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Emission spectrum of the driven nonlinear oscillator
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Motivated by recent “circuit QED” experiments we investigate the noise properties of coherently driven
nonlinear resonators. By using Josephson junctions in superconducting circuits, strong nonlinearities can be
engineered, which lead to the appearance of pronounced effects already for a low number of photons in the
resonator. Based on a master equation approach we determine the emission spectrum and observe for typical
circuit QED parameters, in addition to the primary Raman-type peaks, second-order peaks. These peaks describe
higher harmonics in the slow noise-induced fluctuations of the oscillation amplitude of the resonator and provide
a clear signature of the nonlinear nature of the system.
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I. INTRODUCTION

Several recent circuit QED experiments based on Josephson
junctions in superconducting circuits were concerned with
the properties of driven nonlinear resonators [1]. Josephson
junctions allow engineering strong nonlinearities, which can
lead to pronounced quantum effects, such as nonclassical
photon number distributions [2]. At the same time, without
leaving the quantum regime, the damping of the resonator can
be made sufficiently strong to measure the radiation emitted
by the resonator. State-of-the-art measurements give access
to the spectral density of the emitted radiation S(ω). This
yields detailed information about the quantum and classical
fluctuations of the resonator [3–5].

Some of the experiments with coherently driven resonators
based on a Josephson junction were concerned with the
development of a Josephson bifurcation amplifier to be used
as a high-contrast readout device for superconducting qubits
[6]. The Josephson bifurcation amplifier makes use of the
dynamical bistability induced by a linear periodic driving with
frequency ωF close to the oscillator eigenfrequency ω0. In
the readout process, the two qubit states are mapped onto
the two stable vibrational states of the resonator, which can be
easily distinguished, since they differ strongly in amplitude and
phase. The measurement backaction depends on the oscillator
power spectrum [7,8].

The stable vibrational states are described by nearly
sinusoidal oscillations with frequency ωF . They are separated
by a dynamical barrier in phase space [9]. The amplitude and
phase of the forced oscillations display quantum and thermal
fluctuations. For typical parameters, the time scales for these
fluctuations are set by the detuning δω = ωF − ω0 between
the coherent driving and the resonator and by the relaxation
rate �.

Here we consider the regime where the fluctuations are
small on average and the oscillator stays in the vicinity
of one of the stable solutions for times much longer than
the fluctuations’ characteristic time scales, �−1 and |δω|−1.
Many theoretical investigations have focused on rare large
fluctuations which allow overcoming the dynamical barrier
and induce the switching between the stable solutions [9,10]

or on tunneling [11]. The deep quantum regime, where the
average number of excitations in the resonator is small and
quantum fluctuations are large has also attracted considerable
attention [12]. The power spectrum in this regime has been
investigated.

Although the emission spectrum S(ω), in principle, carries
information about rare large fluctuations [5,13], most of the
radiation is emitted as a consequence of small fluctuations.
Therefore, the standard approach for computing the spectrum
S(ω) is to linearize the motion around the stable solutions
[5,7,13,14]. The small fluctuations display damped harmonic
oscillations with frequency ∼|δω|. The decay of the fluctuation
correlations is accompanied by the emission of radiation with
frequencies ωF − δω and ωF + δω, since the slow oscillations
are superimposed to the fast oscillations with the driving
frequency. The resulting emission spectrum is reminiscent of
the Raman spectrum of a diatomic molecule: Beside the main
Rayleigh peak at frequency ωF , which describes radiation
emitted coherently, it has two Raman-type side peaks with
Raman shift ±|δω|. In a quantum mechanical picture, the
quasienergy level spacing, that is, the distance between
the eigenstates of the Hamiltonian in a frame rotating with
the driving frequency, is approximatively given by h̄|δω|,
and the Raman lines are induced by transition between nearest-
neighbor quasienergy eigenstates. In this context, the same
driving field defines and probes the quasienergy spectrum.

In this paper, we are interested in a regime where typical
fluctuations are intermediate in size: They are too weak
to induce switching between the two solutions, so that the
resonator stays locked to one of the stable solutions for a
long time, but they are strong enough to lead to nonlinear
dynamics, so that one has to go beyond the simple Raman
picture for the emission spectrum. It has been shown that
quantum fluctuations of intermediate size may give rise to a
fine structure in the spectrum [5,13].

In this work we point to two additional features of the
emission spectrum, which are consequences of the nonlinear
nature of the quasienergy Hamiltonian and should be observ-
able in experiments [15]: (i) Intermediate-strength nonlinear
fluctuations are not simply damped sinusoidal oscillations
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but have higher harmonics yielding additional peaks in the
resonator emission spectrum at frequencies ωF ± nδω, n =
2,3, . . .. These higher-order peaks resemble the peaks in the
power spectrum of a static oscillator with a small cubic
anharmonicity close to integer multiples of its eigenfrequency
[16]. At the quantum level, the higher harmonics derive
from transitions between quasienergy levels which are not
nearest neighbors. (ii) Moreover, fluctuations in an asymmetric
quasienergy potential yield an additional broad peak at the
frequency ωF . Unlike the fine structure of the emission
spectrum, the effects we consider here are not restricted to
the quantum regime but extend to the classical regime where
thermal fluctuations are dominant.

The paper is organized as follows. In Sec. II we introduce
the model for the driven nonlinear resonator and the approach
based on a master equation. In Sec. III we review the mean-field
and small-fluctuations theories for the oscillator. In Sec. IV we
outline our analytical calculation of the emission spectrum.
In Sec. V we compare our analytical finding with numerical
results which are exact within our master equation approach.

II. THE MODEL

We consider a Duffing oscillator with eigenfrequency ω0,
coordinate q, momentum p, and Hamiltonian

H (t) = p2

2
+ 1

2
ω2

0q
2 + γ

4
q4 − Fq cos(ωF t). (1)

We assume that the detuning δω = ωF − ω0 of the driving
is small, |δω| � ω0, and that the nonlinearity for typical
values of q satisfies the condition |γ |〈q2〉 � ω2

0. In this
regime, the oscillator displays fast sinusoidal oscillations,
〈q(t)〉 ≈ A(t) cos[ωF t + φ(t)], with amplitude A(t) and phase
φ(t), which vary slowly on the time scale |δω|−1.

It is convenient to study the oscillator dynamics in a frame
rotating with the driving frequency; that is, we perform a
unitary transformation H̃ = U †HU − ih̄U †U̇ with U (t) =
exp[−iωF â†â t], where a = (ω0q + ip)/

√
2h̄ω0. In the rotat-

ing frame, the ladder operators a and a† vary slowly, 〈a(t)〉 ≈√
ω02h̄A(t) exp[−iφ(t)]. We therefore use the rotating wave

approximation (RWA) (neglecting fast oscillating terms with
frequencies 2ωF and 4ωF ) and arrive at the time-independent
Hamiltonian

H̃ ≈ −h̄δω a†a + h̄K

2
a†a(a†a + 1) − h̄f

2
(a + a†), (2)

with K = 3h̄γ /2ω2
0 and f = F/

√
2h̄ω0.

We consider Markovian dissipation due to a linear coupling
to a bosonic bath. When the oscillator relaxation rate is much
smaller than its eigenfrequency, � � ω0, and the bath spectral
density close to ω0 is smooth, the dissipative dynamics of the
system can be described by a simple master equation in the
Lindblad form

ρ̇ = Lρ = − i

h̄
[H̃ ,ρ] + �(1 + n̄)D[a]ρ + �n̄D[a†]ρ, (3)

where the Lindblad superoperator is defined throughD[O]ρ ≡
2OρO† − O†Oρ − ρOO†, and n̄ = (eh̄ω0/kBT − 1)−1 is the
oscillator distribution in the absence of driving.

FIG. 1. (Color online) Emission spectrum of the driven non-
linear resonator in the regime of high-amplitude oscillations. The
parameters are δω = −75 MHz, K = −3 MHz, f = 270 MHz, � =
3 MHz, and n̄ = 1. The dashed lines show the second-order peaks
scaled up by a constant factor.

For long times the resonator relaxes to a stationary state,
satisfying Lρst = 0, from which we obtain mean values
〈O〉st ≡ Tr〈ρstO〉 in the rotating frame. In particular, it allows
us to calculate the oscillation amplitude Ast = √

2h̄/ω0〈a〉st.
The Lindblad master equation (3) gives also access to the

full time-evolution of the system, and we can use it to calculate
correlation functions 〈O(t + �t)O ′(t)〉 = Tr{OeL�tO ′ρ(t)}
[17], where L is the superoperator defined in Eq. (3). For
long times t , the system is in the stationary state ρst, so that the
correlation function depends on the time difference �t only,
〈O(t + �t)O ′(t)〉 = Tr{OeL�tO ′ρst} ≡ 〈O(�t)O ′〉st.

Here, we are specifically interested in the emission spec-
trum S(ω), that is, the spectral density of the photons emitted
by the driven resonator,

S(ω) = 2 Re
∫ ∞

0
dt 〈a†(t)a〉ste

−i(ω−ωF )t . (4)

The above definition takes into account that the correlation
function is computed in a frame rotating with frequency ωF .

The emission spectrum S(ω) consists of two distinct
contributions coming from the finite mean value 〈a〉st and from
the fluctuations 〈(a†(t) − 〈a〉st)(a − 〈a〉st)〉st of the operator a

(which describes the oscillation amplitude). The latter yield
broad peaks with width of the order of the oscillator relaxation
rate � and height proportional to the noise intensity. On the
other hand, the finite mean value 〈a〉st yields a sharp peak at the
driving frequency ωF . For a strictly monochromatic driving,
this peak has the shape of a δ function, π〈a〉2

stδ(ω − ωF ). In
the following, we subtract this contribution from the emission
spectrum S(ω) and focus only on the broad peaks due to the
fluctuations of a.

In Fig. 1, we show the emission spectrum S(ω) for a
parameter choice in the regime of operation of a Josephson
bifurcation amplifier [1]. In this example, the line shape of
S(ω) consists of four distinct Lorentzian peaks: two high peaks
of width � for ω − ωF close to ±δω and two lower peaks of
width 2� for ω − ωF close to −2δω and 0. Such peaks are
consistent with weakly damped oscillations of the fluctuation
of a with period δω, which are mostly harmonic but have
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substantial second harmonic and average over a period 2π/δω.
A linearized theory of the fluctuations around the mean-field
solutions [5,14] yields damped harmonic oscillations for the
fluctuations of a, but does not capture the second-order peaks
for ω − ωF ≈ −2δω,0. In order to go beyond this limitation
we compute in Sec. IV the emission spectrum by taking into
account the nonlinear nature of the fluctuations.

III. THE MEAN-FIELD SOLUTIONS AND SMALL
FLUCTUATIONS

In this section, in order to prepare for the calculation of
the emission spectrum, we review the mean-field and small-
fluctuation theories for the Duffing oscillator [9,13,14].

A. Dynamical bistability

For concreteness, we focus on soft nonlinearities, K < 0
(which apply to the Josephson nonlinearity), and red detuned
driving, δω < 0. We switch to dimensionless variables by
introducing the time τ ≡ |δω|t , the effective Planck constant

λ ≡ K

2δω
= 3h̄γ

4ω2
0δω

, (5)

and the slowly varying quadratures Q and P ,

Q ≡
√

λ

2
(a + a†), P ≡

√
λ

2
i(a† − a), (6)

with canonical commutator [Q,P ] = iλ. The dimensionless
Schrödinger equation reads

iλ∂τψ(Q,τ ) = g(Q,P = −iλ∂Q)ψ(Q,τ ), (7)

where the quasienergy Hamiltonian

g = −(Q2 + P 2 − 1)2/4 +
√

βQ (8)

depends on the parameter β = f 2K/(4|δω|3) only and is time-
independent. However, it can not be written as a sum of kinetic
and potential energy. For hard nonlinearity, K > 0, and blue
detuning, δω > 0, the quasienergy surface ĝ has opposite sign
[9].

The values of quasienergy Hamiltonian g(Q,P ) as function
of the variables Q,P are shown in the three-dimensional (3D)
plot in Fig. 2 for a fixed value of β = 0.034. It has three
stationary points corresponding to a minimum, a maximum,
and a saddle point. These stationary points coexist for 0 <

β < 4/27. The maximum and the minimum are located at

(Q,P ) = (Qh ≡ cos θ/
√

3 + sin θ,Ph ≡ 0) (9)

and

(Q,P ) = (Ql ≡ cos θ/
√

3 − sin θ,Pl ≡ 0), (10)

respectively.
Here, the angle θ is given by θ = (π −

arctan
√

4/(27β) − 1)/3. In the laboratory frame, these
two solutions describe sinusoidal oscillations with frequency
ωF , dimensionless oscillation amplitude |Ql| and |Qh|, with
|Ql| < |Qh|, and opposite phases, φl = 0 and φh = π . They
describe the low- and high-amplitude solutions, respectively.

1

0

1

1

0
1

0.2
0.0
0.2

FIG. 2. (Color online) 3D plot of the function g(Q,P ) for a fixed
value of the scaled driving β = 0.034. The minimum corresponds to
the small amplitude state and the maximum corresponds to the high
amplitude state.

For weak damping, κ ≡ �/|δω| � 1, the low- and high-
amplitude states become attractors. For weak quantum fluc-
tuations, λ � 1, there is a separation of time scales: On the
time scale ∼κ−1, the oscillator relaxes to the vicinity of either
one of the two states, while on a much longer time scale
∝exp[λ−1] rare large thermal or quantum fluctuations induce
switching between them. In the next section, we focus on
the quasistationary regime, κ−1 � τ � κ−1 exp[λ−1], where
the oscillator stays in the vicinity of one of the two metastable
solutions.

B. Small fluctuations around the mean-field solutions

In the weak damping regime, κ � 1, small quantum and
thermal fluctuations around a mean-field solution can be taken
into account in two steps. The first one introduces an auxiliary
oscillator, which describes the quantum states localized in
the phase-space region close to one of the two solutions.
The second one introduces an effective master equation
for the auxiliary oscillator. It turns out that the fluctuations
and the dissipation for the auxiliary oscillator are similar to
those for an oscillator close to equilibrium but with an effective
temperature Te, discussed below [5].

The auxiliary oscillator is obtained by expanding the
quasienergy Hamiltonian (8) around the classical solutions
Qi = Ql/h and P = 0, where the index i denotes the states of
low- (i = l) and high- (i = h) amplitude oscillations:

ĝ ≈ gi + 1
2gPP P 2 + 1

2gQQ(Q − Qi)2, (11)

with gi = g(Qi,0), gPP = Q2
i − 1, and gQQ = 3Q2

i − 1.
It is convenient to rewrite the Hamiltonian in terms of ladder

operators

ĝ ≈ g(Qi,0) + sgn(gQQ)λ νi(b
†b + 1/2), (12)

where νi = √
gQQgPP is the dimensionless frequency of the

slow oscillations and the ladder operators b and b† are obtained
by the squeezing transformation [18]

a = ai + b cosh r∗
i − b† sinh r∗

i , (13)
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ANDRÉ, GUO, PEANO, MARTHALER, AND SCHÖN PHYSICAL REVIEW A 85, 053825 (2012)

with ai = Qi/
√

2λ and squeezing factor r∗
i =

ln[gQQ/gPP ]/4.
For κ � ν0 we can incorporate small thermal fluctuations

by substituting the squeezing transformation Eq. (13) into the
Lindblad master equation (3) and neglecting the terms where
the operators b and b† are not matched in pairs. We find

∂τρ = − i

λ
[g,ρ] + κ(1 + n̄e)D[b]ρ + κn̄eD[b†]ρ, (14)

with n̄e = n̄ + (2n̄ + 1) sinh2 r∗
i [5]. This master equation has

the same structure as the master equation for a static weakly
nonlinear oscillator with eigenfrequency νi and damping κ at
the temperature Te = λνi/ ln[(n̄e + 1)/n̄e]. It naturally yields
a stationary distribution for the auxiliary oscillator Fock states
|n〉 of the Boltzmann form [5,13]:

ρst
n ≡ 〈n|ρst|n〉 ≈ (n̄e + 1)−1 exp[−nλνi/Te]. (15)

Note that for a driven oscillator, the effective temperature
Te is finite even for n̄ = 0, Te = λνi/(2 ln coth r∗

i ) [5,13,19],
a phenomenon which has been named quantum heating
[5]. In the classical limit of high temperatures kBT  h̄ω0,
we have [5]

Te ≈ λνin̄e ≈ kBT
3γ

4ω3
0δω

(1 + 2 sinh2 r∗
i ), (16)

so that Te becomes independent of h̄, as should be expected
for a classical quantity.

IV. THE EMISSION SPECTRUM

The master equation for the auxiliary oscillator [Eq. (14)]
allows us to compute the emission spectrum S(ω) close to the
Lorentzian peaks, in the limit where they are well separated,
κ � νi. In general, it is not sufficient to use the harmonic
oscillator approximation for the auxiliary oscillator; rather one
has to include in Eq. (14) the relevant nonlinear corrections to
ĝ. To proceed, we focus on the parameter regime where the
second-order peaks are clearly visible. In this case, we can
neglect in the quasienergy Hamiltonian ĝ (8) terms which are
quartic in the ladder operators b and b†. Thus, we find

g ≈ gi + sgn(gQQ)λνib
†b + λ3/2

(
V1b

3 + V2b
†2b + H.c.

)
,

(17)

with V1 = Qi(e−3r∗
i − er∗

i )/23/2 and V2 = Qi(3e−3r∗
i +

er∗
i )/23/2.
In order to compute the emission spectrum S(ω), we insert

the squeezing transformation Eq. (13) into the definition (4)
of the emission spectrum and obtain the expression

S(ω) = 1

|δω| (cosh2 r∗
i 2Re〈b†,b〉ν + sinh2 r∗

i 2Re〈b,b†〉ν
− 2 sinh r∗

i cosh r∗
i 2Re〈b,b〉ν). (18)

Here, we have defined

ν = (ω − ωF )/|δω| (19)

and the spectral functions

〈O,O ′〉ν ≡
∫ ∞

0
dτe−iντ 〈O(τ )O ′〉st. (20)

The evaluation of the auxiliary oscillator spectra 〈b,b†〉ν ,
〈b†,b〉ν , and 〈b,b〉ν proceeds along the same lines as the
calculation of the spectrum of a weakly nonlinear oscillator
[16,20] and is detailed in the Appendix . By substituting
Eqs. (A10), (A11), and (A12) into Eq. (18) we obtain the
results for S(ω) close to its peak.

For frequencies ν close to νi and −νi we find the first-order
peaks

S(ω) = 1

|δω|
2κ cosh2 r∗

i n̄e

[ν − sgn(gQQ)νi]2 + κ2
(21)

and

S(ω) = 1

|δω|
2κ sinh2 r∗

i (n̄e + 1)

[ν + sgn(gQQ)νi]2 + κ2
, (22)

respectively. The expressions for the first-order peaks have
been obtained previously using a quantum Fokker-Planck
equation approach [14].

For frequencies ν close to zero we find

S(ω) = 1

|δω|
λQ2

i

ν2
i

(3e−4r∗
i + 1)2 2κn̄e(n̄e + 1)

ν2 + 4κ2
. (23)

The central peak is a consequence of amplitude fluctuations
δan ≡ 〈n|a|n〉 − 〈a〉st �= 0 of the quasienergy states. It is, in
fact, possible to rewrite Eq. (23) as 2(dδan/dn)2〈b†b,b†b〉ν
[20]. The peak is therefore determined by a combination of
the amplitude curvature and quasienergy fluctuations. Close
to ±2ν0 we find the second-order peaks

S(ω) = 1

|δω|
λQ2

i

ν2
i e

4r∗
i

16κ cosh4 r∗
i n̄2

e

(ν − sgn(gQQ)2νi)2 + 4κ2
, (24)

S(ω) = 1

|δω|
λQ2

i

ν2
i e

4r∗
i

16κ sinh4 r∗
i (n̄e + 1)2

(ν + sgn(gQQ)2νi)2 + 4κ2
. (25)

Equations (23), (24), and (25) are valid only close to the
corresponding peaks, which do not have a substantial overlap
for κ2 � λ. Moreover, they do not incorporate a shift in the
peak center of order λ|δω| and do not take into account the
non-equidistance of the quasienergy levels, which give rise
to a hyperfine splitting similar to Refs. [5] and [16], when it
exceeds the levels broadening for κ � λ. Therefore, strictly
speaking, they are valid for κ2 � λ � κ .

In the classical limit kBT  h̄ω0, the intensity of the
emitted power irradiated �h̄ωS(ω) becomes independent of
h̄ as can be verified by substituting Eqs. (5) and (16) into the
line shape [Eqs. (21)–(25)] of S(ω) close to its peaks.

The amplitude of the first-order peaks is linear in the
quantum temperature n̄e, while the second-order peaks are
proportional to the squared noise intensity n̄2

e . Figure 3 shows
the quantum temperature n̄e of the two stable states for n̄ = 0.
As we can see, in the state of low-amplitude oscillations, the
quantum temperature is mostly rather small. It becomes larger
for high values of the scaled driving strength β; however, in
this regime, the stationary state of the driven resonator is the
state of high-amplitude oscillations. On the other hand, for
high-amplitude oscillations, the quantum temperature takes
large values.
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FIG. 3. (Color online) The quantum temperature n̄e for the two
stable states as a function of the scaled driving strength β for n̄ = 0
(see Ref. [13]).

V. RESULTS

In this section we present the results for the emission power
spectrum. We mostly show results from a numerical solution
of Eq. (3) with boundary condition ρ(0) = aρs , which also
covers parameters beyond the regime κ2 � λ � κ , where the
analytic solution is valid.

First we focus on the case of strong driving, where the
resonator is in a stationary state of high-amplitude oscillations.
In Fig. 4 we show the emission spectrum for finite temperature,
n̄ = 1.0 and β = 0.13. In the regime of high-amplitude

FIG. 4. (Color online) (a) Emission spectrum of the driven
nonlinear resonator in the regime of low-amplitude oscillations for
three different values of the parameter λ. The other parameters are
β = 0.13, κ = 0.02, and n̄ = 1. (b),(c) Magnification around the
second-order peaks at the frequencies ω ≈ −2 |δω| and ω = 0.

oscillations, the squeezing factor r∗
h is rather large, so that

according to Eqs. (21) and (22), both first-order peaks are of
comparable size.

We observe the appearance of two second-order peaks.
The first one is located at the frequency ω ≈ −2|δω| and is
described by Eq. (24). The oscillation amplitude Qh is large,
|Qh| ≈ 1, so that the peak height ∼λ/κ is larger than the
background ∼κ arising from the first-order peaks. We also
observe a second-order peak at the frequency ω = 0, which is
described by Eq. (23). We note that for λ = 0.005, where the
condition κ2 � λ � κ is fulfilled, the numerical results are
very well described by the analytical expressions (21)–(25).

The analytical expressions we derived for the emission
spectrum predict that the height of the second-order peaks
is proportional to the ratio λ/κ . Therefore, the second-order
peaks become more visible against the background for larger
values of the parameter λ. This is also shown in Fig. 4, where
we plot the emission spectrum for different values of the
parameter λ.

We see that, while the first-order peaks are decreasing, both
second-order peaks are clearly increasing for larger values
of λ, consistent with the analytical predictions. For the large
values of λ used in the plot, we are close to the limit of
validity of the analytical expressions for the spectrum, since
the condition λ � κ is not strictly fulfilled. In this regime our
analytical result still provides the correct qualitative picture
for the emission spectrum and a remarkably good estimate of
the line intensities, but it does not describe a finite shift of the
peaks positions.

For the sake of comparison, we also discuss the case of weak
driving, where the resonator is in a state of low-amplitude
oscillations. The emission spectrum is shown in Fig. 5 for
zero and finite temperature, and for fixed driving, β = 0.01.
Here only the first-order peaks, located at the frequencies ω ≈
±|δω| are visible.

Since the oscillation amplitude Ql is small, Ql � 1, the
squeezing factor r∗

l is close to zero, r∗
l ≈ 0, and the effective

temperature is close to the physical temperature, n̄e ≈ n̄. This
means that for finite temperature, n̄ > 0, the first-order peak
∼n̄e cosh2 r∗

l at the frequency ω ≈ |δω| is much larger than

FIG. 5. (Color online) Emission spectrum of the driven nonlinear
resonator in the regime of low-amplitude oscillations. The parameters
are β = 0.01, λ = 0.005, and κ = 0.02.
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the second first-order peak ∼(n̄e + 1) sinh2 r∗
l at the frequency

ω ≈ |δω|.
On the other hand, in the limit of zero temperature, when n̄e

tends to zero, both first-order peaks are of the same (small) size.
Finally, the second-order peaks ∼λQ2

0 are so small compared
to the background of the first-order peaks that they are not
visible.

VI. SUMMARY

We have studied the emission spectrum of a driven
nonlinear oscillator. We focused on a regime characterized by
a strong nonlinearity and low temperature, which are typical
for circuit QED experiments and lead to the appearance of
pronounced nonlinear effects.

In the case that the oscillator is locked to the regime of
high-amplitude oscillations, we found two new features in
the spectrum, in addition to the Raman-side peaks located at
frequencies ω ∼ ±|δω|: (i) We observed the appearance of
a second-order peak at the frequency ω ∼ ωF − 2|δω|. In a
quantum-mechanical picture, this emission peak results from
transitions between next-to-nearest quasienergy levels. (ii) We
observed a second-order peak at the driving frequency ωF

(in addition to the sharp Rayleigh peak), which results from
fluctuations in the asymmetric quasienergy potential.

Based on a master-equation approach, we derived analytical
expressions for the emission spectrum around the first- and
second-order emission peaks. The results were obtained by
expanding the quasienergy Hamiltonian around the classical
stable solutions. In order to describe the second-order peaks,
we went beyond the usual linearization of the equations
of motion and accounted for the nonlinear nature of the
quasienergy Hamiltonian.

ACKNOWLEDGMENTS

We thank Mark Dykman, Xin-Qi Li, Vicente Leyton Ortega,
Alexander Shnirman, and Michael Thorwart for stimulating
discussions. The research of V.P. was supported by the NSF,
Grant No. EMT/QIS 082985.

APPENDIX: CALCULATION OF THE SPECTRA FOR THE
AUXILIARY NONLINEAR OSCILLATOR

In this Appendix we compute the spectra 〈b,b†〉ν , 〈b†,b〉ν ,
and 〈b,b〉ν , for the auxiliary nonlinear oscillator, defined in
Eq. (17), whose dissipative dynamics is governed by the
Lindblad master equation (14). We start with

〈b,b†〉ν ≡
∫ ∞

0
dτ e−iντ 〈b(τ )b†〉st. (A1)

By integrating by parts we get

〈b,b†〉ν = − i

ν
〈ḃ,b†〉ν − i

ν
〈bb†〉. (A2)

The equation of motion for 〈b〉, 〈ḃ〉 = i/λ〈[g,b]〉 − κ〈b〉 [18],
directly applies to 〈b(t)b〉st, since 〈b(t)b〉st = 〈b(t)〉 with initial
condition 〈b(0)〉 = tr〈b†bρst〉. By inserting it, together with the
approximate expression of the quasienergy ĝ into Eq. (17), into

Eq. (A2), we find

〈b,b†〉ν = − 〈B,b†〉ν + i〈bb†〉
ν + sgn(gQQ)ν0 − iκ

, (A3)

with B = λ1/2[3V1b
†2 + 2V2b

†b + V2b
2]. Taking into account

that

〈B,b〉ν ≡
∫ ∞

0
dτe−iντ 〈B(τ )b†〉st =

∫ 0

−∞
dτeiντ 〈Bb†(τ )〉st,

(A4)

we can integrate by parts and apply the equation of motion for
〈b†〉, obtaining

〈B,b†〉ν = − 〈B,B†〉ν + i〈Bb†〉
ν + sgn(gQQ)ν0 + iκ

. (A5)

By substituting into Eq. (A3), we arrive at the identity

〈b,b†〉ν = 〈B,B†〉ν + i〈Bb†〉
[ν + sgn(gQQ)ν0]2 + κ2

− i〈bb†〉
ν + sgn(gQQ)ν0 − iκ

.

(A6)

Next we replace the nonlinear spectra in the right-hand side
of Eq. (A6) with the spectra of a weakly damped harmonic
oscillator,

〈b2,b†2〉0
ν ≡ 4κ(n̄e + 1)2

ν + sgn(gQQ)2ν0 − i2κ
, (A7)

〈b†2,b2〉0
ν ≡ 4κn̄2

e

ν − sgn(gQQ)2ν0 − i2κ
, (A8)

〈b†b,b†b〉0
ν ≡ 2κn̄e(n̄e + 1)

ν − i2κ
, (A9)

and find

〈b,b†〉ν ≈ κ(n̄e + 1)

ν + sgn(gQQ)ν0 − iκ
+ λV 2

2

ν2
0

〈b2,b†2〉0
ν

× λV 2
1

ν2
0

〈b†2,b2〉0
ν + λ4V 2

2

ν2
0

〈b†b,b†b〉0
ν . (A10)

The result consists of four terms, each of them yielding
a Lorentzian peak. It is important to keep in mind that the
substitution of a nonlinear spectrum with a linear one is valid
only close to the peak of the spectrum. Hence, our approximate
result for 〈b,b†〉ν gives a good approximation close to its
second-order peaks at ±2ν0,0, only when the peaks are well
pronounced. The peak height, given by Eq. (A10), is of the
order λ/κ . On the other hand, the background value can be
computed by linearizing the fluctuations and is found to be of
order κ [14]. This leaves us with the requirement κ2 � λ.

The calculation of the spectra 〈b†,b〉ν and 〈b,b〉ν proceeds
along the same lines and yields

〈b†,b〉ν ≈ κn̄e

ν − sgn(gQQ)ν0 − iκ
+ λV 2

1

ν2
0

〈b2,b†2〉0
ν

+ λV 2
2

ν2
0

〈b†2,b2〉0
ν + λ4V 2

2

ν2
0

〈b†b,b†b〉0
ν (A11)

and

〈b,b〉ν ≈ −λV1V2

ν2
0

(〈b2,b†2〉0
ν + 〈b†2,b2〉0

ν

)

+ λ4V 2
2

ν2
0

〈b†b,b†b〉0
ν . (A12)
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