ground state of the undriven
oscillator as the initial state. We observe fast oscillations
at short times. They decay on a time scale 7' which re-
flects “intrawell” relaxation in the metastable state.
Then, starting from a metastable state at intermediate
times, a slow exponential decay towards the asymptoti-
cally globally stable state can be observed. This separa-
tion of time scales is a clear indication of tunneling from
the meta- to the globally stable in the dynamic
bistability.

The decay rate I' for this slow process (tunneling rate)
is determined by the smallest non-zero real part of the
eigenvalue A,p min of the operator .# in Eq. (8). Results
for the tunneling rate as function of the control param-
eter w are shown in Fig. 11 for two different damping

Tunneling to the stable well

0 2000 4000 6000 8000

tco0

Fig. 10. Time-resolved dynamics of 4 for w = 1.167w, (black solid
line). Fast transient oscillations occur as “intrawell” relaxation in the
metastable well. The long-time dynamics is governed by a slow
exponential decay to the globally stable state characterized by a rate I’
(tunneling rate). The red solid line shows a fit to an exponential e .
Here, o = 0.10, /= 0.1fy, kgT = 0.1 and y = 0.005w¢. (For inter-
pretation of the references in color in this figure legend, the reader is
referred to the web version of this article.)
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103X T/ o,

Fig. 11. Tunneling rate I for the slow dynamics of the amplitude 4 for
approaching the steady-state for two different damping strengths. The
peaks correspond to resonant tunneling in the dynamic bistability.
Note that tunneling is increased for increasing y (bath-assisted
resonant tunneling). Moreover, o = 0.1oy, f = 0.1fy and kgT = 0.1%w.

constants y. Most importantly, the tunneling rate shows
resonances at the same values of the frequencies where
the avoided crossings of the quasienergy levels occur
(see dashed vertical lines). The peaks in I' indicate reso-
nant tunneling [24] from the meta- to the globally stable
state both of which are dynamically induced. Note the
analogy to resonant tunneling in a static double-well po-
tential [24]. The role of the eigenenergies in the static
case is now played by the quasienergies ¢, determining
the coherent dynamics, see Eq. (7). In both cases, the
avoided (quasi-)energy level crossings are the origin of
resonant tunneling. Nevertheless, the incoherent part
of Eq. (7) is crucial to observe the resonant tunneling
in this driving induced bistability.

Furthermore, it is interesting to note that the reso-
nant tunneling is enhanced if the coupling to the bath
is increased from y =0.001w, to y = 0.005w, (bath as-
sisted resonant tunneling). We have also calculated the
dependence of this phenomenon on temperature but
we found a weak dependence in the interesting low-tem-
perature regime (not shown).

7. Discussion and conclusions

The quantum Duffing oscillator is a generic theoreti-
cal model which finds several applications in experimen-
tal systems. For instance, a suspended nano-mechanical
beam [25,26] which is excited to transverse vibrations
behaves as a damped anharmonic resonator. Several
experimental groups have observed the behavior de-
scribed by the classical Duffing oscillator [27-30]. The
transition to the quantum regime is currently in the fo-
cus of intense research [31-36]. Once, such kind of truly

quantum-‘mechanical’ systems on the nanoscale have
been shown to exist, macroscopic quantum effects [33]
should be readily observable. A second class of experi-
mental systems addresses the resonant non-destructive
read-out of a persistent current qubit [37-40]. In con-
trast to the conventional switching current measurement
that generates unwanted quasi-particles when the dc-
SQUID (acting as the qubit detector) switches to the
voltage state, this technique keeps the SQUID biased
along the supercurrent branch during the measurement.
Thereby, the Josephson plasma resonance of the SQUID
depends on the inductive coupling of the SQUID to the
qubit. Measuring the plasma resonance allows to non-
destructively read out the qubit state. The application
of this read-out technique in the non-linear regime of
the SQUID could allow for an improved sensitivity as
well as its potential use as a non-linear amplifier. Final-
ly, we note that there exists a wide parameter regime
(typically strong driving and/or big non-linearities)
where a quantum chaotic behavior of the system with
many interesting features can occur [41,42]. A detailed
study of this regime goes beyond the scope of this work.
To summarize, we have investigated the non-linear
response of the amplitude as well as of the phase of
the oscillations of a driven damped anharmonic resona-
tor (quantum Duffing oscillator). The use of an efficient
Floquet-Born—-Markovian master equation allows to
determine the stationary long-time solution directly via
straightforward diagonalization of the rate matrix. This
allows to study the amplitude as well as the phase re-
sponse for a wide range of parameters. Most impor-
tantly, we find pronounced resonances as well as
antiresonances which are associated to multi-photon
transitions in the resonator. We have found an interest-
ing non-monotonous behavior of the antiresonance
including a cross-over to a true resonant peak. This
cross-over can be enhanced by the presence of the bath
but is already inherent in the underlying coherent driven
quantum system. Furthermore, we have found a clear
separation of time scales in the dynamics how the glob-
ally stable state is approached starting from the metasta-
ble state. This tunneling process can be characterized by
a single tunneling rate I" which follows straightfor-
wardly as the smallest non-zero eigenvalue of the rate
matrix. If the control parameter being the frequency w
is varied, resonant tunneling between the two states
clearly is discerned as peaks in the tunneling rate. We
hope that these rich features of the quantum Duffing
oscillator will be found in future experiments.
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