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Abstract. We solve the two-particle s-wave scattering problem for
ultracold atom gases confined in arbitrary quasi-one-dimensional (1D) trapping
potentials, allowing for two different atom species. As a consequence, the
centre-of-mass and relative degrees of freedom do not factorize. We derive bound-
state solutions and obtain the general scattering solution, which exhibits several
resonances in the 1D scattering length induced by the confinement. We apply
our formalism to two experimentally relevant cases: (i) interspecies scattering in
a two-species mixture, and (ii) the two-body problem for a single species in a
non-parabolic trap.
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1. Introduction

A strongly interacting ultracold atom gas displays interesting features of a correlated quantum
many-body system when its dynamics is confined to one dimension [1]. The presence of a
transverse confining potential has been shown to induce characteristic resonances in the coupling
constant of the two-particle s-wave scattering process [2]–[4], which have become known as
confinement-induced resonances (CIRs). The existence of the CIR has been revealed under
the simplifying assumption of a transverse parabolic confinement potential with length scale
a⊥ and for the case that the two scattering atoms belong to the same species [2]–[4]. In this
case, the centre-of-mass (COM) and relative coordinates of the two particles can be separated,
allowing to factorize the problem into single-particle problems. At low temperatures, only the
COM ground state is occupied, the decoupled COM motion can be disregarded, and the two-
body problem can be solved exactly within the pseudo-potential approximation. The result is
that there is exactly one bound state for any three-dimensional (3D) scattering length a. In the
limit of small binding energy, the particles are tightly bound in the lowest-energy transverse
state and form a very elongated dimer. The appearance of such a bound state is purely due to
the confinement, since for a < 0 no dimer is formed in the free space. In the opposite limit of
large binding energies, the dimer becomes spherically symmetric. In this regime, the confinement
is not effective, and the free-space result is recovered. Moreover, a unitary equivalence exists
between the Hamiltonian and its projection onto those channels which are perpendicular to the
one with lowest energy. As a consequence, to each bound state corresponds a bound state of
the closed channels, which then causes the CIR [3]. It occurs at a universal value of the ratio
a⊥/a = C = −ζ(1/2, 1) � 1.4603, where ζ is the Hurvitz zeta function. The influence of the
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CIR has also been studied for the three-body [5] and the four-body problem [6] in the presence
of confinement. In particular, the solution of the four-body problem completely determines
the corresponding quasi-1D many-body BCS–BEC crossover phenomenon [6]. Recently, the
existence of the confinement-induced molecular bound state in a quasi-1D fermionic 40K atom
gas confined in an optical trap has been reported [7]. By using RF spectroscopy, the binding
energy of the dimer has been measured as a function of the scattering length, with quantitative
agreement to the results of [3]. However, the existence of the CIR in the scattering states remains to
be observed.

The situation is different for low-energy scattering of two atoms in three dimensions [8, 9].
Spherically [8] as well as axially [9] symmetric harmonic 3D trapping potentials do not possess
a CIR and no dimers are formed.

Although the analytical results for the parabolic confinement are instructive, realistic traps
for matter waves frequently have nonlinear potential forms, see for instance [10] for a particular
example of a trap on the nanometer scale. To give another example, for the problem of tunnelling
of a macroscopic number of ultracold atoms between two stable states of a trapping potential, the
nonlinearity clearly is crucial. Hence generalization to the non-parabolic case is desirable and
provided in this work. In addition, we consider traps with two different species of atoms. Note
that sympathetic cooling techniques are required to study this case. Different trap frequencies
may arise for different atom species, e.g. because of different atom masses or different magnetic
quantum numbers. Here we obtain general expressions for the bound-state energies and scattering
resonances when the COM and the relative degrees of freedom no longer decouple. In the
parabolic limit and for intraspecies scattering, we recover well-known results from [2, 3]. For
the general case, we show that more than one CIR may appear, and that it depends on the
symmetry properties of the confining potential that how many resonances can occur. We apply
our formalism to two experimentally relevant cases: (i) interspecies scattering in a two-species
mixture of quantum degenerate Bose and Fermi gases in an optical trap, and (ii) a single species
cloud in a magnetic trap, taking into account non-parabolic corrections due to a longitudinal
magnetic field suppressing Majorana spin flips.

A multichannel low-energy scattering theory for two spin-polarized fermions in quasi-1D
harmonic trapping potentials has been formulated in [11]. Also in this case, the characteristic
CIR is found.

As we will discuss below in more detail, the CIR has a close similarity to the well-known
Feshbach resonance [12], which arises if the Hilbert space can be divided into open and closed
channels coupled together by a short-range interaction. Due to this small but finite coupling, two
incoming particles initially in the open channel visit the closed channels during the scattering
process. If a bound state with energy close to the continuum threshold exists, such a process is
highly enhanced and a resonance results.

The paper is organized as follows: in section 2, we present the general formalism. Section 3
presents the bound-state solution, while section 4 contains the analysis for the scattering solutions,
including the analogy to Feshbach resonances. In section 5 we discuss the special case of
harmonic confinement, and in section 6 a particular example of a non-parabolic confinement is
illustrated. Finally, we conclude in section 7. Technical details have been delegated to appendices
A and B. We set h̄ = 1 throughout this paper.
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2. The two-body problem

Let us consider the general case of two different atomic species with mass m1 and m2. We denote
the particle coordinates by xi = (x⊥,i, zi) and their momenta by pi = (p⊥,i, p‖,i). Different atoms
may experience a different transversal confinement potential Vi(x⊥,i). For ultracold atoms, only
low-energy s-wave scattering is relevant, and the interaction between unlike atoms (and similarly,
also the interaction between the same atoms) can be described by a Fermi–Huang pseudo-
potential V(|x1 − x2|). Then the relevant Hamiltonian for two different atoms is given by

H = p2
1

2m1
+

p2
2

2m2
+ V1(x⊥,1) + V2(x⊥,2) + V(|x1 − x2|). (1)

The pseudo-potential has the standard form

V(r) = 2πa

µ
δ(r)

∂

∂r
r, (2)

where µ = m1m2/(m1 + m2) is the reduced mass and a the 3D scattering length. This allows
to characterize the two-body interaction by the parameter a only. The validity of the pseudo-
potential approach has been verified numerically for finite-range potentials in [3]. For further
convenience, we transform to the relative/COM coordinates and momenta given by r = (r⊥, z),
R = (R⊥, Z) and p = (p⊥, p‖), P = (P⊥, P‖), respectively. This can be done by the canonical
transformation 


R
r
P
p


 = 1

M




m1 m2 0 0
M −M 0 0
0 0 M M

0 0 m2 −m1







x1

x2

p1

p2


 , (3)

where M = m1 + m2. Since the confinement is assumed to be purely transversal, the longitudinal
COM coordinate Z is free and decouples from the other degrees of freedom. Hence we eliminate
it by transforming into the longitudinal COM rest frame, where the state |�〉 of the system is
determined by the set of coordinates (x⊥,1, x⊥,2, z) or, alternatively, by (R⊥, r) = (R⊥, r⊥, z).
The transformed Hamiltonian takes the form

H = H‖ + H⊥,1 + H⊥,2 + V, (4)

where

H‖ = p2
‖

2µ
, H⊥,i = p2

⊥,i

2mi

+ Vi(x⊥,i). (5)

For a more compact notation, we introduce the non-interacting Hamiltonian H0 = H − V and
denote its eigenstates by

|k, λ1, λ2〉 = e−ikzψ
(1)
λ1

(x⊥,1)ψ
(2)
λ2

(x⊥,2), (6)

where ψ
(i)
λi

are single-particle eigenstates of H⊥,i for eigenvalue E
(i)
λi

. Correspondingly, the
two-particle Schrödinger equation is given by

(H0 − E) �(R⊥, r) = −V(r)�(R⊥, r). (7)
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The pseudo-potential (2) can be enforced by the Bethe–Peierls boundary condition

�(R⊥, r → 0) � f(R⊥)

4πr

(
1 − r

a

)
, (8)

leading to the inhomogeneous Schrödinger equation

(H0 − E)�(R⊥, r) = f(R⊥)

2µ
δ(r). (9)

The solution of this equation can be formally obtained in terms of a solution of the homogeneous
Schrödinger equation, (H0 − E)�0 = 0, and the Green’s function GE = (H0 − E)−1,

�(R⊥, r) = �0(R⊥, r) +
∫

dR′
⊥ GE(R⊥, r; R′

⊥, 0)
f(R′

⊥)

2µ
. (10)

To determine f(R⊥), we substitute equation (10) into equation (8) and find the integral equation

− f(R⊥)

4πa
= �0(R⊥, 0) +

∫
dR′

⊥ζE(R⊥, R′
⊥)f(R′

⊥), (11)

where we have defined the regularized integral kernel

ζE(R⊥, R′
⊥) = lim

r→0

1

2µ

(
GE(R⊥, r; R′

⊥, 0) − δ(R⊥ − R′
⊥)

µ

2πr

)
. (12)

In equations (10) and (11), �0 can be expressed as a superposition of single-particle eigenstates
|k, λ1, λ2〉 with

k2

2µ
+ E

(1)
λ1

+ E
(2)
λ2

= E. (13)

We refer to the set of states with the same transverse occupation numbers λi but arbitrary
longitudinal relative momentum as a ‘scattering channel’or, simply, ‘channel’. Each channel has
a minimum energy given by E

(1)
λ1

+ E
(2)
λ2

. Since the interaction is short ranged, only states fulfilling
equation (13) appear in the asymptotic solution. For each open channel, E > E

(1)
λ1

+ E
(2)
λ2

, such that
there are (at least) two such states having opposite momenta. For E just above E

(1)
0 + E

(2)
0 , there

exists one open channel only. The corresponding solution given by equation (10) describes the
scattering of two particles initially occupying the transverse ground-state. During the scattering
process, the particles populate closed channels, but afterwards return into the single available open
channel (quasi-1D picture). For E < E

(1)
0 + E

(2)
0 , all channels are closed and only bound-state

solutions are possible. These are given by equation (10) with �0(R⊥, r) = 0. In the following,
we consider both classes of solutions in more detail.

3. Bound-state solutions

Let us consider the situation when all channels are closed and only bound states may occur. We
define the binding energy of the bound states as

EB = E0 − E > 0, (14)

New Journal of Physics 7 (2005) 192 (http://www.njp.org/)

http://www.njp.org/


6 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

where E0 = E
(1)
0 + E

(2)
0 is the ground-state energy of H0. To find bound states, we diagonalize

the operator ζE(R⊥, R′
⊥) defined in equation (12), where equation (11) yields the condition

− f(R⊥)

4πa
=

∫
dR′

⊥ζE(R⊥, R′
⊥)f(R′

⊥). (15)

For given a, bound states with binding energy EB = E0 − E follow as solution of this eigenvalue
problem. The bound-state wave function follows by inserting the corresponding eigenvector
f(R⊥) into equation (10) with �0(R⊥, r) = 0. In order to find a representation of ζE(R⊥, R′

⊥)

that allows straightforward analytical or numerical diagonalization, we use

GE(R⊥, r; R′
⊥, 0) =

∫ ∞

0
dt eEtGt(R⊥, r; R′

⊥, 0), (16)

with the imaginary time-evolution operator

Gt(R⊥, r; R′
⊥, 0) = 〈R⊥, r| exp [ − H0t]|R′

⊥, 0〉 (17)

for H0. The time evolution operator exp [−H0t] can be factorized into the product
exp [−H‖t] exp [−H1,⊥t] exp [−H2,⊥t]. The corresponding factors in Gt are

〈z| exp [−H‖t]|z′〉 =
( µ

2πt

)1/2
e−(z−z′)2µ/2t (18)

for the relative longitudinal coordinates and

〈xi,⊥| exp [−Hi,⊥t]|x′
i,⊥〉 =

∑
λ

e−E
(i)
λ tψ

(i)
λ (xi,⊥)ψ̄

(i)
λ (x′

i,⊥) (19)

for the transverse coordinates (the bar denotes complex conjugation). Thus Gt can be expressed
in terms of the set of coordinates (x⊥,1, x⊥,2, z) as

Gt(R⊥, r; R′
⊥, 0) =

√
µ

2πt
e−z2µ/2t

∏
i=1,2

∑
λ

e−E
(i)
λ tψ

(i)
λ (x⊥,i)ψ̄

(i)
λ (x′

⊥,i). (20)

This equation illustrates that for large imaginary times, the integrand in equation (16) decays as
exp [−EBt]. Notice that this representation is valid for EB > 0. By using

µ

2πr
=

∫ ∞

0
dt

( µ

2πt

)3/2
e−r2µ/2t, (21)

we find

ζE(R⊥, R′
⊥) =

∫ ∞

0

dt

2µ

[
eEtGt(R⊥, 0; R′

⊥, 0) −
( µ

2πt

)3/2
δ(R⊥ − R′

⊥)

]
. (22)

To show that the integral in equation (22) converges also for small t, we expand Gt(R⊥, 0; R′
⊥, 0)

with respect to t, see appendix A. We find that

lim
t→0

Gt(R⊥, 0; R′
⊥, 0) =

( µ

2πt

)3/2
δ(R⊥ − R′

⊥) − t−1/2
( µ

2π

)3/2
[

P2
⊥

2M
+ V1(R⊥) + V2(R⊥)

]
.

(23)
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Thus ζE can be regarded as a regular operator acting on the space L2 of square-integrable
functions. We note in passing that if the two single-particle transverse Hamiltonians H⊥,i

commute with the angular momentum operators Lz, then also ζE commutes with Lz. This follows
by observing that in this case we can choose for the eigenbasis {ψ(i)

λ } a set of eigenvectors of Lz,
and the product of two eigenvectors of Lz is still an eigenvector of Lz. Hence ζE(R⊥, R′

⊥) can be
written as a sum of projectors onto states with definite angular momentum. A similar conclusion
can be drawn regarding parity symmetry, when considering non-cylindrical confining potentials
that obey this symmetry.

Using the transverse non-interacting ground state,

ψ0(R⊥, r⊥) = ψ
(1)
0

(
R⊥ +

µ

m1
r⊥

)
ψ

(2)
0

(
R⊥ − µ

m2
r⊥

)
, (24)

provided the overlap integral
∫

dR′
⊥ψ̄0(R′

⊥, 0)f(R′
⊥) �= 0, the integrand in equation (10) decays

as exp [−EBt]. This defines a spatial scale aB for the longitudinal size of the corresponding bound
state, aB = 1/

√
µEB. For large EB, aB is small and we have very tight pairs. This constitutes

the ‘dimer limit’. On the other hand, for small EB, atom pairs are very elongated. This regime is
termed the BCS limit. In the following, we investigate both limits in greater detail.

3.1. Dimer limit

For large binding energies, the atom–atom interaction dominates over the confinement. Due
to the exponential factors in equation (22), only small imaginary times contribute significantly
to the integral, and we can substitute Gt with the short-time expansion (23) as derived in the
appendix A, yielding

ζE(R⊥, R′
⊥) �

( µ

2π

)3/2
∫ ∞

0

dt

2µ
[t−3/2(eEt − 1)δ(R⊥ − R′

⊥) − eEtt−1/2〈R⊥|H⊥|R′
⊥〉]. (25)

Hence, the operator ζE now shares eigenfunctions with H⊥ = P2
⊥/2M + V1(R⊥) + V2(R⊥). For

(identical) parabolic confinement potentials, H⊥ is exactly the decoupled COM Hamiltonian.
Let us denote the eigenfunctions and eigenenergies of H⊥ as φλ(R⊥) and E

(φ)
λ , respectively.

Substituting φλ(R⊥) into equation (15) yields after some algebra

− 1

4πa
= −

√
2µ|E|
4π

(
1 +

E
(φ)
λ

2|E|

)
� −

√
2µEB

4π
. (26)

In the second relation, we have used equation (14). From this, we directly obtain the binding
energy in the dimer limit a → 0+ as

EB ≈ 1

2µa2
, (27)

which coincides with the result obtained in free (3D) space without confinement.

New Journal of Physics 7 (2005) 192 (http://www.njp.org/)

http://www.njp.org/


8 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

3.2. BCS limit

The scattering channel with lowest energy, corresponding to the transverse non-interacting
ground state ψ0, opens at the energy threshold E = E0. For EB → 0+, as the energy approaches
this threshold, the term with λ1 = λ2 = 0 dominates in equation (20), and yields in equation (22)
the contribution√

1

8µEB

ψ0(R⊥, 0)ψ̄0(R′
⊥, 0), (28)

which diverges for EB → 0+. All other channels are still closed at E = E0 and give finite
contributions in equation (20). This observation suggests a useful separation of the total Hilbert
space into a part Ho corresponding to the open channel (or lowest-energy scattering channel)
and a part He perpendicular to that. With this separation, terms yielding a finite contribution at
EB → 0+ can be summarized in the Green’s function

G̃t(R⊥, r; R′
⊥, 0) = 〈R⊥, r| exp [−H̃0t]|R′

⊥, 0〉, (29)

where H̃0 is the projection of H0 onto the Hilbert subspace He. We then define a new integral
kernel,

ζ̃E(R⊥, R′
⊥) =

∫ ∞

0

dt

2µ

[
eEtG̃t(R⊥, 0; R′

⊥, 0) −
( µ

2πt

)3/2
δ(R⊥ − R′

⊥)

]
, (30)

which is also well defined for energies above the threshold E = E0.
For small EB, equation (15) is most conveniently solved by expanding f(R⊥) in an

orthonormal basis |j〉 according to

|f 〉 =
∑

j

fj|j〉, fj =
∫

dR⊥〈 j|R⊥〉f(R⊥), (31)

where the basis state |0〉 corresponds to

〈R⊥|0〉 = cψ0(R⊥, 0), (32)

with normalization constant c. Although ψ0(R⊥, r) is a normalized element of the two-particle
Hilbert space, this does not imply that ψ0(R⊥, 0) is an element of the COM Hilbert space with
norm unity. In fact, the normalization constant c has to be computed explicitly and generally
depends on the particular confinement. In this basis, equation (15) assumes the compact form

− |f 〉
4πa

= ζE|f 〉 =
(√

1

8µEB

|0〉〈0|
c2

+ ζ̃E

)
|f 〉, (33)

where |0〉 is an approximate eigenstate for small EB, since all the matrix elements are finite apart
from 〈0|ζE|0〉 which diverges according to

〈0|ζE|0〉 �
√

1

8µEB

1

c2
+ 〈0|ζ̃E|0〉. (34)
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Substituting this in equation (33) yields

− 1

4πa
�

√
1

8µEB

1

c2
+ 〈0|ζ̃E|0〉. (35)

Neglecting the last term, the relation for the binding energy EB is solved in the BCS limit a → 0−,

EB ≈ 2a2π2

µc4
. (36)

4. Scattering solutions

In this section, we focus on scattering solutions at low energies E slightly above E0, where
exactly one transverse channel is open. Then the incoming state is given by

�0 = eikzψ
(1)
0 (x1,⊥)ψ

(2)
0 (x2,⊥), (37)

which describes two incoming atoms with (small) relative longitudinal momentum k =√
2m(E − E0) in the (transverse) single-particle ground states ψ

(1)
0 and ψ

(2)
0 , respectively.

4.1. 1D scattering length a1D

As done in section 3, we split off the contribution from the open channel,

GE(R⊥, r; R′
⊥, 0) = ψ0(R⊥, r⊥)ψ̄0(R′

⊥, 0)
iµ

k
eik|z| +

∫ ∞

0
dt eEtG̃t(R⊥, r; R′

⊥, 0), (38)

where G̃t(R⊥, z; R′
⊥, 0) is the Green’s function restricted to He, which is well defined also above

E0. Inserting equation (38) into equation (10) yields for |z| → ∞ the standard scattering solution,

�(R, r) = ψ0(R⊥, r⊥)[eikz + fe(k)e
ik|z|], (39)

with the scattering amplitude

fe(k) = i

2k

∫
dR′

⊥ ψ̄0(R′
⊥, 0)f(R′

⊥), (40)

whereas for short distances, also the term
∫

dR′
⊥

∫ ∞
0 dt eEtG̃t(R⊥, r; R′

⊥, 0)f(R′
⊥) appears in

the scattering solution. Since the energy is well below the continuum threshold for the closed
channels, this must be regarded as a sum over localized states. Enforcing the boundary condition
(8) then leads to an integral equation for f(R⊥),

−f(R⊥)

4πa
=

∫
dR′

⊥ ζ̃E(R⊥, R′
⊥)f(R′

⊥) + ψ0(R⊥, 0) +
iψ0(R⊥, 0)

2k

∫
dR′

⊥ ψ̄0(R′
⊥, 0)f(R′

⊥).

(41)
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This integral equation is most conveniently solved by again expanding f(R⊥) in the orthonormal
basis {|j〉}, introduced in the previous section. Thereby, we can express equation (41) in compact
notation,

− |f 〉
4πa

= |0〉
c

+
i

2k

|0〉
c2

〈0|f 〉 + ζ̃E|f 〉, (42)

which is formally solved by

|f 〉 = −1/c

1 − i/(ka1D)

(
ζ̃E +

1

4πa

)−1

|0〉. (43)

The parameter a1D follows in the form

a1D = − 2c2

〈0|[ζ̃E + 1/(4πa)]−1|0〉 . (44)

From equation (40), fe(k) = −1/(1 + ika1D), which allows us to identify a1D with the 1D
scattering length. Having introduced this parameter, the 1D atom–atom interaction potential
can then be written in an effective form according to

V1D(z, z′) = g1Dδ(z − z′), (45)

with interaction strength g1D = −1/(µa1D) [2]. For very low energies, k → 0, we can now
formally set E = E0 in equation (44). For a confining trap, ζ̃E0 is an Hermitian operator with
discrete spectrum {λn} and eigenvectors |en〉, which eventually have to be determined for the
particular Hamiltonian. Thus we find

g1D = 1

2µc2

∑
n

|〈0|en〉|2
λn + 1/(4πa)

. (46)

This result has interesting consequences for the two-body interaction. The denominator can
become singular for particular values of a, thereby generating a CIR. Every eigenvalue λn

corresponds to a different CIR, unless the overlap 〈0|en〉 vanishes due to some underlying
symmetry of the Hamiltonian. We anticipate that for identical parabolic confinement potentials,
the decoupling of the COM motion implies that only one resonance is permitted. For confining
potentials with cylindrical symmetry, there is a resonance for each eigenvector of ζ̃E0 with zero
angular momentum. For confining potentials obeying parity symmetry, the eigenstates |en〉 must
be even. These two symmetries allow in principle for infinitely many resonances. In practice,
however, only few of them can be resolved because the resonances become increasingly sharper
when |〈0|en〉|2 → 0, making them difficult to detect.

4.2. Interpretation of the CIR as Feshbach resonances

A very simple and illuminating analysis, similar to that for standard Feshbach resonances [12], is
also possible for the CIR. The two-particle Schrödinger equation can be rewritten as an effective
Schrödinger equation for the scattering states in the open channel, (E − Heff)P|�〉 = 0, with
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the effective Hamiltonian

Heff = Hopen + PHM
1

E − Hclosed
MHP. (47)

Here, Hopen = PHP and Hclosed = MHM, where P and M are projectors to open and
closed channels, respectively. This equation can be expressed in terms of the closed-channel
eigenstates |
n〉,

Heff = Hopen + PH
∑

n

|
n〉〈
n|
E − En

HP, (48)

with Hclosed|
n〉 = En|
n〉. This implies that a Feshbach-like resonance is possible at zero
momentum if two conditions are fulfilled. First, there exists a solution of (E0 − Hclosed)|
〉 = 0,
i.e. |
〉 is a bound state of Hclosed with energy E = E0. Secondly, |
〉 must be coupled to the
open channel, PH |
〉 �= 0.

Within the pseudo-potential approximation, the equation (E0 − Hclosed)|
〉 = 0 is solved
in terms of the Green’s function

MGE0(R⊥, r; R′
⊥, 0)M =

∫ ∞

0
dt eE0tG̃t(R⊥, r; R′

⊥, 0) (49)

by the state


(R⊥, r) =
∫

dR′
⊥ MGE0(R⊥, r; R′

⊥, 0)M
f(R′

⊥)

2µ
, (50)

together with boundary condition


(R⊥, r → 0) � f(R⊥)

4πr

(
1 − r

a

)
. (51)

This leads to the eigenvalue equation

− |f 〉
4πa

= ζ̃E0 |f 〉, (52)

which is solved by the eigenvectors |en〉 introduced above. This yields a = −1/(4πλn), implying
that there is a bound state |
〉 of Hclosed with energy equal to the energy of the incoming wave,
corresponding to the resonances found in the previous subsection. The CIR is then in complete
analogy to a zero-momentum Feshbach resonance. Due to the small but finite coupling to the
closed channels, two incoming particles initially in the open channel visit the closed channels
during the scattering process. This process is strongly intensified when a bound-state exists whose
energy is close to the continuum threshold. Then, a scattering resonance results. Note that such a
bound state can be occupied only virtually by two particles during the scattering process. Hence
from now on we will refer to such a bound state as a virtual bound state.

It is also possible to recover the overlap condition 〈0|en〉 �= 0 in this framework. In fact,

PH
(R⊥, r) = PV(r)
(R⊥, r) = −P
〈R⊥|en〉

2µ
δ(r) = −ψ0(R⊥, r⊥)δ(z)

〈0|en〉
2µc

, (53)

since |
〉 fulfils equation (51) with f(R) = 〈R⊥|en〉. Hence, the two overlap conditions

PH |
〉 �= 0 ⇔ 〈0|en〉 �= 0 (54)

are equivalent. When they are not fulfilled, there exists a virtual bound state with energy E0, but
it is not coupled to the incoming wave.
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5. Special case of harmonic confinement

In the previous sections, we have formulated the theory for a general confining potential and
for two different atomic species. As a simple illustration, we now consider the case of harmonic
confinement, Vi(xi) = miω

2
i x2

i⊥/2. In COM and relative coordinates,

Vconf(R⊥, r⊥) = 1
2

(
m1ω

2
1 + m2ω

2
2

) |R⊥|2 +
1

2

(
µ2

m1
ω2

1 +
µ2

m2
ω2

2

)
|r⊥|2 + µ

(
ω2

1 − ω2
2

)
r⊥ · R⊥.

(55)

In general, the COM and the relative coordinates do not decouple, and in order to find the
scattering and bound-state solutions, we have to follow the procedure outlined in the previous
sections. To that end, we label the single-particle transverse states by quantum numbers
λ = {m, n}, where m is the integer angular momentum and n the integer radial quantum number.
The eigenenergies and -states of the 2D harmonic oscillator

E
(i)
λ = ωiεn,m and ψ

(i)
λ = 1

ai

ψn,m

(
x⊥
ai

)
,

with the oscillator lengths ai = (miωi)
−1/2, i = 1, 2, can be expressed in terms of the quantities

εn,m = 2n + |m| + 1 and ψn,m(x⊥) = eimφRn,m(|x⊥|),
where

Rn,m(ρ) = 1√
π

(
n!

(n + |m|)!
)1/2

e−ρ/2ρ|m|L|m|
n (ρ2),

with L|m|
n (x) being the standard Laguerre polynomials. A convenient choice for the orthonormal

basis |j〉 introduced in equation (31) is then given by

〈R⊥|j〉 = 〈R⊥|m, n〉 = 1

aM

ψn,m

( |R⊥|
aM

)
, (56)

with the length scale aM = (m1ω1 + m2ω2)
−1/2. In particular, we find for |0〉 = |0, 0〉 that 〈R⊥|0〉

fulfils equation (32) with c = √
πa1a2/aM .

The single-particle imaginary-time propagator for a 2D harmonic oscillator with length
scale a0 and frequency ω is given by∑

λ

e−ωελt
1

a2
0

ψλ

(
x⊥
a0

)
ψ̄λ

(
x′

⊥
a0

)
= 1

πa2
0

e−ωt

1 − e−2ωt
exp

[
−x2

⊥ + x′2
⊥

2a2
0

coth(ωt) +
x⊥ · x′

⊥
a2

0 sinh(ωt)

]
.

(57)

Inserting this into equation (20) with x⊥,i = R⊥, x′
⊥,i = R′

⊥ and z = 0, we find

Gt(R⊥, 0; R′
⊥, 0) =

√
µ

2πt

β(1 − β)

π2a4
M

e−ω1t

1 − e−2ω1t

e−ω2t

1 − e−2ω2t
exp

[
−R2

⊥ + R′2
⊥

2a2
M

f(t) +
R⊥ · R′

⊥
a2

M

g(t)

]
,

(58)
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where we have introduced β = a2
M/a2

1 and

f(t) = β coth(ω1t) + (1 − β) coth(ω2t), g(t) = β sinh−1(ω1t) + (1 − β) sinh−1(ω2t). (59)

In order to compute explicitly the operators ζE and ζ̃E, we still have to project onto the discrete
basis {|j〉} and to perform the imaginary-time integral for each matrix element. In general,
this cannot be achieved analytically, and one has to resort to a numerical evaluation. Only for
ω1 = ω2, a complete analytical solution is possible. Since the COM degrees of freedom separate,
this solution is a trivial extension of that in [2]. Nonetheless, along with the general analysis of
the previous section, it provides a physical picture for a weak interaction between the COM and
the relative degrees of freedom.

5.1. Identical frequencies

For ω1 = ω2 = ω, the COM and relative coordinates separate, H = Hrel + HCOM, with

Hrel = p2

2µ
+ 1

2µω2r2
⊥ + V(r) and HCOM = P2

2M
+ 1

2Mω2R2
⊥. (60)

In this case, we can consider the two-particle system being (asymptotically) in the ground state
of the decoupled COM Hamiltonian, and just solve the relative problem [2, 3]. Moreover, with
f(t) = coth(ωt) and g(t) = sinh−1(ωt), the Green’s function (58) simplifies to

Gt(R⊥, 0; R′
⊥, 0) =

√
µ

2πt

β(1 − β)

πa2
M

e−ωt

1 − e−2ωt

∑
n,m

e−ωεn,mt 1

a2
M

ψn,m

(
R⊥
aM

)
ψ̄n,m

(
R′

⊥
aM

)
. (61)

In this case, |n, m〉 is an eigenstate of the decoupled Hamiltonian HCOM, and describes the COM
motion also for finite r. Moreover, aM = (Mω)−1/2 and aµ = aM/(β(1 − β)) = (µω)−1/2 are
the characteristic lengths associated with HCOM and Hrel, respectively. Inserting equation (61)
into equation (22) and rescaling t by 2ω, we obtain

ζE =
∑
n,m

|n, m〉〈n, m|
4πaµ

∫ ∞

0

dt

(πt)1/2

(
e−�n,m(E)t

1 − e−t
− 1

t

)
, (62)

with �n,m(E) = (1 + εn,m − E/ω)/2. The integral on the right-hand side of equation (62) is
related to the integral representation of the Hurvitz zeta function ζ(1/2, �n,m) [5, 13].

5.1.1. Bound states. The condition given in equation (15) for a bound state with transverse
configuration |n, m〉 translates into

ζ( 1
2 , �n,m) = −aµ

a
. (63)

The zeta function is monotonic, and has the asymptotic scaling behaviour

ζ( 1
2 , �  1) ≈ �−1/2, ζ( 1

2 , � � 1) ≈ −2
√

�. (64)
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Figure 1. Bound state energies E as a function of aµ/a for harmonic confinement
with equal frequency ω for both atoms. The dashed red curve indicates the bound
state energy of the ground state |0, 0〉. Its binding energy EB is given by the
distance to the horizontal dashed line indicating the continuum threshold for the
open channel. The blue curve marks the bound state energy of the virtual bound
state relevant for the low-energy scattering. It is obtained by a vertical shift of the
ground-state energy by 2ω, and coincides with the threefold degenerate bound-
state energy indicated as solid curve. The black dotted curves give the bound-state
energies of the excited transverse states, obtained by a vertical shift of the ground-
state result.

Inverting equation (63), we recover the bound-state energy found in [3]. The corresponding
result is plotted in figure 1. As an immediate consequence of the decoupling of the COM degrees
of freedom, the ελ-fold degenerate energies corresponding to excited transverse configurations
follow from the COM transverse ground state by a shift along the ordinate in steps of ω. This is
indicated by the dotted curves in figure 1. Notice that for energies above E0 = 2ω, corresponding
to EB = 2ω�0,0(E) < 0, there exists an open channel, but the solutions associated with COM
excited states are orthogonal to it. For this reason, the relevant condition for a bound state
to exist with transverse configuration |n, m〉 is �n,m(E) > 0. From the scaling behaviours in
equation (64), we find the limiting behaviours of the energy of the bound state at |aµ/a|  1 as

EB,n,m ≈ 1

2µa2
for a > 0, EB,n,m ≈ 2a2

µa4
µ

for a < 0, (65)

see equations (27) and (36), with c = √
πaµ and EB,n,m = ω�n,m. Hence, in this highly

degenerate case, there is exactly one bound state for each transverse configuration and each
scattering length a.

5.1.2. Scattering states. In order to identify resonant bound states of the closed channel, and the
corresponding zero-momentum CIR, we subtract the contribution of the lowest-energy scattering
channel in equation (62), and obtain

ζ̃E = ζE − |0, 0〉〈0, 0|
4πaµ

∫ ∞

0

dt

(πt)1/2
e−�0(E)t =

∑
n,m

|n, m〉〈n, m|
4πaµ

ζ[1/2, �̃n,m(E)], (66)
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with �̃0,0(E) = �0,0(E) + 1 and �̃n,m(E) = �n,m(E) for n + |m| > 0. Hence the curve
corresponding to the COM ground state is shifted vertically by 2ω and coincides with the curve
corresponding to the excited states |1, 0〉, |0, 2〉 and |0, −2〉. Moreover, the coupling condition in
equation (54) becomes 〈0, 0|n, m〉 �= 0, and is fulfilled only for n = m = 0. Though there are in
principle infinitely many closed-channel bound states with energy 2ω (one for each curve), only
one scattering resonance exists, since only one of them is coupled to the incoming scattering
wave. Inserting equation (66) into equation (46), we recover for the 1D interaction strength g1D

the well-known result [2]

g1D = 2ωaµ

(aµ

a
− C

)−1
. (67)

5.1.3. Physical picture for the weakly interacting case. When ω1 �= ω2 but ω1 ≈ ω2, a weak
coupling to the COM degrees of freedom is generated, with two important consequences: (i) the
degeneracies of the bound-state energies are lifted, and (ii) the coupling to the other higher-lying
bound states is nonzero. Since the operators ζ̃E and ζE commute with the z-component Lz of the
angular momentum, the bound states are still labelled by the quantum numbers {n, m}. As far as
the scattering solutions are concerned, the incoming wave is coupled only to states with angular
momentum quantum number m = 0. Since 〈0, 0|ζ̃E|0, 0〉 ≈ 〈1, 0|ζ̃E|1, 0〉, a small off-diagonal
element 〈0, 0|ζ̃E|1, 0〉 is sufficient to couple the bound state with {n, m} = {1, 0} to the incoming
wave, yielding an additional CIR. As far as bound states are concerned, solutions with E > E0

and m = 0 leak into the open channel, and cannot be regarded as localized bound states. Hence,
for |aµ/a| � 1 and a < 0, there is only one bound state with zero angular momentum. In the
opposite dimer limit, however, we encounter many dimer bound states.

5.2. The case ω1 �= ω2: relation to experiments

The case ω1 �= ω2 is relevant for experiments involving two different atom species trapped in
magnetic or optical traps [14]–[16]. For instance, in optical traps the confining potential depends
on the detuning � = ωlas − hc/λ of the laser frequency ωlas from the characteristic frequency
hc/λ associated with the optical transition ns → np, and is therefore different for two different
atom species. This conclusion also applies to magnetic traps if the atoms are confined in hyperfine
states with different projection of the magnetic moment along the magnetic field. As a concrete
example, let us consider a mixture of bosonic 87Rb atoms and fermionic 40K atoms. Sympathetic
cooling has allowed to create an ultracold mixture of these two elements. By loading such a gas
into a dipole trap and sweeping an external magnetic field, it has been possible [16] to identify
three heteronuclear Feshbach resonances and to measure the 3D interspecies scattering length
a = −14 nm. It seems feasible to tune the magnetic field near a Feshbach resonance and to
observe the interspecies CIR. It is hence very interesting to know how many of them can be
expected and to study their locations.

The confining potential for a neutral atom in a standing optical wave E(r, t) =
E0(r)Re[ exp (−iωlast)] is Vconf(r) = −(ε0/4)α′E2

0(r), where α′ = −e2/(2meωlasε0�) is the real
part of the polarizability [17]. Let us consider a red-detuned laser field corresponding to � < 0
and α′ > 0. In this configuration, the atoms are trapped around the maximum of the electric field.
For a mixture of two species, each species experiences its own detuning �K (�Rb) given by the
two transition wavelengths λK = 767 nm and λRb = 780 nm. Within a parabolic approximation
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Figure 2. Upper viewgraph: CIR in the effective interspecies 1D interaction
constant g1D as a function of aµ/a. We consider a two-component atom gas of
40K and 87Rb, with average detuning � = −0.1ωlas (solid line). For comparison,
we also show the result for the case when the two species experience the same
trap frequency (dashed line). Lower viewgraph: dimensionless binding energy �

for the two states |0, 0〉 and |1, 0〉.

for the potential around its minimum, the ratio ωK/ωRb of trap frequencies for K and Rb atoms
becomes

ωK

ωRb
=

(
�Rb

�K

mRb

mK

)1/2

. (68)

Let us estimate this ratio for typical parameters. In order to suppress spontaneous emission,
we assume an average detuning of � = (�K + �Rb)/2 = −0.1ωlas, yielding ωlas = 5hc(λ−1

K +
λ−1

Rb )/11 and �Rb/�k = (5λ−1
K − 6λ−1

Rb )/(5λ−1
Rb − 6λ−1

K ) = 0.84. Taking also into account the
mass ratio mRb/mK = 87/40, we have ωK/ωRb = 1.35, indicating a substantial coupling of
COM and relative degrees of freedom.

Using equation (58), we can project the Green’s function Gt(R⊥, 0; R′
⊥, 0) on the

appropriate basis defined in equation (31) and then compute numerically ζ̃E by performing
the imaginary-time integration, see appendix B. Then ζ̃E0 can be diagonalized, and the effective
interspecies 1D interaction constant g1D follows according to equation (46). The results are shown
in the upper viewgraph of figure 2 in terms of the characteristic length aµ = √

2/(µ(ωK + ωRb)).
We find two resonances, indicating that the discussion of subsection 5.1.3 applies to this particular
case. In order to illustrate the interpretation of the CIR in terms of Feshbach-type resonances
with bound states of the closed channels, we also plot in the lower viewgraph of figure 2 the
dimensionless binding energy � = 2(E − ωK + ωRb)/(ωK + ωRb) of the corresponding bound
state. As expected, the resonances occur at those values of aµ/a for which the energy of the
bound state of the closed channels coincides with the continuum threshold of the open channel.

6. Non-parabolic confining potentials

Describing the potential created by an optical or a magnetic guide as parabolic is to some extent
a simplification which has to be verified. In fact, even though the lower-energy transverse states
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Figure 3. 1D effective interaction strength g1D for the non-parabolic potential of
equation (69) (black solid line) for χ = 0.067 corresponding to �loss = 10−6ω.
For comparison, the parabolic case is also shown (red dashed line).

can rather well be approximated by the eigenfunctions of a 2D harmonic oscillator, in every real
trap the confinement is to some degree non-parabolic. For resonant scattering, we expect to have
a virtual occupation of many non-parabolic transverse states. As a consequence, the location
of the CIR will be slightly moved, and new resonances could be created. This can already be
seen from an analysis similar to the one in subsection 5.1.3 for small non-parabolic corrections.
In order to tackle the problem quantitatively, a full numerical treatment is required since no
analytical expression for the Green’s function is in general available, in contrast to section 5.

As an example, we consider the small non-parabolicity due to the presence of a longitudinal
magnetic bias field Bz in a magnetic waveguide containing a single-species gas. This is necessary
to avoid Majorana spin flips [18] and the subsequent escape of atoms out of the trap. A
magnetic trapping potential is formed according to Vconf(x) = µm|B(x)|, where B(x) is the
applied magnetic field and µm = mFgFµB, with mF being the magnetic quantum number of the
atom in the hyperfine state |F, mF 〉, gF the Landé factor and µB the Bohr magneton. Assuming
that apart from the longitudinal bias field, the remaining magnetic fields create a parabolic and
isotropic confinement in the transverse direction, the total confinement is given by

χVconf(x) =
√

1 + 2χ(x2 + y2), (69)

where we have scaled energy in units of the parabolic trapping frequency ω and length in
units of aµ = (µω)−1/2. The parameter χ = ω/(µmBz) is related to the Majorana spin flip rate
�loss [18]. The 1D effective interaction strength g1D can be calculated following our general
approach. We compute ζ̃E0 numerically as outlined in appendix B. The results are shown in
figure 3 for χ = 0.067, which corresponds to �loss = 10−6ω. We find two resonances reflecting
the cylindrical symmetry of the potential (69) and the weakness of non-parabolic corrections. The
degeneracy of the parabolic case (shown in figure 3) is lifted and the original CIR is split into two
nearby resonances. As expected, the effect of the non-parabolic transverse states shows up only
in the deep resonant region, making the parabolic solution a very good approximation away from
the resonant region. In turn, this requires a good experimental resolution in order to observe the
two CIR.
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7. Conclusions

To conclude, we have presented the general solution for two-body s-wave scattering in a
two-component ultracold atom gas longitudinally confined to one dimension by an arbitrary
trapping potential. The underlying key property is that the COM and the relative degrees of
freedom of the two-particle problem do not decouple, as it is the case for a one-component gas
and a pure parabolic confinement. Thus, no reduction to an effective single-particle problem is
possible and the full coupled system has to be solved. In the framework of the pseudo-potential
approach, we derive the energy of the bound state when all transverse channels are closed.
Simple analytical results were obtained in the limiting cases of the dimer as well as the BCS
limit. Moreover, scattering solutions have been obtained when just one transverse channel is
open. The effective 1D interaction constant g1D can be calculated after diagonalizing a reduced
Green’s function. This can be achieved analytically for the special case of parabolic confinement,
where the well-known CIR is recovered. For a two-component gas, as well as for a non-parabolic
confinement, more than one CIR occur, which reflect the symmetry properties of the confining
potential. These findings were illustrated by applying our formalism to experimentally relevant
questions. We are confident that once the CIR has been verified experimentally, also the effects
of a non-parabolic trapping potential will be discerned.
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Appendix A. Short-time Green’s function

In this appendix, we illustrate how to expand the Green’s function

Gt(X; X′) = 〈X| exp [−(K(�) + U(X))t]|X′〉, (A.1)

with respect to t yielding the expression in equation (23) for Gt(R⊥, 0; R′
⊥, 0). In order to simplify

the notation, we have introduced the 5D vectors X = {R⊥, r} and � = {P⊥, p} and the functions
K(�) = P2

⊥/2M + p2/2µ and U(X) = V1(R⊥ + µr⊥/m1) + V2(R⊥ − µr⊥/m2) for the kinetic
and the potential energy, respectively. First, we expand the Green’s function around the free
solution given by

〈X| exp [−K(�)t]|X′〉 = M

2πt
exp

[
−(R⊥ − R′

⊥)2M

2t

] ( µ

2πt

)3/2
exp

[
−(r − r′)2µ

2t

]
. (A.2)

In order to justify such an expansion, note that for t → 0+

〈X|K(�) exp [−K(�)t]|X′〉 = − d

dt
〈X| exp [−K(�)t]|X′〉 ∝ δ(X − X′)

1

t
, (A.3)

whereas

〈X|U(X) exp [−K(�)t]|X′〉 = U(X)〈X| exp [−K(�)t]|X′〉 ∝ U(X)δ(X − X′). (A.4)
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Since the kinetic energy in equation (A.3) diverges whereas the potential energy in equation
(A.4) remains finite, the latter can be regarded as a small perturbation. This expansion yields

Gt(X; X′) � (1 − tU(X))〈X| exp [ − K(�)t]|X′〉. (A.5)

Let us now set X0 = {R′
⊥, 0} in equation (A.2) and expand with respect to t:

〈R⊥, 0| exp [−K(�)t]|R′
⊥, 0〉 =

( µ

2πt

)3/2 M

2πt
exp

[
−(R⊥ − R′

⊥)2M

2t

]

=
( µ

2πt

)3/2
∫

d2P⊥
(2π)2

exp [iP⊥ · (R⊥ − R′
⊥) − P2

⊥
2M

t]

�
( µ

2πt

)3/2
∫

d2P⊥
(2π)2

(
1 − P2

⊥
2M

t

)
exp [iP⊥ · (R⊥ − R′

⊥)]

=
( µ

2πt

)3/2
(

δ
(
R⊥ − R′

⊥
) − t

P2
⊥

2M

)
.

In the last line, the operator P2
⊥ stands for (2π)−2

∫
d2P⊥〈R⊥|P⊥〉P2

⊥〈P⊥|R′
⊥〉. Inserting X0 into

equation (A.5), we finally obtain equation (23).

Appendix B. Evaluation of the operators ζE and ζ̃E

In this appendix, we outline the evaluation of the kernels ζE and ζ̃E given in equations (22) and
(30), respectively.

Appendix B1. Parabolic confinement, ω1 �= ω2

First, let us consider the special case of parabolic confinement, but the two species may experience
different trap frequencies. For this confinement, the Green’s function Gt(R⊥, 0; R′

⊥, 0) is given
in equation (58). The first step is to project this operator onto the appropriate orthonormal
basis {|j〉} defined in equation (31). Note that this definition allows an arbitrary choice of the
basis, apart from properly fixing the vector |0〉. One possibility is introduced in equation (56).
This is a natural option because it reflects the cylindrical symmetry of the problem. However, this
choice would not permit further analytical progress. For this reason, we employ an alternative
basis defined by

〈R⊥|j〉 = 〈R⊥|nx, ny〉 = 1

aM

ψnx

(
x

aM

)
ψny

(
y

aM

)
, (B.1)

where ψn(x) is the eigenfunction for the 1D oscillator in dimensionless units, ψn(x) =
(
√

π2nxn!)−1/2 exp(−x2/2)Hn (x), with Hn (x) being Hermite polynomials. Note that the x and
y directions factorize in the Green’s function (58), allowing one to perform the x and y integrals
separately. For convenience, we introduce dimensionless coordinates x → x/aM and find

[G(t)]n,m = 〈nx, ny|Gt(R⊥, 0; R′
⊥, 0)|mx, my〉

=
√

µ

2πt

β(1 − β)

π2a2
M

e−ω1t

1 − e−2ω1t

e−ω2t

1 − e−2ω2t
[F(t)]nx,mx

[F(t)]ny,my
(B.2)
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with

[F(t)]n,m =
∫

dx dx′ ψ̄n(x) exp

[
−x2 + x′2

2
f(t) + xx′g(t)

]
ψm(x′). (B.3)

The functions f(t) and g(t) are defined in equation (59). We perform the first integration by using
the identity [13]∫

dz e−(z−z′)2
Hn(αz) = π1/2(1 − α2)n/2Hn

(
αz′

(1 − α2)1/2

)
, (B.4)

with α = α(t) = [(1 + f(t))/2]−1/2, z = x/α(t) and z′ = g(t)α(t)x′/2, yielding

[F(t)]n,m = (2n+mm!n!)−1/2α(t)(1 − α(t)2)n/2

×
∫

dx′ exp

[
−x′2

(
α−2(t) − g(t)α2(t)

4

)]
Hn

{
g(t)α2(t)

2[1 − α2(t)]1/2 x′
}

Hm(x′). (B.5)

By substituting equation (B.2) together with equation (B.5) into ζE defined in equation (22), and
by introducing the dimensionless time t′ = √

t(ω1 + ω2), we get

[ζE]n,m = 1

4πaµ

∫ ∞

0
dt′

{
AhE(t′)

[
F

(
t′2

ω1 + ω2

)]
mx,nx

[
F

(
t′2

ω1 + ω2

)]
my,ny

− 2

π1/2t′2
δn,m

}
,

(B.6)

with the dimensionless parameter A = 2π−3/2β(1 − β)a2
µ/a2

M and

hE(t′) = exp

[
−(ω1 + ω2 − E)t′2

ω1 + ω2

] [
1 − exp

(
− 2ω1t

′2

ω1 + ω2

)]−1 [
1 − exp

(
− 2ω2t

′2

ω1 + ω2

)]−1

.

(B.7)

It is now possible to evaluate the matrix elements of [ζE]n,m by numerically computing the double
integrals in equation (B.6). Note that the integrand does not suffer from any singularity due to
the rescaling of the integration variable. Moreover, the convergence of the x′ integral (B.5) is
exponentially fast. The first term in the integrand of the t′ integral decays exponentially at large
times. Hence for large times, only the second term yields a contribution, where the integration
can be performed analytically in this region. For the case of interspecies scattering of Rb and K
in an optical trap, all the parameters entering in A, hE(t) and [F(t)]n,m can be expressed in terms
of the ratios mRb/mK and �Rb/�K. The generalization to determine ζ̃E is straightforward and
not detailed further.

Appendix B2. Non-parabolic confinement

A numerical evaluation of the operators ζE and ζ̃E is less straightforward when the Green’s
function Gt(R⊥, 0; R′

⊥, 0) cannot be computed analytically. In this case, Gt(R⊥, 0; R′
⊥, 0) should

be computed by numerical diagonalization of the H⊥,i and by inserting their eigenvalues and
eigenfunctions into equation (20). For large t, this is feasible because only a small number of
eigenfunctions contribute to the sum. However, for t → 0, the number of eigenvectors required
to cancel the divergence in equation (22) quickly proliferates. This practical limitation can
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fortunately be circumvented by the following trick. Let us formally rewrite equation (22) as

ζE(R⊥, R′
⊥) =

∫ ∞

0

dt

2µ

{
eEt[Gt(R⊥, 0; R′

⊥, 0) − G0
t (R⊥, 0; R′

⊥, 0)] + eEtG0
t (R⊥, 0; R′

⊥, 0)

−
( µ

2πt

)3/2
δ(R⊥ − R′

⊥)
}

=
∫ ∞

0

dt

2µ
eEt[Gt(R⊥, 0; R′

⊥, 0) − G0
t (R⊥, 0; R′

⊥, 0)] + ζ0
E(R⊥, R′

⊥), (B.8)

where G0
t (R⊥, 0; R′

⊥, 0) and ζ0
E(R⊥, R′

⊥) are the Green’s function and the integral kernel,
respectively, for an arbitrary reference confining potential V0(x⊥). If G0

t (R⊥, 0; R′
⊥, 0) is known

analytically, we can deal with ζ0
E(R⊥, R′

⊥) as in the previous section. For confining potentials
close to the parabolic case, we choose a parabolic V0(x⊥).

Regarding equation (B.8), we proceed as follows. We restrict the infinite-dimensional
Hilbert space to the N lowest eigenstates of the potential V0(x⊥), and diagonalize the original
Hamiltonian in this N -dimensional Hilbert space. With the eigenfunctions at hand, the Green’s
function can be computed using equation (20). Then, the sum in equation (20) is exchanged
with the t-integration and the latter is performed. Next, we project the Green’s function onto a
known single-particle basis {|m〉}. To achieve numerical convergence, we increase the Hilbert
space dimension N until the result no longer changes. We emphasize that the overall result
converges to the exact result, although obviously not all the single-particle states used in
computing the Green’s function are reliable on very long distances (comparable to the numerical
system size) because higher-lying energy states are increasingly inaccurate. Nevertheless, the
central part (in position space) of the eigenfunctions—which corresponds to the kinetic energy
and does not feel the confinement—is accurate enough to cancel the divergence stemming
from the kinetic part. In order to compute the scattering solution, we compute ζ̃E0 with an
analogous procedure, diagonalize ζ̃E0 numerically, and insert the result into equation (46). For the
non-parabolic confinement in section 6, a parabolic V0(x⊥) is appropriate. In this case, we use
for {|m〉} the orthonormal basis defined in equation (56). Then ζ0

E is diagonal and given by
equation (66).
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