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Qubit state detection using the quantum Duffing oscillator
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We introduce a detection scheme for the state of a qubit that is based on resonant few-photon transitions in
a driven nonlinear resonator. The latter is parametrically coupled to the qubit and is used as its detector. Close
to the fundamental resonator frequency, the nonlinear resonator shows sharp resonant few-photon transitions.
Depending on the qubit state, these few-photon resonances are shifted to different driving frequencies. We
show that this detection scheme offers the advantage of small back action, a large discrimination power with
an enhanced readout fidelity, and a sufficiently large measurement efficiency. A realization of this scheme in
the form of a persistent current qubit inductively coupled to a driven SQUID detector in its nonlinear regime is
discussed.
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I. INTRODUCTION

The efficient and reliable detection of the quantum me-
chanical state of a nanoscale system is a key component of
all present designs of quantum circuits.1 One nondestructive
readout scheme currently in use for the important class of
superconducting flux qubits is based on a heterodyne detection
of the dynamic response of a dc superconducting quantum
interference device (dc-SQUID) detector, which is inductively
coupled to the qubit.2,3 Thereby, the dc-SQUID is operated in
its linear regime as a shunted variable inductor in a resonant
circuit. In this setup, its resonance frequency depends on the
magnetic flux generated by the qubit being in the ground
or excited state. Hence, measuring the impedance of the
resonant circuit as a function of an externally applied bias
current yields two characteristic Lorentzian resonances at two
different resonance frequencies, which depend on the two qubit
states. This detection scheme, hence, allows us to infer the
state of the qubit from the resonant response of the detector
in the nanocircuit. In order that a reliable discrimination of
the two qubit states becomes possible in this continuous type
of readout design, the probability distributions for the readout
values have to be only weakly overlapping. Due to thermal
and quantum fluctuations, the readout naturally is a random
process,3 and the noise properties of the nanocircuit around
the detector resonances determine the discrimination power of
the setup.

An alternative readout scheme is the Josephson bifurcation
amplifier.4,5 It is based on a classical driven nonlinear resonator
and exploits the classical bifurcation point of the dynamically
induced bistability with a small- and a large-oscillation state.6

The response (or output) of the nonlinear resonator around the
bifurcation point is very sensitive to small changes in the circuit
parameters. This is an ideal prerequisite for a sensitive detector.
Depending on the state of the qubit to be sensed, the resonator
bifurcation point is shifted to a different frequency, allowing
for large discrimination powers between the large- and small-
oscillation detector state of up to 98%.7 Nevertheless, since
the detector is a classical macroscopic device, it introduces
considerable dephasing and relaxation to the qubit state,
yielding a reduced contrast of the qubit Rabi oscillations of less
than 90%.7 This implies that the thermal noise properties of the

nonlinear detector (together with semiclassical corrections due
to quantum fluctuations) around the classical bifurcation point
determine the discrimination power between the two states
close to the classical bifurcation point.8–11 Hence, it would be
desirable to combine the advantage of a large discrimination
power of a nonlinear detector with the reduced noise sensitivity
of a nanocircuit operated close to the quantum regime.

In this paper, we introduce a combination of both strategies
and propose a nonlinear detector scheme in the form of a
nonlinear resonator with an amplitude modulated drive in its
few-photon deep quantum regime. In particular, in this regime,
we shall exploit sharp multiphoton resonances in the nonlinear
resonator,12–14 which are induced by the external driving field
close to the fundamental resonator frequency. They can be used
for the detection of the states of the qubit and offer the advan-
tage of being rather sharp and externally tunable by varying the
parameters of the external drive. The concept is an extension of
the case of a linear resonator, where the fundamental resonance
frequency is shifted depending on the qubit state. However, the
multiphoton resonances in the nonlinear detector close to the
detector’s fundamental frequency show very small linewidths.
The width of the N -photon resonance is determined by the
corresponding N -photon Rabi frequency, which decreases
with increasing photon number. The sharp resonance lines,
in turn, offer the advantage that only a few measurement
cycles are necessary to ensure a large discrimination power.
To understand the back action of the nonlinear multiphoton
detector on the qubit state, we determine the relaxation rate
of the qubit due to the coupling to the driven dissipative
nonlinear oscillator around a multiphoton resonance. Notably,
the back action of the resonator on the qubit is sufficiently
weak, yielding to a good qubit-state measurement fidelity.
Furthermore, we show that the discrimination power of the
setup is rather large and beyond 98% for our choice of realistic
parameters of a flux qubit circuit. In fact, it gives rise to
an enhanced measurement fidelity as compared to the linear
parametric oscillator. Furthermore, we show that the nonlinear
multiphoton detector does not have a worse measurement
efficiency as compared to the linear detector scheme. We
determine the measurement efficiency of the setup via the
ratio of the time it takes to collect enough information on the
qubit state (measurement time) and the relaxation time. It turns
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out that the measurement efficiency does not considerably
decrease as compared to the linear case. Hence, the detection
scheme indeed has the advantage of an overall reduced back
action in combination with an enhanced discrimination power,
together with a sufficiently large measurement efficiency.

An experimental realization of a driven nonlinear resonator
in its few-photon quantum regime is, in principle, possible
with present setups and technology. In a recent experiment,15

a nanoscale superconducting microwave resonator has been
driven to its nonlinear regime by fast frequency-chirped
voltage pulses. At low enough temperature, the regime of
quantum noise has been reached. In this experiment, the
applied driving strength has been rather large, which corre-
sponds to a large photon number transferred to the resonator.
No particular few-photon resonances have been revealed, and
the nonlinear response is similar to previous schemes on
classical bifurcation detectors using a time-dependent driving
frequency.16 However, the route to the few-photon regime
seems to be clear.

The paper is organized as follows. In Sec. II, we start
from a typical experimental setup for the flux qubit and its
SQUID detector and we derive the Hamiltonian model. This
serves to motivate an experimental realization of our proposed
detection scheme. Moreover, we discuss the regime of validity
of the model. In accordance with the approximation made
in Sec. II, we continue the study of the coherent dynamics
in Sec. III in the rotating-wave approximation. Dissipative
coupling to the environment is included on the level of a
Born-Markov master equation in the rotating frame in Sec. IV.
In Sec. V, we analyze the multiphoton transitions in the
nonlinear response of the Duffing oscillator and show that
their resonance frequency depends on the qubit state. Then, in
Sec. VI, we determine the back action of the driven dissipative
detector on the qubit dynamics by analyzing the population
difference of the qubit states at the multiphoton transitions
in the detector. Furthermore, we determine the measurement
efficiency in Sec. VII.

II. MODEL

In order to relate the theoretical approach in the following to
realistic devices, we start by deriving the model from standard
setups already realized in experiments. For this, we use a
typical architecture of a persistent current qubit, which is
inductively coupled to a driven SQUID.

A. Persistent current qubit

We consider the experimental setup used in Ref. 17 for
the qubit, consisting of a superconducting loop interrupted by
three Josephson junctions, two of which have equal Josephson
energies, while the coupling energy of the third is smaller,
in order to yield a double-well potential configuration. In this
low-inductance circuit, the flux through the loop remains close
to the externally applied value �qb. When the latter is close to
(n + 1/2)�0, where n is an integer and �0 is the flux quantum,
the device is described by the Hamiltonian in terms of the Pauli
matrices σx,z as (h̄ = 1)

Hqb = ε

2
σz − �

2
σx, (1)

with the two eigenstates |↑〉 and |↓〉 of σz corresponding to
the two persistent current states ±Ip. The minimal energy
level splitting � and the current Ip are determined by the
charging and Josephson energies of the Josephson junctions.
The asymmetry is given by ε = 2Ip(�qb − �0/2). In the
energy eigenbasis, the Hamiltonian follows as Hqb = ωqbτz/2,
with ωqb = √

ε2 + �2, and τz = σz cos θ − σx sin θ is the
corresponding Pauli matrix with tan θ = �/ε. The detection
of the qubit state essentially involves the measurement of
the magnetic flux produced by the persistent current states.
To this end, one can use the driven SQUID as a sensitive
magnetometer,2 operating in its nonlinear region. Below, we
will restrict to the few-photon deep quantum regime.

B. Driven SQUID as a nonlinear quantum detector

We consider the standard setup of a dc-SQUID formed
by two Josephson junctions in a superconducting loop, but
subject to a time-dependent external bias current.5 Moreover,
we assume a negligible ring inductance LR of the SQUID
(low-inductance approximation).18 In this configuration, the
superconducting phase differences at each junction, χ1 and
χ2, play the role of dynamical variables with a constraint
given by the flux quantization, i.e., χ1 − χ2 = −�sq/ϕ0 ≡
−2πϕex, where �sq is the external magnetic flux piercing the
superconducting loop and ϕ0 = �0/2π . Note that within the
low-inductance approximation, LRI0c � ϕ0 with the critical
current I0c of the SQUID. Thus, the system is described by the
generalized coordinate χ+ = (χ1 + χ2)/2, with the effective
Lagrangian19

Lsq(χ+,χ̇+,t) = ϕ2
0 C0 χ̇2

+ + EJ cos(πϕex) cos(χ+)

−ϕ0Ib(t) χ+, (2)

where we have assumed a symmetric loop, with EJ = ϕ0I0c

as the Josephson energy, and C0 as the capacitance of each
junction. Moreover, we include a time-periodic ac current
Ib(t) = I0 cos(ωext) with frequency ωex and amplitude I0

injected “into” the loop. The above Lagrangian describes an
effective superconducting loop (with a negligible ring induc-
tance) with a single Josephson junction3 with a tunable Joseph-
son energy EJ cos(πϕex), critical current Ic = 2I0c| cos πϕex|,
cross-junction phase difference χ+, and capacitance C = 2C0.
In order to tune the resonance frequency, the SQUID is
shunted5 with a capacitance Cs � C. Next, we shall establish
the optimal working point of the qubit-detector system, where
the dissipative influence entering via the detector is minimal.

1. Qubit-detector interaction

The qubit and the SQUID are coupled by means of their
mutual inductance M .3,20 Thereby, the SQUID induces the
flux MI� in the qubit loop, where I� is the circulating current
in the SQUID. The latter can be determined by using current
conservation in the loop and the Josephson relations for the two
junctions in the SQUID. For the symmetric SQUID,3 it follows
that I�(t) = Ic0 sin(πϕex) cos[χ+(t)]. Thus, the total magnetic
flux in the qubit is affected by its coupling with the SQUID, and
it is composed of the external flux and the SQUID-generated
contribution, i.e., �qb → �qb + MI�(t). This implies that
the energy bias of the qubit acquires a contribution that
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depends on the circulating current in the SQUID, leading
to the effective asymmetry εf = ε(�qb) + β[I�(t)], where
β[I�(t)] = 2MIpI�(t).

Therefore, two sources of noise can affect the qubit
dynamics, i.e., the fluctuations from the external flux �qb and
from the bias current Ib(t) in the SQUID,21 which is related
to χ+ by the Josephson equation Ib(t) = Ic0 sin[χ+(t)]. By
tuning the bias current to the critical value I ∗

b characterized
by (dβ/dIb)Ib=I ∗

b
= 0, the influence from current fluctuations

in the SQUID can be minimized21 and the optimal working
point is reached. For a nonsymmetric SQUID, the lowest-order
contribution is linear in Ib,19,21 while in the symmetric case,
this lowest-order contribution vanishes, which implies that
around the optimal working point the phase χ+ is very small:
χ+ ∼ 0. In the following, we consider a setup close to the
optimal point, where we can expand the expression for I� up
to second order in χ+, yielding the interaction term

Hqb−sq = g̃χ2
+σ̂z, (3)

with the coupling constant g̃ = 2IpI0cM sin(πϕex).

2. SQUID modeled as a Duffing oscillator

As we operate the detector in its nonlinear regime, we
expand the potential term V (χ+) = −EJ cos(πϕex) cos(χ+) �
V0 + m
2χ2

+/2 − α̃χ4
+ in Eq. (2) around the optimal point

up to fourth order in χ+, where m = ϕ2
0Cs is the effective

mass, 
 = (Ic/ϕ0Cs)1/2 the corresponding frequency, and
α̃ = m
2/4 the strength of the nonlinearity. We switch to a
description in terms of the creation and annihilation operators a

and a†, defined by χ+ = χ0(a + a†) with χ0 = √
1/(2m
) the

zero-point energy of the phase χ+. Adding the time-dependent
driving term yields us to the Hamiltonian of the driven SQUID
described by the quantum Duffing oscillator model

Hsq = 
a†a − α

12
(a + a†)4 + f (a + a†) cos(ωext), (4)

with nonlinearity and driving strength given by α = 3Icϕ0χ
4
0 ,

and f = I0ϕ0χ0, respectively. Similarly, the interaction
Hamiltonian in terms of ladder operators reads as

Hqb−sq = g

2
(a + a†)2σz, (5)

with g = 2g̃χ2
0 .

Notice that g and α depend on the external flux ϕex, i.e.,
they are tunable in a limited regime with respect to the desired
oscillator frequency 
, where the coupling term is considered
as a perturbation to the SQUID (g < α), in order to keep
the dynamics of the oscillator to dominate. The dependence
of the dimensionless ratios α/
 and g/
 is shown in
Fig. 1. We restrict to parameters of the external magnetic
flux in the SQUID loop, which generate a weak nonlinearity
and a weak qubit-detector coupling strength {α,g} � 
, i.e.,
for ϕex ∼ 0. A typical dependence of both parameters for
typical experimental parameters is shown in Fig. 1. Both cases
of g/
 > α/
 and g/
 < α/
 can be achieved. For our
purpose of a qubit-detector setup, the qubit-resonator coupling
typically will be required as small enough in order to ensure
a minimal back action. On the other hand, the qubit-detector
coupling should be large enough so that an efficient detection
of the qubit state becomes possible. As is shown in Fig. 1

FIG. 1. (Color online) Dependence of the dimensionless ratios
α/
 and g/
 on the external flux ϕex in the SQUID. The parameters
of the SQUID are chosen as Cs = 7.65 pF, Ic0 = 200 nA, Ip =
300 nA, and M = 40 pH (Ref. 3).

and will be quantitatively discussed in the sequel of this paper,
this can indeed be achieved for realistic parameters. Moreover,
the choice of the parameter regime also justifies us to restrict
the influence of the resonator coupling on the effective qubit
bias to lowest order in χ+ only. Eventually, the total system
is described by the Hamiltonian H (t) = Hqb + Hqb−sq +
Hsq(t).

III. COHERENT DYNAMICS AND ROTATING-WAVE
APPROXIMATION

Before we address the dynamics of the detection scheme
based on the nonlinear response of the Duffing oscillator to the
applied periodic driving in the stationary regime, we discuss
the coherent dynamics generated by H (t), which is periodic
in time.

Here, we are interested in exploiting few-photon transitions
in the detector around the fundamental detector frequency

. Hence, higher harmonics have a small amplitude and can
effectively be neglected. Furthermore, we focus on the regime
of weak nonlinearity, weak driving, and weak qubit-detector
coupling as characterized by {α,f,g} � 
. The proposed
mechanism of detection is most conveniently discussed in
the simplest case, when the dynamics occurs close to the
fundamental oscillator resonance ωex ∼ 
 ∼ ωqb/2. Then,
the rotating-wave approximation (RWA) can be invoked in
order to obtain a simple interpretation in terms of few-photon
transitions. In passing, we note that we have also performed
a complete analysis in terms of full Floquet theory, thereby
avoiding the RWA. For all cases shown below, both approaches
yield coinciding results.

We switch to the rotating reference frame by the transforma-
tion R(t) = exp{i(a†a + τz)ωext}. Then, the RWA eliminates
the fast oscillating terms from the transformed Hamiltonian
H = R(t)H (t)R†(t) − iR(t)Ṙ†(t) and the time-independent
Schrödinger equation in the rotating frame H|ϕα〉 = εα|ϕα〉
follows, with the RWA Hamiltonian given by

H = Hqb + Hqb−sq + Hsq , (6)
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with

Hqb = 1

2
δωqbτz,

Hqb−sq = g cos θ a†a τz + g

2
sin θ (a† 2τ− + a2τ+) ,

Hsq = δ
 a†a − α

2
a†a a a† + f

2
(a + a†) .

The detuning frequencies follow as δ
 = 
 − ωex and δωqb =
ωqb − 2ωex, and τ± = (τx ± iτy)/2. The quasienergies εα

and the RWA eigenstates |ϕα〉 result from a straightforward
numerical diagonalization of H. In the static frame, an
orthogonal (at equal times) set {|ϕ̃α(t)〉} of approximated
solution of the Schrödinger equation follows as

|ϕ̃α(t)〉 � e−iεα t |φα(t)〉 = e−iεα t e−i(a†a+τz)ωext |ϕα〉. (7)

Here, the quasienergy states |φα(t)〉 ≡ e−i(a†a+τz)ωext |ϕα〉 are
time periodic with period 2π/ωex and form a complete
basis that will be used below for the description of the
dissipative dynamics. We note that an analytic expression
for the multiphoton resonances would follow from a Van-
Vleck perturbative approach in a similar manner as for the
pure quantum Duffing oscillator.13,14 However, the resulting
expression will be cumbersome and not further illuminating
for the present purpose. We note, furthermore, that the
qubit-detector interaction occurs via a parametric coupling
g cos θ a†aτz, and via a two-photon coupling g sin θ (a† 2τ− +
a2τ+)/2.

IV. DISSIPATIVE DYNAMICS

The electronic nanocircuit is embedded in a dissipative
environment. In particular, the SQUID is shunted with an
Ohmic resistor, which yields dissipative fluctuations ξ (t).22

We focus to the case of an underdamped SQUID, where the
shunt resistance is large,5,20 and use the standard harmonic
bath in order to model the fluctuations, which are rooted
in current fluctuations and can be encoded in the Ohmic
spectral density J (ω) = γω.22 They couple to the resonator’s
dipole operator, i.e., Hξ = χ+ξ (t). We note that, in the same
way, the direct coupling of the qubit to the electromagnetic
fluctuations could be included. However, we have checked23

that for a related setup of a flux qubit coupled to a harmonic
oscillator, such a direct dissipation of the qubit yields only
minor quantitative corrections, which should be included in
a quantitative description of an experiment,21 but do not add
qualitatively new physics.

The time evolution of the reduced density operator �(t) is
described in terms of a standard Markovian master equation
projected onto the basis of the quasienergy states {|φα(t)〉}:

�̇αβ(t) = −i(εα − εβ)�αβ +
∑
α′β ′

Lαβ,α′β ′�α′β ′(t), (8)

where �αβ(t) ≡ 〈φα(t)|ρ(t)|φβ(t)〉. The dissipative transition
rates are given by13,14

Lαβ,α′β ′ =
∑

n

(Nαα′,−n + Nββ ′,−n)χαα′,nχββ ′,−n

− δαα′
∑
α′′,n

Nα′′β ′,−nχβ ′α′′,−nχα′′β,n

− δββ ′
∑
β ′′,n

Nβ ′′α′,−nχαβ ′′,−nχβ ′′α′,n, (9)

with n ∈ Z and χαβ,n being the Fourier components according
to 〈φα(t)|χ+|φβ(t)〉 = ∑

n exp{−iωexnt}χαβ,n. Furthermore,
we have used the Planck numbers Nαβ,n = N (εα − εβ +
nωex), where N (ε) = γ ε[coth(ε/2T ) − 1 + �(−ε)] with
kB = 1, temperature T , and �(x) being the Heaviside function.
Since, within the rotating-wave approximation, |φα(t)〉 ≈
e−i(a†a+τz)ωext |ϕα〉, the only nonzero Fourier components are
χαβ,1 = χ0〈ϕα|a|ϕβ〉/√2 , and χαβ,−1 = χ0〈ϕα|a†|ϕβ〉/√2,
and the master equation (8) considerably simplifies as it
involves only single step transitions, i.e., one-photon emission
(for n = −1) into and absorption (for n = +1) processes
from the bath. We note that neglecting also the quasienergy
dependence of the Planck numbers would yield the well-
known Lindblad master equation.

In order to measure the dynamic response of the resonator
to the external drive at asymptotically long times, a heterodyne
detection scheme such as in Ref. 24 can be used,3 where
the coupled qubit-oscillator system approaches the steady
state �∞ = �(t → ∞). We determine the stationary solution
characterized by �̇(∞) = 0 numerically. For this, we solve
the corresponding eigenvalue problem and �∞ follows as
eigenvector to the eigenvalue zero. With this, we compute
the nonlinear response of the detector, characterized by the
mean value 〈χ+〉∞(t) at asymptotic times. As we restrict
the discussion to the regime close to the first harmonic
(small detuning), higher harmonics can be neglected and we
immediately obtain

〈χ+〉∞(t) = tr(�∞χ+)

=
∑
α,β

ρ∞
αβ〈φβ(t)|χ+|φα(t)〉

=
∑
αβ

�∞
αβ(χβα,+1e

iωext + χβα,−1e
−iωext ) .

(10)

As the system is driven with frequency ωex, 〈χ+〉∞(t) also
oscillates with time. Its amplitude is given by

A =
∑
αβ

�αβ(χβα,+1 + χβα,−1) . (11)

Correspondingly, we evaluate the population difference
〈σz〉∞(t) of the qubit states and obtain

〈σz〉∞(t) = tr(�∞σz)

=
∑
α,β

ρ∞
αβ〈φβ(t)|σz|φα(t)〉
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= sin θ
∑
αβ

�∞
αβ(τ+

βαe2iωext + τ−
βαe−2iωext )

+ cos θ
∑
αβ

�∞
αβτ z

βα, (12)

where τ z
αβ = 〈ϕα|τz|ϕβ〉 and τ±

αβ = 〈ϕα|τ±|ϕβ〉. The popula-
tion difference oscillates, with a maximal value given by

P∞ = cos θ
∑
αβ

�αβ τ z
βα + sin θ

∑
αβ

�αβτ x
βα . (13)

V. DETECTOR’S DYNAMICS

A. No coupling between detector and qubit

Before turning to the quantum detection scheme, we discuss
the dynamical properties of the isolated detector, which is the
quantum Duffing oscillator. A key property is its nonlinearity,
which generates multiphoton transitions at frequencies ωex

close to the fundamental frequency 
. In order to see this,
one can consider first the undriven nonlinear oscillator with
f = 0 and identify degenerate states, such as |n〉 and |N − n〉
(for N > n), when δ
 = α(N + 1)/2.13,14,26 For finite driving
f > 0, the degeneracy is lifted and avoided quasienergy level
crossings form, which is a signature of discrete multiphoton
transitions in the detector. As a consequence, the amplitude
A of the nonlinear response signal exhibits peaks and dips,
which depend on whether a large or a small oscillation state is
predominantly populated.13,14 The formation of peaks and dips
goes along with jumps in the phase of the oscillation, leading
to oscillations in or out of phase with the driving. A typical
example of the nonlinear response of the quantum Duffing
oscillator in the deep quantum regime containing few-photon
(anti)resonances is shown in Fig. 2(a) (decoupled from the
qubit), together with the corresponding quasienergy spectrum
[Fig. 2(b)]. We show the multiphoton resonances up to a photon
number N = 5. The resonances get sharper for increasing
photon number since their widths are determined by the Rabi
frequency, which is given by the minimal splitting at the
corresponding avoided quasienergy level crossing. Performing
a perturbative treatment with respect to the driving strength
f , one can get the minimal energy splitting at the avoided
quasienergy level crossing (0,N ) as13,25


N,0 = f

(
2f

3α

)N−1 √
(N )!

(N − 1)!2
. (14)

Because the nonlinearity α is typically fixed by the design of
the SQUID, the Rabi frequency can be easily tuned by tuning
the driving strength f .

B. Detector response for weak coupling to the qubit

Next, we consider a finite coupling of the detector to the
qubit, the state of which is to be sensed, i.e., g �= 0. The
coupling inevitably induces relaxation and decoherence in
the qubit, characterized by the relaxation and dephasing rates
� and �d , respectively. Typically, the detector couples only
weakly to the system, i.e., g � ωqb. Then, the associated
relaxation and dephasing times (T1 and T2, respectively) are
still much larger than the corresponding relaxation time scale

FIG. 2. (Color online) (a) Amplitude A of the nonlinear response
of the decoupled quantum Duffing detector (g = 0) as a function of
the external driving frequency ωex. (b) The corresponding quasienergy
spectrum εα . The labels N denote the corresponding N -photon
(anti)resonance. The parameters are α = 0.01
, f = 0.006
, T =
0.006
, and γ = 1.6 × 10−4
.

for the detector given by 1/γ . In passing, we note that the
corresponding relaxation time around a resonant multiphoton
transition (in the underdamped case) has been shown in
(Refs. 12 and 14) to be comparable to γ . Moreover, we bias
the qubit with a large asymmetry ε � � in order to “gauge”
the detector response.

For a rough evaluation of the order of magnitude of
the involved time scales, we may neglect the nonlinearity
of the detector (α = 0) for the moment and estimate the
effective relaxation rate for the qubit coupled to an Ohmically
damped harmonic oscillator.27 This model can be mapped
to a qubit coupled to a structured harmonic environment
with an effective (dimensionless) coupling constant κeff =
8γg2/
2. For the realistic parameters used in Fig. 2 and
g = 0.0012
, we find that κeff � 10−10, giving rise to an
estimated relaxation rate22,27 �harm � (π/2) sin2(θ ) κeff ε �
10−13
 (evaluated at low temperature). Hence, this illustrates
that we can easily achieve the situation where �harm � γ

required for this detection scheme. Then, for a waiting time
(after which we start the measurement) much longer than the
relaxation time γ −1 of the nonlinear oscillator, but still smaller
than �−1, the oscillator is able to reliably detect the qubit
state. In fact, under these conditions, the state of the qubit,
apart from the inevitable dephasing, remains unaffected in
a time window before it reaches its global stationary state,
and an effective shift of the oscillator’s eigenfrequency arises
due to the parametric coupling term ∼g cos θ a†a τz in Eq.
(6). By treating the qubit-detector interaction term in Eq. (5)
perturbatively to lowest order in g, the eigenfrequency shift
follows straightforwardly as


 → 
 + g 〈σz〉 .

Thus, the nonlinear response is shifted by −g (+g) if the qubit
is prepared in the state σz = −1 (σz = 1). This is illustrated
in Fig. 3, in which we show the nonlinear response of the
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FIG. 3. (Color online) Nonlinear response A of the detector as
a function of the external driving frequency ωex in the presence
of a finite coupling g = 0.0012 
 to the qubit (black solid line).
The blue dashed line indicates the response of the isolated detector.
The parameters are the same as in Fig. 2 and ε = 2.2
 and
� = 0.05
, in correspondence to realistic experimental parameters
(Ref. 3).

resonator for the uncoupled (blue dashed line) and the coupled
(black solid line) case. For a fixed value of g, the shift between
the two cases of the opposite qubit states is given by the
frequency gap δωex � 2 g. Figure 4(a) shows the nonlinear
response of the detector for the two cases when the qubit is
prepared in one of its eigenstates: |↑〉 (orange solid line) and
|↓〉 (black dashed line).

An important feature of a detection scheme is that it is
efficient in discriminating the states to be detected. This can be

FIG. 4. (Color online) (a) Nonlinear response A of the detector
coupled to the qubit prepared in its ground state |↓〉 (orange solid line)
and in its excited state |↑〉 (black dashed line) for the same parameters
as in Fig. 3. The quadratic qubit-detector coupling induces a global
frequency shift of the response by δωex = 2g. (b) Discrimination
power D(ωex) of the detector coupled to the qubit for the same
parameters as in (a).

quantified by the discrimination power of the detector, which
can be defined for our case as

D(ωex) = |A|↑〉(ωex) − A|↓〉(ωex)| . (15)

The result for D(ωex) is shown in Fig. 4(b). The discrimination
power shows a rich structure of local maxima and minima,
which indicates that it can be tuned directly by tuning the
driving frequency. It is moreover important to realize that
the discrimination power can be optimized by tuning g. In the
optimized case, a local maximum of the multiphoton resonance
for one qubit state can be made to coincide with a local
minimum of the response for the opposite qubit state yielding
to a maximal discrimination power. An example where the
discrimination power has been optimized with respect to the
three-photon resonance is shown in Fig. 4(b).

VI. BACK ACTION IN THE QUBIT

Another important prerequisite for a useful detection
scheme is that the coupling of the qubit to the detector around
a multiphoton resonance does not generate a destructive back
action on the qubit dynamics. In this section, we show that the
back action in this design is surprisingly small for a realistic
choice of parameters.

The back action of the detector on the qubit arises in
the form of two contributions from the coupling. First,
this coupling has a parametric component H1 = g cos θ n τz,
which commutes with the Hamiltonian. Thus, in the presence
of a coupling of the oscillator to the bath, this term only
produces dephasing and no relaxation, as it is, for instance,
required for a quantum nondemolition measurement. This part
guarantees an efficient detection of the qubit state. The second
component H2 = g sin θ (a† 2τ− + a2τ+)/2 in the coupling
term yields transitions in the qubit when two-photon processes
are induced in the detector by the external driving and/or by
dissipative transition. Since, at low temperature, dissipation is
dominated by photon leaking and the driving is very weak,
the decay rate of the qubit from its excited state to its ground
state accompanied by the emission of two oscillators photons,
largely exceeds the excitation rate from the ground state
to the excited state accompanied by the absorption of two
photons originally coming from the bath or the driving. On
the other hand, when the effective oscillator frequency is close
to a multiphoton resonance, photon absorption in the coupled
system is enhanced and thus the asymptotic qubit population
might be reduced.

Thus, for a large asymmetry |ε| � �, peaks and dips
in the qubit population difference P∞ are expected when
multiphoton transitions in the detector are induced. This is
what is shown in Fig. 5(a), where P∞ is shown for several
values of f . For an easier orientation, we show in addition the
corresponding stationary nonlinear response of the detector
in Fig. 5(b). For increasing driving, the deviation from the
expected value P∞ = −1 becomes more pronounced for larger
photon numbers N and larger driving f . The reason is
that, for increasing driving, a larger Rabi frequency for the
corresponding transition results [see Eq. (14)]. From Fig. 5,
it follows that when the qubit is prepared in its ground state
|↑〉 (we consider ε � �) the back action is very small. The
impact is less than 2% for the considered realistic parameters,
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FIG. 5. (Color online) (a) Asymptotic population difference P∞
of the qubit states, and (b) the corresponding detector response A as
a function of the external frequency ωex for the same parameters as
in Fig. 3.

yielding to a readout contrast of more than 98%. This has to be
compared with presently achievable readout contrasts of less
than 90%,7 which result from an architecture with a classical
Josephson bifurcation amplifier. In passing, we note that the
detector response can also be calculated from the stationary
solution of the master equation (8), but for the parameters
considered here (in particular, because of the large qubit bias),
this coincides with the shifted one.

Moreover, we note that the components H1 and H2 can
be tuned by ε and �. Therefore, g sin θ can in principle be
eliminated by setting � = 0, which would imply that the
measurement scheme keeps the state of the qubit without any
relaxation but only pure dephasing (ideal quantum nondemoli-
tion measurement). However, turning off the splitting implies
a major change in the experimental design of the sample since
this parameter is determined by the Josephson energy in the
junctions of the superconducting flux qubit and, thus, may not
be easy to be realized.

The back action of the detector on the qubit should be small
not only when the qubit is in its ground state, but also when it
is in its excited state. We therefore address next the relaxation
rate of the qubit. Energy relaxation in the qubit induced by the
measurement process will be proportional to the fluctuations of
the square of the phase operator χ+ induced by the detector’s
environment.1,2 This relaxation process is characterized by the
transition rate1,2

� � g̃2 sin2 θ Sχ2+[−ωqb], (16)

which has been computed perturbatively to lowest order in g̃.
Here,

Sχ2+ [ω] = ωex

4π

∫ 2π/ωex

0
dt

∫ +∞

−∞
dτ eiωτ 〈{χ2

+(τ + t),χ2
+(t)}〉

(17)

is the symmetrized power spectrum of χ2
+ averaged over

the period of the external driving (see the Appendix for
details), with { , } indicating the anticommutator. The fact
that information on the qubit state is acquired in the detector
via the same channel by which dissipation is introduced is
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FIG. 6. (Color online) (a) Relaxation rate � of the nonlinear
quantum detector, (b) the measurement time Tmeas, and (c) the
measurement efficiency �meas/� as a function of the external
frequency ωex. The parameters are the same as in Fig. 3.

nicely reflected in the expression of the relaxation rate in
Eq. (16). In Fig. 6(a), the relaxation rate � is shown for a
large negative asymmetry in the qubit. The relaxation rate is
strongly peaked around the multiphoton transitions. There, the
noise from the detector absorbs more energy from the qubit
around the multiphoton transition (0,N ) since the parametric
component H1 of the coupling becomes negligible, leading to
a dominant relaxation process induced by H2.

We emphasize that, although the relaxation is maximally
enhanced at a multiphoton resonance, the absolute value of �

is still very small in comparison to the damping constant, e.g.,
�/γ ∼ 10−6. Thus, we can infer the qubit state with sufficient
precision by operating the detector in its steady-state regime
as it has been assumed in Sec. V B.

VII. EFFICIENCY OF THE MEASUREMENT

The measurement of the qubit state requires a coupling to
the outer world, which clearly introduces noise to the qubit.
In turn, the noisy detector yields measurement results, which
are statistically distributed. This implies that several measure-
ments have to be performed to obtain reliable statistics. Hence,
the relaxation time of the qubit state should not only exceed
the typical relaxation time of the detector but also the time it
takes to acquire sufficient information to infer the qubit state
(the measurement time Tmeas). Hence, for a good measurement
fidelity, Tmeas should be smaller than the characteristic time
�−1 given by Eq. (16), or, �meas/� � 1.

The measurement time can be formalized1,2,20 as the ratio of
the symmetrized power spectrum Sχ+ of the phase operator χ+
(evaluated at zero frequency) and the square of the difference
between the two expectation values of χ+ when the qubit is in
the two opposite states, i.e., with Eq. (15),

Tmeas = Sχ+

[D(ωex)]2
. (18)

The result for Tmeas as a function of ωex is shown in Fig. 6(b)
for the parameter set used above, for which the discrimina-
tion power D(ωex) around the three-photon resonance has
been maximized. In correspondence with this is the relative
minimum of Tmeas around the three-photon resonance [see
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Fig. 6(b)]. Interestingly enough, the time scale of the mea-
surement time around this resonance is Tmeas ≈ 10−2 × 2π/
.
Considering realistic numbers of a typical experimental setup,3

where 
 is in the regime of a few gigahertz, we obtain a time
scale of Tmeas ≈ 100 ps for the nonlinear quantum detection
scheme. This should be contrasted to the measurement time of
Tmeas ≈ 300 ns obtained in Ref. 3. In-between the multiphoton
resonances, the dependence of Tmeas on ωex shows a rich
structure including several singularities, which are simply due
to the several crossings of the two nonlinear response curves
shown in Fig. 4(a), where D(ωex) becomes zero, implying
insufficient discrimination of the two qubit states.

With this, we can evaluate the measurement efficiency,
defined by the ratio �meas/�, with �meas = T −1

meas. This quantity
sets the probability to infer the qubit state, based on the
nonlinear response of the detector. We show the result for
the efficiency of the measurement in Fig. 6(c). Related to
the multiphoton resonances in the detector, the efficiency also
shows local maxima. For the discrimination power being op-
timized around the three-photon resonance, the measurement
efficiency displays a clear local maximum [see Fig. 6(c)]. Due
to the small size of the relaxation rate � of the detector, the
overall measurement efficiency is rather large in comparison
to the detection setup with a linear resonator,3 ensuring
�meas/� � 1.

VIII. CONCLUSIONS

To conclude, we have introduced a scheme for quantum-
state detection on the basis of a nonlinear detector, which
is operated in the regime of resonant few-photon transitions.
Discrete multiphoton resonances in the detector can be used to
infer the state of the parametrically coupled qubit via a state-
dependent frequency shift of the detector’s nonlinear response
function. The multiphoton resonances are well separated in
the spectrum and sharp enough to allow for a good resolution
of the qubit state.

By analyzing key quantities of the detector, we have
shown that the nonlinear few-photon detector can be operated
efficiently, reliably, and with sufficiently weak back action. In
fact, it can be efficiently tuned by tuning the amplitude of the
ac bias current of the SQUID. Furthermore, we have shown
that the sharpness of the multiphoton resonances can be used
to obtain an increased discrimination power as compared to the
linear parametric detection scheme. Clearly, the relaxation rate
at a multiphoton resonance for the qubit becomes maximal,
but in general remains very small. The measurement time
around a multiphoton resonance can be tuned such that it
becomes minimal. For realistic experimental parameters, we
find surprisingly small measurement times, allowing for, in
principle, fast measurements. Moreover, the efficiency of
the measurement, which takes the time to acquire enough
information to infer the qubit state into account, also assumes
large values, thus allowing for a reliable and highly efficient
measurement of the qubit state.

We have chosen realistic values for the involved model
parameters such that an experimental realization of this
quantum measurement scheme should become possible in
the near future. The nonlinear detection scheme in the deep
few-photon quantum regime offers thus the advantage of

an increased discrimination power of more than 98% (for
our choice of realistic parameters) as compared to previous
classical detection schemes based on the Josephson bifurcation
amplifier.

A possible setup in order to realize the nonlinear few-
photon detector could be the architecture used in a recent
experiment.15 The low-temperature regime, where quantum
noise effects are important, has already been reached. In order
to operate in the regime of only few photons in the resonator,
the sensitivity and stability of the devices might have still
to be further increased. However, no principal obstacles are
apparent.
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APPENDIX: POWER SPECTRUM

To calculate the power spectrum of a driven out-of-
equilibrium system is a nontrivial task since the time-reversal
symmetry, which simplifies the calculation in equilibrium
systems, is not given anymore. An elegant way to compute
this in terms of correlation functions is presented in Ref. 28.
The correlation function between two operators A and B is
described as a mean value

SAB(t,τ ) = TrS⊕B{W(t + τ )A(0)}. (A1)

Here, the trace is over the whole system-plus-bath, with
the “density” operatorW(t + τ ) = U (t + τ,t)[BW (t)]U †(t +
τ,t) and U (t + τ,t) = exp{−iT

∫ t+τ

t
Htotal(t ′)dt ′}, with Htotal

being the Hamiltonian of the whole system-plus-bath, W

the density operator of the total system, and T the time
ordering operator. Furthermore, A and B are in the Heisenberg
representation.

In the regime of weak coupling to the environment, the
reduced density operator �̃(t + τ ) ≡ TrB{W(t + τ )} evolves
according to the master equation (8).

In the superoperator notation, Dαβ,α′β ′ = −i(εα −
εβ)δαα′δββ ′ + Lαβ,α′β ′ (Liouville superoperator) is represented
by a N 2 × N 2 supermatrix D, where N is the number of
effective states in the system. In the same way, the density
operator �αβ formally is aN 2-dimensional column vector �(t).
The solution of the master equation is reduced to an eigenvalue
problem of the matrix D as

D · vm = �mvm, v†
m · D = �mv†

m, (A2)

where vm and vm are the left and right eigenvectors, respec-
tively, with eigenvalue �m.

In the superoperator notation, the master equation (8) is
expressed as �̇(t) = D · �(t), and its solution is given by

�(t) = exp{D t} · �(t = t0). (A3)

In the regime of the RWA and at low temperature, the master
equation (8) conserves the trace and the positivity of the density
operator, i.e., it assumes Lindblad form. Therefore, we can
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expand the solution of the master equation in terms of the
right eigenvector vm:

�(t) =
∑
m

vm cm exp{�m t}, (A4)

with cm = v†m · �(t0). Here, we have used the orthogonality
property v†m · vm′ = δmm′ . The corresponding expression fol-
lows for the operator �̃(t + τ ), but with a different initial
condition. It is easily understandable in the operator notation

�̃αβ(t + τ ) =
∑

m,α′β ′ξ ′
vm

αβ v
†
m,β ′α′ Bα′ξ ′(t) �ξ ′β ′(t) e�mτ , (A5)

where Bαβ(t) = 〈φα(t)|B|φβ(t)〉, and vm
αβ (vm,αβ) is the op-

erator representation of vm (vm) in the quasienergy states.

Considering an initial time in the stationary regime, i.e.,
�αβ(t) → �∞

αβ , and after averaging the initial time t over the
period 2π/ωex, the correlation function reads as

SAB(t) =
∑
m,n

Snm e�mt−inωext , (A6)

with

Snm =
∑
αβ

∑
α′β ′ξ ′

vm
αβ Aβα,n v

†
m,β ′α′ Bα′ξ ′,−n ρ∞

ξ ′β ′ , (A7)

where Aαβ,n and Bαβ,n are the coefficients of the Fourier
expansion of Aαβ(t) and Bαβ(t), respectively. The power
spectrum is obtained directly from the Fourier transform of
Eq. (A6).

1A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J.
Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010).
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