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We investigate the nonlinear response of a vibrating suspended nanomechanical beam on external periodic
driving. The amplitude of the fundamental transverse mode behaves like a weakly damped quantum particle in
a driven anharmonic potential. Upon using a Born-Markovian master equation, we calculate the fundamental
mode amplitude for varying driving frequencies. In the nonlinear regime, we observe resonances which are
absent in the corresponding classical model. They are shown to be associated with resonant multiphonon
excitations. Furthermore, we identify resonant tunneling in a dynamically induced bistable effective potential.
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I. INTRODUCTION

The ongoing progress in miniaturization of microscale de-
vices allows the fabrication of mechanical resonators on the
nanometer scale.1 To realize them in the form of transversely
vibrating beams, lithographically patterned doubly clamped
suspended beams2–11 are designed, but also suspended car-
bon nanotubes display mechanical vibrations12 (see also Ref.
13). Beyond applications as electrometers,2,3 for detecting
ultrasmall forces and displacements,5,11 or radio-frequency
signal processing,7 the nanomechanical devices also investi-
gate fundamental physical phenomena. In particular, due to
their small size, the crossover from the classical to the quan-
tum regime is of interest.14,15 The quantum behavior will be
due to a macroscopic number of particles whose coherence is
disturbed by the interaction with the environment. Promising
progress in approaching the quantum regime experimentally
has been reported recently.8,9,11

In this work, we propose a straightforward way to reveal
the quantum behavior of nanoresonators via the nonlinear
response of a nanobeam to an external ac driving. Mechani-
cal excitation frequencies of nanodevices have been mea-
sured via ac driving.3–11,16We consider the amplitude of the
fundamental transverse vibrating mode of a doubly clamped
suspended nanobeam under longitudinal compression. The
compression allows to control the degree of nonlinearity of
the nanoresonator. Starting from a continuum model14,15 (see
Ref. 17 for the classical counterpart), the interacting field
theory closed to the Euler buckling instability can be reduced
to the dynamics of a quantum particle in an anharmonic po-
tential. By exciting the beam to transverse vibrations, its
nonlinear response can be determined. The environment is
included by coupling the system to a harmonic Ohmic bath.18

For weak driving, the response will be maximal at the eigen-
frequency of the nanobeam and similar to that of the analo-
gous classical system. However, as we will show, for strong
driving, the nonlinear response of the quantum system is
qualitatively different from its classical counterpart which is
the standard Duffing system.17 This feature allows to sepa-
rate both the classical and the quantum regime. In particular,
we find distinct resonances in the dependence of the ampli-
tude of the fundamental mode on the driving frequency. They
can be interpreted as resonant multiphonon excitations and
are determined by avoided level crossings in the Floquet

spectrum. In turn, we identify a separation of time scales and
resonant tunneling in the dynamically induced bistable effec-
tive potential.

II. EFFECTIVE SINGLE-PARTICLE MODEL STARTING
FROM A CONTINUOUS MODEL

We start from the normal mode description of an elastic
rectangular beam of lengthl, width w and thicknessd such
that l @w.d,14,15,17 which permits to consider only trans-
verse displacements of the beam. A longitudinal mechanical
force controls the nonlinearity of the potential energy in the
transverse direction. At low temperatures, the higher modes
are frozen out and the fundamental mode can be treated in-
dependently. The resulting effective potential energy of the
fundamental mode contains terms which are quadratic and
quartic in the transverse amplitudex of the fundamental
mode. The externally applied ac-driving can be included on
the same footing. The driving strength can be tuned within
the fundamental mode description to the regime where non-
linear effects come into play but the higher modes are still
negligible. One ends up with an effective single particle
quantum mechanical time-dependent Hamiltonian for the
fundamental mode amplitudex acting as a position operator,
i.e.,14,15

HSstd = −
"2

2m*

]2

]x2 +
ã

2
x2 +

b̃

4
x4 + xf cossvtd, s1d

wherem* is the effective mass of the beam. The parameters
in the potential are obtained as14,15 ã=m* v0

2;m* v̄0
2fs«c

−«d /«cg and b̃=3m* v̄0
2/d2, where the frequency of the fun-

damental mode is given byv̄0=p 2dÎQ /r / sl2Î12d. Q is
Young’s elasticity modulus andr the mass density of
the material. The longitudinal force generates the strain
«=sl − l0d / l0 wherel0 is the equilibrium length of the beam.
At the critical value «c=−p2d2/ s12l2d (for a rectangular
beam), the system reaches a bifurcation point which is the
well-known Euler instability. The effective potential for the
fundamental mode then is purely quartic. Close to the Euler
instability, both quadratic and quartic terms appear. We con-
sider the case of a monostable potential, i.e.,a.0, which
implies that the strain remains below its critical values, i.e.,
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«,«c. This situation is easier to be realized experimentally
compared to the bistable potentiala,0. The ac-driving oc-
curs with amplitudef and frequencyv. An upper limit fmax
for the regime of validity of the fundamental mode descrip-
tion is given by the first harmonic threshold, i.e.,
x0 fmax,"v1<3"v0.

14 We scale the Hamiltonian(1) with
respect to the units in space and time, i.e.,x0=Î" / sm* v0d
andt0=1/v0, respectively, yielding the energy scale"v0 and
the dimensionless nonlinearity parameterb;3x0

2«c/ f4d2s«c

−«dg.
We include the effect of the environment phenomenologi-

cally by a set of harmonic oscillators which are bilinearly
coupled to the system with the coupling constantscj.

18 The
Hamiltonian is

HB =
1

2o
j

pj
2

mj
+ mjv j

2Sxj −
cj

mjv j
2xD2

. s2d

The bath is characterized by the spectral density

Isvd =
p

2o
j

cj
2

mjv j
dsv − v jd = m* gve−v/vc, s3d

where we have chosen the standard Ohmic form with damp-
ing constantg and with cutoff frequencyvc. The total
Hamiltonian isHstd=HSstd+HB.

We focus on the case when the coupling to the bath is
weak and use a standard Born-Markovian master
equation19,20 which reads

ṙ = −
i

"
fHSstd,rg + Lrelsrd + Lnoisesrd. s4d

The commutator describes the coherent dynamics while the
bath acts via the two superoperators for relaxation and noise,
respectively,

Lrelsrd = −
ig

2"
fx,†p,r‡+g,

Lnoisesrd = −
1

"
fx,†Q,r‡g. s5d

The operator

Q =E
0

`

dt KstdxHst − t,td s6d

involves the integral kernel

Kstd =
1

p
E

0

`

dv IsvdcothS "v

2kBT
Dcosvt, s7d

with T being temperature and the position operator
xHst−t ,td in the Heisenberg picture. This master equation
can be solved numerically to obtainrstd and the expectation
value:

kxstdl = trfrstdxg. s8d

In the stationary limit,kxstdl shows oscillations with the fre-
quency being the external driving frequencyv (plus a phase

shift) and with amplitudeA. This amplitude is the quantity of
interest that is compared to the classical counterpart.

III. NONLINEAR RESPONSE OF THE NANORESONATOR

With the oscillation amplitudeA at hand, we can investi-
gate the nonlinear response of the nanoresonator on varying
driving frequenciesv. The classical analog shows a well-
known rich dynamics including chaos and driving induced
bistability. Without noise, we obtain the Duffing
oscillator.17,21 Its response on varying the driving frequency
can be calculated perturbatively17 and is shown in Fig. 1
(dashed line and inset). For weak driving, the standard
Lorentzian resonance of a harmonic oscillator occurs. For
stronger driving, the system enters the nonlinear regime, the
resonance curve bends over and an effective bistability is
induced yielding a hysteretical response. If Gaussian white
noise is added, the range of bistability and therefore hyster-
esis is reduced22 since the system escapes more easily from
the metastable state by thermal hopping.

For the quantum case, one can ask whether a signature of
the induced bistability still appears in the response. For a
truly bistable potential, tunneling leads to a reduction of
hysteresis.23 Also, resonant tunneling through the potential
barrier leads to characteristic steps in the hysteresis cycle.24

However, the potential in the Hamiltonian Eq.(1) is
monostable.

We have calculated the amplitudeA of the steady-state
oscillations for varying driving frequenciesv. The result is
shown in Fig. 1. The characteristic profile consists of a series
of peaks and dips. The resonances are sharper for higher
frequencies. For lower frequencies, the broad peaks overlap
strongly and lead to a shoulder-like profile which is similar
to the classical result(dashed line in Fig. 1). The locations of
the resonances are dominated by the parameters of the un-
damped driven system, see Figs. 2(a) and 2(b). On the other
hand, by changing the parameters characterizing the bath
(temperatureT and damping strengthg) the shape of the
resonances is modified. As can be seen in Figs. 2(c) and 2(d),

FIG. 1. AmplitudeA of the expectation valuekxstdl for varying
the driving frequencyv. Parameters arekBT=0.1"v0, b=0.1,
f =0.1"v0/x0, g=0.005v0. Dashed line: results of the classical Duf-
fing oscillator atT=0 with the remaining parameters being the
same. Inset: amplitudeA of the classical Duffing oscillator for vary-
ing driving frequencies. The driving strengthf increases from bot-
tom to top.
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for increasing temperature and damping, the sharp reso-
nances are smeared out and finally fade out when the quan-
tum coherence is suppressed. This indicates that the reso-
nances are related to resonant multiphonon excitations in the
driven nonlinear system.

IV. RESONANT MULTIPHONON EXCITATION

In order to show this, we exploit the periodicity in time of
HSstd and calculate the quasienergy(Floquet) spectrum for
varying driving frequenciesv.25,26 To this end, we solve the
equation

SHSstd − i"
]

]t
Dufastdl = «aufastdl, s9d

where the quasienergies«a are defined up to a multiple inte-
ger of "v. This means that the stateufa

sndstdl=einvtufastdl is
also an eigenstate of the Floquet Hamiltonian, but with the
eigenvalue

«a,n = «a + n"v. s10d

Since the quasienergies do not allow for global ordering, we
have also calculated the mean energies averaged over one
driving period

Ēa = o
n

s«a + n"vdkuca,nuca,nl, s11d

where theuca,nl are the Fourier components of the Floquet
states,25 which can be obtained as

uca,nl =
v

2p
E

0

2p/v

dt einvtufastdl. s12d

For the harmonic casesb=0d, the quasienergies are all de-
generate for infinitesimal driving. The strong driving and the
nonlinear potential lift this degeneracy. As follows from the
result shown in Fig. 3, the quasienergies show avoided level
crossings(and the mean energies show exact crossings) for
particular values of the driving frequencyv. To these

(anti-)crossings correspond the particular resonances in the
frequency dependence of the amplitudeA. The resonances
occur when the(undamped) quantum system absorbs an in-
teger multiple of"v. The shape of the resonances is related
to the splitting of the quasienergy levels at the avoided level
crossings. For lower frequencies, the level splitting is quite
large. Moreover, the avoided crossings are not well separated
in this regime. This implies that the resonances are broad and
strongly overlap yielding the shoulder-like behavior of the
response profile. For largerv, the avoided level crossings
become well separated and the energy splittings decrease.

FIG. 2. AmplitudeA for varying the driving
frequency v and for different choices of(a)
the nonlinearity coefficientb, (b) driving inten-
sity f, (c) temperatureT, and (d) damping
strengthg. The other parameters are kept fixed
according tob=0.1, f =0.1"v0/x0, kBT=0.1"v0,
and g=0.005v0, respectively. Dashed line in(a)
and (d): same as in Fig. 1.

FIG. 3. Average energiesĒi (top), quasienergy levels«a,k

(middle), and amplitudeA of the fundamental mode for varying
driving frequenciesv. The remaining parameters areb=0.1,
f =0.1"v0/x0, andg=0.005v0.
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Note that the resonances occur despite the fact that the ther-
mal energy is larger than the quasienergy level splittings at
the avoided level crossing. In turn, this leads to sharp reso-
nances in the amplitude. The physics of avoided quasienergy
level crossings has been discussed in detail in Ref. 27.

V. DYNAMICALLY INDUCED BISTABILITY
AND RESONANT TUNNELING

The bistability of the steady state of the classical Duffing
oscillator does not survive in the quantum system since it
escapes the metastable state asymptotically via tunneling.24

Nevertheless, we find signatures of bistability and tunneling
if we consider how the steady state is reached. For this, we
show in the inset of Fig. 4 the amplitudeA (local maxima of
the vibrations) for increasing time(starting with the ground
state of the undriven oscillator as the initial state). We ob-
serve fast oscillations at short times. They decay on a time
scaleg−1 which reflects intrawell relaxation in the metastable
state. Then, starting from a metastable state at intermediate
times, a slow exponential decay towards the asymptotically
stable state can be observed. By fitting to an exponential, we
extract the decay rateG for various driving frequencies, see
Fig. 4 crosses. The decay rate shows resonances at the same
values of the frequencies where the avoided crossings of the
quasienergy levels occur(see arrows). This slow dynamics
can be identified as quantum tunneling in a dynamically in-
duced bistable effective potential(see also Ref. 28). The
peaks inG indicate resonant tunneling24 from the meta- to
the globally stable state both of which are dynamically in-
duced.

The rate for tunneling out of the metastable well can be
obtained directly from an improved Floquet-Markovian mas-
ter equation.20 In the moderate rotating wave approximation,
the time-independent master equation

ṙabstd = −
i

"
s«a − «bdrabstd + o

a8b8

Lab,a8b8ra8b8std s13d

in the Floquet basis can be established. The transition rates
containing the influence of the dissipative bath read20

Lab,a8b8 = o
n

sNaa8,n + Nbb8,ndXaa8,nXb8b1−n

− dbb8o
b9,n

Nb9a8,nXab9,−nXb9a8,n

− daa8o
a9,n

Na9b8,nXb8a9,−nXa9b,n, s14d

where the coefficients are given by

Nab,n = Ns«a − «b + n"vd, Ns«d =
m* g«

"2

1

e«/kBT − 1

Xab,n =
v

2p
E

0

2p/v

dt e−invtkfastduxufbstdl. s15d

The time-independent rate coefficients[Eq. (14)] can be
written as a matrix which can readily be diagonalized nu-
merically. We find a clear separation of time scales where the
smallest nonzero eigenvalue indicates a slow tunneling dy-
namics by which the stationary state is approached. The solid
line of Fig. 4 shows the smallest nonzero eigenvalue of the
corresponding rate matrix which was obtained by direct nu-
merical diagonalization using a basis of eight Floquet eigen-
states. The result agrees well with that from the numerical
iteration of the Born-Markovian master equation. Note again
the analogy to resonant tunneling in a static double-well
potential.24 The role of the eigenenergies in the static case is
now played by the quasienergies«a determining the coherent
dynamics, see Eq.(13). In both cases, the avoided
(quasi-)energy level crossings are the origin of resonant tun-
neling from the metastable towards the globally stable state.
Nevertheless, the incoherent part of Eq.(13) is crucial to
observe the resonant tunneling in this driving induced bista-
bility.

VI. CONCLUSIONS

In conclusion, we have found resonances in the amplitude
of the fundamental mode of a nanomechanical resonator
which is driven into its nonlinear regime. They occur for
particular values of the driving frequency and are explained
in terms of quantum mechanical resonant multiphonon exci-
tations between quasienergy states. This response profile is
generic for the quantum system and is absent in the analo-
gous classical system. In addition, we have identified reso-
nant tunneling in a dynamically induced bistable effective
potential. Since oscillation amplitudes of nanomechanical
resonators can be detected with currently available experi-
mental techniques, this macroscopic quantum effect should
be measurable in the near future. A promising approach
seems to be to couple a superconducting single-electron tran-
sistor capacitively to the resonator11 allowing an ultrahigh

FIG. 4. Decay rateG for the slow dynamics of the amplitudeA
for approaching the steady state. Symbols: Solution from the nu-
merical iteration of the Born Markovian master equation, solid line:
Smallest nonzero eigenvalue of the rate matrix of an improved Flo-
quet Markovian master equation. Inset: time-resolved dynamics of
A for v=1.167v0 (solid line). The dashed line shows a fit to an
exponentiale−Gt. Here, b=0.1, f =0.1"v0/x0, kBT=0.1"v0, and
g=0.005v0.
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sensitivity. Indeed, a fundamental frequency of 19 MHz has
been reported11 implying that quantum effects occur below a
temperature of a few mK. Most interestingly, the reported
quality factors aroundQ=40 000 seem to be very promising
since we predict quantum effects at even smallerQ=v0/g,
see above.

Finally, we note that our model of a driven anharmonic
monostable quantum oscillator is a generic model which
finds applications in various other fields of physics. One im-
portant application is related to the nondestructive readout
for superconducting flux or charge qubits.29 A dc SQUID
which is inductively coupled to the qubit is driven by an ac
bias current such that the SQUID remains in its supercon-
ducting state(for this, the amplitude of the ac current has to
be smaller than the critical current of the SQUID). The Jo-
sephson inductance of the SQUID carrying information on

the qubit state is measured for varying the frequency of the
ac current. In terms of our model, the SQUID provides a
sinusoidal potential for the superconducting phase acting as a
single quantum mechanical particle. The particle is initially
localized in one potential minimum. The ac bias current pro-
vides the external driving and for stronger driving, the par-
ticle experiences the nonlinearity of the potential well. The
distinct resonances in the nonlinear response which we have
found might help to increase the efficiency of the readout
process since they are sharper than the common linear reso-
nance.
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