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1 Introduction

La filosofia è scritta in questo grandissimo libro che continuamente
ci sta aperto innanzi a gli occhi (io dico l’universo), ma non si può
intendere se prima non s’impara a intender la lingua, e conoscer i
caratteri, ne’ quali è scritto. Egli è scritto in lingua matematica, e
i caratteri son triangoli, cerchi, ed altre figure geometriche, senza i
quali mezzi è impossibile a intenderne umanamente parola; senza
questi è un aggirarsi vanamente per un oscuro laberinto [1].

(Galileo Galilei)

With these words Galileo Galilei expresses the very essence of the -at his time
exploding- scientific revolution. To the benefit of those who are not familiar with
the italian language, we can summarize the above citation as follows: The universe
is like a book that stands open in front of us. In order to be able to read it, one
should first learn the language it is written in. This language is mathematics.

Galileo adds that the words are triangles, circles and other geometric shapes. It
was the year 1623. In the focus of Galileo’s studies was the dynamics of the celestial
bodies in the solar system. The language of theoretical physics has been developing
ever since, while the book has been deciphered in greater detail.

This thesis can be regarded as a ’footnote’ in a large ’chapter’ of the ’book’: the
physics of condensed matter systems, i.e. those systems composed by an extremely
large number of constituents whose interactions are relevant but do not suppress
their quantum nature. There is a large variety of systems that falls in this category
including conduction electrons in metals, unpaired spins and mechanical degrees of
freedom of atoms in crystals and ultracold gases of alkali atoms.

In particular, the latter class of systems has been one of the most important
playgrounds for fundamental research in the last ten years and is the framework of
Chapters 3 and 4. Another class of systems attracting an increasing attention of
the scientific community are nanoscale electromechanical systems (NEMS) whose
properties are determined by the interplay of mechanical and electronic degrees of
freedom. In Chapter 2, we present a general model that could be implemented by a
system belonging to the latter class, i. e., a nanoresonator. On such a system is also
based the nanowaveguide for alkali atoms proposed in Chapter 3 that, if realized,
could represent a fascinating link between the two fields of NEMS and ultracold
atoms.

The ‘language’ of condensed matter physics is not unique. A wealth of different
techniques has been developed to deal with previously unread part of the big ‘book’.
Nevertheless a new theoretical formalism is never univocally associated to a certain
physical system but always prove to be a valuable tool in investigating systems very
different in nature. In fact, few fundamental features determine which ‘language’
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should be adopted to describe a certain system. Most important are (i) the system
dimensionality, (ii) the statistics of its constituent particles, (iii) the strength of the
particle-particle interactions and (iv) the degree of disorder of the system:
(i) Not all condensed matter systems are embedded in the ordinary three-
dimensional space. Reduced dimensionality arises in a lattice with strongly
anisotropic interactions or when the degrees of freedom in a given spatial dimension
are frozen due to a gap larger than the chemical potential in the corresponding ex-
citation spectrum. In some systems, e.g. quantum dots, SQUIDs, flux and charge
qubits, only a discrete number of degrees of freedom determine the observables of
interest. One refers to such systems as zero-dimensional systems.
(ii) The particles can be either bosons or fermions. The statistics determines the
symmetry properties of the total wave function which specifies the system configu-
ration. It can be regarded as an effective force, which is attractive for bosons and
repulsive for fermions.
(iii) Noninteracting many-body Hamiltonians are quadratic and can therefore be
solved exactly. Weak interactions can be taken into account by means of ordinary
perturbation theory. For stronger interactions, a mean field approach is appropriate.
In the framework of the path integral formulation of quantum mechanics, one can
straightforwardly look for mean-field solutions and perform a loop expansion to eval-
uate the corresponding corrections. In 1D and 2D systems in the thermodynamic
limit, the mean-field approach breaks down (Mermin-Wagner theorem). In this limit
one has to rely on other techniques like renormalization group analysis, numerically
exact Monte Carlo integration and other numerical techniques. In addition, many
exact analytical solutions are available. The physical picture that arises from these
solutions is fascinating: due to the interplay of statistics and interactions, the dis-
tinction between bosonic and fermionic excitations is more subtle. For instance, in
a 1D boson system, strong repulsive interactions mimic the Pauli principle, and give
rise to a Tonks gas which is very similar to a degenerate gas of free fermions. The
emerging excitations in 1D or 2D might have fractional statistics as well.
(iv) When disordered systems are considered, the governing Hamiltonian is usu-
ally not known. However many observables of interest, e. g., the conductance in
a quantum wire, are self-averaging and a statistical approach is appropriate. The
self-averaging quantities depend only on the strength of the disorder and on the
symmetry of the system. For this reason, symmetric spaces have proved to be a
valuable tool of investigation for such systems.

The systems of interest in this thesis are of reduced dimensionality, weakly in-
teracting and with negligible disorder. Other common features to the problems
addressed in this thesis are dissipation, nonlinearity and driving.

In chapter 2, we consider a zero-dimensional condensed matter system with a
single relevant macrovariable, e. g., the phase difference in a Josephson junction or
the amplitude of the fundamental mode in a nanoresonator. A natural approach
to this kind of systems is to regard the remaining degrees of freedom as a bath
causing dissipation and decoherence. A first order expansion in the coupling with
the macrovariable yields a Markovian master equation for the reduced density matrix
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obtained by tracing out the microscopic variables. A quantum field in a coherent
state, e. g., a laser field, coupled to the system can be treated classically yielding
a time-periodic system-Hamiltonian. Such Hamiltonians can be solved exactly by
means of Floquet theory -the analogue for time-periodic systems of Bloch theory.

In Chapters 3 and 4, we focus on a particular condensed matter system: a gas
of alkali atoms. Interestingly enough, a single alkali atom fits rather well in the
above picture. In fact, it is a many-body system made out of protons, neutrons and
electrons, whose relevant variable is the atom center-of-mass (COM), whereas the
remaining microscopic ones are the electron degrees of freedom. In this case, an
effective Hamiltonian for the COM coordinates can be derived by means of a simple
adiabatic approximation. In presence of a tight transverse confinement, this single
particle picture is the starting point for deriving an effective 1D many-body theory
which describes a large ensemble of atoms. The building blocks of this theory are
few-body problems, as the two-body one considered in Chapter 4.

1.1 Problems addressed in this thesis

In the following pages, we introduce the reader to the three problems in the focus
of this thesis. These three topics are analyzed in detail in Chapters 2, 3 and 4,
respectively.

The quantum Duffing oscillator

Classical nonlinear systems subjected to strong periodic external driving often have
several stable stationary states for which the amplitudes and phases of the forced
vibrations differ in size [2–4]. One of the simplest theoretical models which show
the coexistence of two stable states induced by external driving is the well-known
classical Duffing oscillator. An anharmonic statically monostable potential can be
driven into a dynamically bistable regime showing various interesting features of
non-linear response [2–4], such as hysteresis, period doubling, and thermal activation
when finite temperatures are considered. The external driving field with frequency
ωex induces an effective dynamic bistability which is manifest by the non-monotonous
dependence of the amplitude A of the stationary vibrations for varying ωex. For the
classical system where all potential energies are allowed, this response curve A(ωex)
is smooth showing only two points of bifurcation for the related bistability. If the
control parameter ωex is additionally varied adiabatically, hysteretic jumps between
the two stable states occur. If additional thermal noise is added to the system, the
regime of bistability shrinks due to thermal escape of the metastable state.

In the focus of Chapter 2 of this work is the dynamics of the quantum analogue
of the classical Duffing oscillator. The investigation of this problem is motivated by
two main reasons. On one hand there is its generality: Its characterizing features
nonlinearity, driving and dissipation are ubiquitous in physics. As a consequence,
there is a variety of physical systems, which are accurately described by such a
model. Some examples are: (i) a driven nanoresonator, (ii) a superconducting ring
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interrupted by a Josephson junction driven by an external radiofrequency radiation
(in the literature referred to as SQUID, because it is the active part in the class of
devices known as superconducting quantum interference devices), (iii) a polyatomic
molecule driven by a laser pulse and (iv) a coherently driven dispersive cavity. On
the other hand, the model is of an intrinsic theoretical interest. The interplay
between nonlinearity, driving and dissipation might be very complex and produce
a rich variety of phenomena, such as coherent and dissipative tunnelling, quantum
chaos, etc.

The problem of a driven quantum oscillator with a quartic nonlinearity has been
investigated theoretically in earlier works in various context. In the context of the
radiative excitation of polyatomic molecules [5], Larsen and Bloembergen have calcu-
lated the wave functions for the coherent multiphoton Rabi precession between two
discrete levels for a collisionless model. More recently, also Dykman and Fistul [6]
have considered the bare nonlinear Hamiltonian under the rotating wave approxi-
mation. Drummond and Walls [7] have investigated a similar system occurring for
the case of a coherently driven dispersive cavity including a cubic nonlinearity. Pho-
ton bunching and antibunching have been predicted upon solving the corresponding
Fokker-Planck equation. Vogel and Risken [8] have calculated the tunneling rates
for the Drummond-Walls model by use of continued fraction methods. Dmitriev,
D’yakonov and Ioffe [9] have calculated the tunneling and thermal transition rates
for the case when the associated times are large. Dykman and Smelyanskii [10] have
calculated the probability of transitions between the stable states in a quasi-classical
approximation in the thermally activated regime. Recently, the role of the detector
(in this case, a photon detector) has been studied for the quantum Duffing oscil-
lator in the chaotic regime [11]. The power spectra of the detected photons carry
information on the underlying dynamics of the nonlinear oscillator and can be used
to distinguish its different modes.

Most of these works focus on the connection between the classical and the quan-
tum dissipative dynamics [7–11]. The others discuss the coherent dynamics without
considering the interaction with the environment [5, 6].

Conversely, our approach is to start from an exact solution for the isolated system
and include the influence of the environment by means of a Born-Markovian master
equation. The main advantage of this strategy is that it allows to explore the
connections between the coherent and the dissipative dynamics, which remained
unaddressed so far.

In particular, we lay the focus on the lineshape of the nonlinear response. The
central result is to discover a resonant or an antiresonant behavior of the dissipative
system corresponding to multiple multiphoton transitions for the coherent system.
The resonances and antiresonances are the result of a complex interplay between
dissipation and tunnelling. They are studied, for a broad range of bath and system
parameter, by means of perturbative analytical calculations and exact (within the
Markovian approximation) numerical computations. In particular, the crossover
between the resonant and antiresonant behavior is studied in detail and interpreted
in terms of an analogy between a dynamically bistable quasipotential for the driven
system and a double-well potential describing a static system.
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The quasipotential is at the origin of the classical bistability. In the correspond-
ing quantum system, it determines a separation of time scales: meaning that there
is a relaxation process which is much slower then all the other dissipative processes.
In the semiclassical limit, the slow dynamics is interpreted as a tunnelling transition
between the two classically stable states. In the deep quantum limit considered
here, a separation of time scales is already evident, but is suppressed by resonant
tunnelling at the multi-photon transitions.

Our results have previously been published in Refs. [12–14].

Nanoscale atomic waveguides with suspended carbon nanotubes

The ongoing progress in the fabrication and manipulation of micro- or nanoscale
structures has recently allowed for systematic studies of ultracold atom gases, where
current-carrying wires and additional magnetic bias fields generate magnetic fields
trapping neutral atoms (‘atom chips’) [15,16]. For instance, the Bose-Einstein con-
densation (BEC) of microchip-confined atoms has been successfully demonstrated
by several groups [17]. So far, decoherence and atom loss constitute central impe-
diments, since atoms are relatively close to ‘hot’ macroscopic surfaces or current-
carrying wires (with typical diameters of several µm), where the Casimir-Polder
potential and Johnson noise can seriously affect stability [18–20]. To reduce these
effects, further miniaturization to the nanoscale regime would be desirable. In partic-
ular, this is promising in the context of integrated atomic matter-wave interferometry
and optics [21], and combines the strengths of nanotechnology and atomic physics.
While at first sight this goal conflicts with the requirement of large currents forming
tight trapping potentials, we propose that when using suspended carbon nanotubes
(NTs) [22] (with diameters of a few nm) as wires, nanoscale atom chip devices with
large current densities can be designed. In turn, these devices allow to trap ultra-
cold atom gases basically free of trap-induced decoherence or atom losses, with the
gas containing few tens of atoms. Since disorder is generally weak in NTs, the (ex-
tremely large) current density distribution is spatially homogeneous, which allows
to overcome the problem of fragmentation of the atom cloud which plagues common
atom chip designs. Moreover, they can be built with state-of-the-art technology.

With relevant length scales below optical and cold-atom de Broglie wavelengths,
this also paves the way for the observation of interesting and largely unexplored
many-body physics in one dimension (1D) [23]. Examples include the interfer-
ence properties of interacting matter waves [24], the 1D analogue of the BEC-
BCS crossover [25–27] and confinement induced resonances in 1D trapping poten-
tials [28–31]. Previous realizations of 1D cold atoms were reported using optical
lattices [32–34] and magnetic traps [35], but they involve arrays of 1D or elongated
3D systems, where it is difficult to separately manipulate a single 1D atom cloud
(the distances between the 1D systems composing the array are few hundred nm).
A noteworthy advantage of our proposal against dipole optical trap is that arrays of
many NT waveguides can be built, where it is possible to manipulate an individual
trap by changing the current through an individual NT. A further advantage of our
proposal against the common macroscopic atom chips is that it minimizes unwanted
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substrate effects and implies a drastically reduced transverse size (a few nm) of the
cloud.

Our results have previously been published in Ref. [36].

Confinement-induced resonances in arbitrary quasi-one-dimensional
traps

A strongly interacting ultracold atom gas displays interesting features of a correlated
quantum many-body system when its dynamics is confined to one dimension [23].
The presence of a transverse confining potential has been shown to induce char-
acteristic resonances in the coupling constant of the two-particle s-wave scatter-
ing process [28–31], which have become known as confinement-induced resonances
(CIR). The existence of the CIR has been revealed under the simplifying assump-
tion of a transverse parabolic confinement potential with length scale a⊥ and for
the case that the two scattering atoms belong to the same species [28–31]. In this
case, the center-of-mass (COM) and relative coordinates of the two particles can be
separated, allowing to factorize the problem into single-particle problems. At low
temperatures, only the COM ground-state is occupied, the decoupled COM motion
can be disregarded, and the two-body problem can be solved exactly within the
pseudopotential approximation. The result is that there is exactly one bound state
for any 3D scattering length a. In the limit of small binding energy, the particles
are tightly bound in the lowest-energy transverse state and form a very elongated
dimer. The appearance of such a bound state is purely due to the confinement, since
for a < 0 no dimer is formed in free space. In the opposite limit of large binding en-
ergies, the dimer becomes spherically symmetric. In this regime, the confinement is
not effective, and the free-space result is recovered. Moreover, a unitary equivalence
exists between the Hamiltonian and its projection onto those channels which are
perpendicular to the one with lowest energy. As a consequence, to each bound state
corresponds a bound state of the closed channels, which then causes the CIR [29].
It occurs at a universal value of the ratio a⊥/a = C = −ζ(1/2, 1) ≃ 1.4603, where ζ
is the Hurvitz zeta function. The influence of the CIR has also been studied for the
three-body [37] and the four-body problem [27] in the presence of confinement. In
particular, the solution of the four-body problem completely determines the corre-
sponding quasi-1D many-body BCS-BEC crossover phenomenon [27]. Recently, the
existence of the confinement-induced molecular bound state in a quasi-1D Fermionic
40K atom gas confined in an optical trap has been reported [38]. By using rf spec-
troscopy, the binding energy of the dimer has been measured as a function of the
scattering length, with quantitative agreement to the results of Ref. [29]. However,
the existence of the CIR in the scattering states remains to be observed.

Although the analytical results for the parabolic confinement are instructive,
realistic traps for matter waves frequently have non-linear potential forms, see for
instance Ref. [36] for a particular example of a trap on the nanometer scale. To give
another example, for the problem of tunneling of a macroscopic number of ultracold
atoms between two stable states of a trapping potential, the nonlinearity clearly is
crucial. Hence generalization to the non-parabolic case is desirable and provided in
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this work. In addition, we consider traps with two different species of atoms. Note
that sympathetic cooling techniques require to study this case. Different trap fre-
quencies may arise for different atom species, e.g., because of different atom masses
or different magnetic quantum numbers. Here we obtain general expressions for the
bound-state energies and scattering resonances when the COM and the relative de-
grees of freedom do not decouple anymore. In the parabolic limit and for intraspecies
scattering, we recover well-known results [28,29]. For the general case, we show that
more than one CIR may appear, and that it depends on the symmetry properties of
the confining potential how many resonances occur. We apply our formalism to two
experimentally relevant cases: (i) interspecies scattering in a two-species mixture
of quantum degenerate Bose and Fermi gases in an optical trap, and (ii) a single
species cloud in a magnetic trap, taking into account non-parabolic corrections due
to a longitudinal magnetic field suppressing Majorana spin flips.

As we will discuss below in more detail, the CIR has a close similarity to the
well-known Feshbach resonance [39], which arises if the Hilbert space can be divided
into open and closed channels coupled together by a short-range interaction. Due
to this small but finite coupling, two incoming particles initially in the open channel
visit the closed channels during the scattering process. If a bound state with energy
close to the continuum threshold exists, such a process is highly enhanced and a
resonance results.

Our results have previously been published in Ref. [40].
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2 Dynamics of the Quantum Duffing

oscillator

In the focus of this chapter is the dynamics of the Duffing oscillator in the deep
quantum limit. This model describes a periodically driven anharmonic oscillator
coupled to a thermal bath that causes noise and dissipation.

The Hamiltonian of the isolated system is time-periodic and allows the appli-
cation of Floquet theory, which is the analogue of Bloch theory for space-periodic
systems. In this theory, the analogue of the quasimomenta are the quasienergy. The
quasienergy spectrum of the driven anharmonic oscillator displays multiple avoided
crossings, which correspond to multiple multi-photon transitions. Near the multi-
photon transitions it is very similar to the energy spectrum of a static double-well
potential.

This analogy can be better understood within the framework of the rotating-
wave approximation (RWA), which consists in switching to the rotating frame and
disregarding the time dependent terms in the transformed Hamiltonian. We can then
identify the eigenvalues of this approximate Hamiltonian with the quasienergies of
the Floquet theory. Moreover, it is possible to derive a quasipotential, which has
the shape of a tilted Mexican hat. Its surface is divided into an internal and an
external dome. For a quasienergy within a certain range, there are two classical
solutions associated to the two different domes. When the energy is quantized, if
there are a couple of levels corresponding to the same energy there can be many
other pairs with the same energy. When the driving frequency is changed, the shape
of the potential changes and the degeneracy is lifted: the spectrum displays multiple
exact crossings. If tunnelling is considered, the degeneracy is lifted and the exact
crossings become avoided crossings.

We include the dissipative influence of the environment by means of a Born-
Markovian master equation. Within the RWA we find that the dynamics around the
avoided quasienergy level crossings is well described by a simplified master equation
involving only a few quasienergy states. Around the anticrossings, we find resonant
as well as antiresonant nonlinear responses depending on the damping strength. The
underlying mechanism is worked out in the perturbative regime of weak nonlinearity,
weak driving and weak damping. There, Van Vleck perturbation theory allows
to obtain the quasienergies and the quasienergy states analytically. The master
equation can then be solved in the stationary limit and subsequently, the line shapes
of the resonant as well as the antiresonant nonlinear response can be calculated in
closed form.

The chapter is organized in the following way: In Section 2.1, we review the
classical dynamics of the Duffing oscillator. In Section 2.2, we preset the physical
systems, which seem to be the most promising candidates to implement experi-
mentally the quantum Duffing oscillator. In Section 2.3, we focus on the coherent
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dynamics. We move on to Section 2.4, where we consider the dissipative dynam-
ics. This section is composed by a brief introduction to quantum dissipation and
by the derivation of two Born-Markovian master equations in the RWA and in the
Floquet basis, which we solve in Sections 2.5 and 2.6 respectively. The conclusions
and outlooks are drawn in Section 2.7. A brief introduction on Van Vleck theory is
left to Appendix B as well as two derivations, which are connected but not directly
related to the Duffing oscillator. These are the derivation of an effective single-
particle Hamiltonian starting from the elasticity model for the nanoresonator and
the derivation of a Born-Markovian master equation for a bichromatically driven
anharmonic oscillator. They are included in Appendices A and C, respectively.

2.1 Introduction: Classical Duffing oscillator

Before investigating the dynamics of the quantum Duffing oscillator, which is in
the focus of this chapter, we consider the corresponding classical oscillator (at zero
temperature), the well-known Duffing oscillator [2–4]. It is characterized by the
nonlinear equation of motion

mẌ +mγẊ +mω2
1X + αX 3 + fX cosωext = 0 (2.1)

and shows a rich variety of features including regular and chaotic motion. In this
work, we focus on the parameter regime where only regular motion occurs. Moreover,
we restrict to α > 0. The nonlinear response of its amplitude A can be calculated
perturbatively [2]. One obtains the response A(ωex) as the solution of the equation

ωex − ω1 =
3

8

α

mω1
A2 ±

(

f 2

4m2ω2
1A

2
− γ2

4

)1/2

. (2.2)

Its characteristic form is shown in Fig. 2.1. For weak driving strengths, the response
as a function of the driving frequency ωex has the well-known form of the harmonic
oscillator with the maximum at ωex = ω1. For increasing driving strength, the
resonance grows and bends away from the ωex = ω1-axis towards larger frequencies
(since α > 0). The locus of the maximal amplitudes is given by the parabola [2]
ωex − ω1 = 3

8
α

mω1
A2, which is often called the backbone curve. Most importantly, a

bistability develops with two adjacent stable branches and one intermediate unstable
branch. This bistability is connected with a hysteretic jump phenomenon which can
be probed if the driving frequency ωex is adiabatically increased or decreased. The
hysteresis is maximal for zero temperature. At finite temperature, it is reduced
since the particle can escape from the metastable local minimum to the adjacent
global minimum via thermal hopping before the deterministic switching point is
reached [41,42]. Note that for larger driving amplitudes, also bifurcations and period
doublings can occur [2–4] which we do not address in the present work.

The nonlinear response of the phase ϕ can be determined perturbatively in a
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Figure 2.1:: Classical
response of the Duffing
oscillator. For increas-
ing driving strength, the
harmonic Lorentzian peaks
grows and bends, thereby
defining a frequency region
where three solutions are
presents. In this regime the
system is bistable since one
of the three solutions is un-
stable.

similar way. One obtains [2]

ϕ(ωex) = − arctan
γA

2
[

(ωex − ω1)A− 3
8

αA3

ω1

] , (2.3)

where A is the solution of Eq. (2.2). The curve ϕ(ωex) also has two stable branches
with an unstable intermediate branch and displays similar hysteretic jump phenom-
ena as the amplitude response.

As we will show in the following, the nonlinear response is qualitatively different
in the corresponding quantum system. The discrete quasi-energy spectrum allows for
multi-photon excitations which yield discrete resonances in the amplitude response
profile. Moreover, the dynamically generated bistability allows for an escape of the
system out of the metastable state via resonant quantum tunnelling. This generates
characteristic resonances in the tunnelling rate when the external frequency ωex,
which plays the role of a control parameter, is tuned.

2.2 Experimental systems

The model of the quantum Duffing oscillator finds several realizations in experi-
mental systems. Here, two are discussed in some details: (i) a doubly-clamped
nanoresonator and (ii) the nonlinear response of a SQUID.

2.2.1 The mechanical nanoresonator

The experimental realization of nanobeams which show quantum mechanical be-
havior [43–47] is currently on the schedule of several research groups worldwide and
poses a rather non-trivial task. Important key experiments on the way to this goal
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have already been reported in the literature [48–60]. Most techniques to reveal the
quantum behavior so far address the linear response in form of the amplitude of
the transverse vibrations of the nanobeam around its eigenfrequency. The goal is to
excite only a few energy quanta in a resonator held at low temperature. To measure
the response, the ultimate goal of the experiments is to increase the resolution of
the position measurement to the quantum limit [53, 59–62]. As the response of a
damped linear quantum oscillator has the same simple Lorentzian shape as the one
of a damped linear classical oscillator [63], a unique identification of the “quantum-
ness” of a nanoresonator in the linear regime can sometimes be difficult.

No signatures of a quantum behavior in the nonlinear response of realized
nanobeams have been reported up to present. One reason is that a nanomechanical
resonator is exposed to a variety of intrinsic as well as extrinsic damping mechanisms
depending on the details of the fabrication procedure, the experimental conditions
and the used materials [64–66]. Possible extrinsic mechanisms include clamping
losses due to the strain at the connections to the support structure, heating, cou-
pling to higher vibrational modes, friction due to the surrounding gas, nonlinear
effects, thermoelastic losses due to propagating acoustic waves, surface roughness,
extrinsic noise sources, dislocations, and other material-dependent properties. An
important internal mechanism is the interaction with localized crystal defects. Con-
trolling this variety of damping sources is one of the major tasks to be solved to
reveal quantum mechanical features. Recent measurement show that in the so far
realized devices based on silicon and diamond structures, damping has been rather
strong at low frequencies [64,65] indicating even sub-Ohmic-type damping [63] which
would make it difficult to observe quantum effects at all. However, using freely sus-
pended carbon nanotubes instead could reduce damping at low frequencies due to
the more regular structure of the long molecules which can be produced in a very
clean manner. Further experimental work is required to clarify this point and to
optimize the experimental conditions.

Nanoscale nonlinear resonators in the quantum regime have been investigated
theoretically starting from microscopic models based on elasticity theory for the
beam [12,67, 68]. This model is presented in Appendix A.

2.2.2 The SQUID

Another system implementing the quantum Duffing oscillator model is a supercon-
ducting ring interrupted by a Josephson junction driven by means of an externally
applied radio-frequency radiation (or alternatively a bias current). This system is
known as superconducting quantum interference device (SQUID), because it can be
used as an active element of a quantum interferometer measuring the superconduct-
ing phase.

The relevant macroscopic quantum observable for such devices is the total mag-
netic flux Φ piercing the ring. It is given by Φ = φ0ϕ/2π + nφ0 in terms of the
superconducting phase difference ϕ between the two junction interfaces and the flux
quantum φ0.

In many cases such devices display an Ohmic dissipation in presence of a normal
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current
V = RIn ≡ R(I − Is) , (2.4)

here, the Josephson supercurrent Is is given by the Josephson relation Is = Ic sinϕ.
Since not all the charge that flows in the region of the junction is transported through
it, a phenomenological description of the junction should include a finite capacitance
C. Moreover, the ring has a geometrical self-inductance L due to the flux induced by
a circulating current. The SQUID is thus equivalent to a phenomenological circuit.
The applied current Iex partly flows through the device as a supercurrent, partly as
a normal current, partly is accumulated at the junction interfaces and partly is fed
back by the geometrical inductance. Keeping in mind Faraday’s law V = −Φ̇, one
can straightforwardly derive the governing equation of motion

CΦ̈ +
Φ̇

R
+

Φ − Φex

L
+
Icφ0

2π
sin

(

2πΦ

φ0

)

= Iex . (2.5)

When the sinus is expanded keeping the first nonlinear term and a periodic driv-
ing is included by varying either the external flux Φex or the external current Iex
periodically, one recovers the Duffing equation.

The SQUID in this regime can be used for a resonant non-destructive read-out
of a persistent current qubit [69–72]. In contrast to the conventional switching
current measurement that generates unwanted quasi-particles when the dc-SQUID
(acting as the qubit detector) switches to the voltage state, this technique keeps the
SQUID biased along the supercurrent branch during the measurement. Thereby, the
Josephson plasma resonance of the SQUID depends on the inductive coupling of the
SQUID to the qubit. Measuring the plasma resonance allows to non-destructively
read-out the qubit state. The application of this read-out technique in the nonlinear
regime of the SQUID could allow for an improved sensitivity as well as its potential
use as a nonlinear amplifier.

2.3 Coherent dynamics

In Section 2.2, we have presented two interesting candidates to implement the quan-
tum Duffing oscillator (QDO) model. From now on, we will consider this generic
model without focusing on a particular physical system.

We note that in the sequel the driven system will emit or absorb discrete quanta
of energy, which we will refer to as photons. In the context of the mechanical res-
onator, however, no real photons are present but instead, phonons are the object of
interest. This has to be kept in mind when applying the generic model to particular
physical systems.

We start our investigation of the QDO considering the coherent dynamics of a
nonlinear oscillator with mass m and coordinate X . The corresponding Hamiltonian
is

HS(t) =
P2

2m
+
mω2

1

2
X 2 +

α

4
X 4 + X f cos(ωext) . (2.6)



14 Dynamics of the Quantum Duffing oscillator

Here, m and ω1 are the mass and the harmonic frequency of the resonator, respec-
tively, while α gives the strength of the nonlinearity. We focus on the case α > 0
of hard non-linearities, where the undriven potential is monostable. The external
driving is characterized by the amplitude f and the frequency ωex. To proceed, we
scale HS(t) to dimensionless quantities such that the energies are in units of ~ω1

while the lengths are scaled in units of x0 ≡
√

~

mω1
. Put differently, we formally set

m = ~ = ω1 = 1. The nonlinearity parameter α is scaled in units of α0 ≡ ~ω1/X 4
0 ,

while the driving amplitudes are given in units of f0 ≡ ~ω1/x0. For later purpose,
we already mention that we scale temperature in units of T0 ≡ ~ω1/kB while the
damping strengths are measured with respect to ω1.

2.3.1 Exact Floquet solution

A powerful tool to investigate the dynamical behavior of driven periodic systems is
the Floquet theory. This is the analogue for time-periodic Hamiltonians of the well
known Bloch theory for space-periodic Hamiltonians. In this subsection we will state
the most important results of Floquet theory and apply them to our specific problem.
For a systematic derivation of these result a useful reference is Ref. [73]. The central
statement of Floquet theory is the Floquet theorem which is the analogue of the
Bloch theorem: A periodic time dependent Schrödinger equation has a complete set
{|ψα(t)〉} of solutions such that each element of the basis can be expressed as

|ψα(t)〉 = e−iεαt|φα(t)〉 (2.7)

with the time-dependent vector |φα(t)〉 being time-periodic with period Tωex =
2π/ωex. This is a simple consequence of the invariance of the Schrödinger equa-
tion under discrete time translations −id/dt + H(t) = −id/dt + H(t + Tωex). εα

and |φα(t)〉 are called Floquet or quasienergies and Floquet states, respectively, and
follow from the solution of the eigenvalue equation

H|φα(t)〉 =

[

HS(t) − i~
∂

∂t

]

|φα(t)〉 = εα|φα(t)〉 . (2.8)

The linear operator H is usually called Floquet Hamiltonian. The identification of
H as an Hamiltonian operator is justified by two strong motivations:
(i) The above equation is formally equivalent to a time-independent Schrödinger
equation, H being the Hermitian operator which determines the quasienergies and
the Floquet states. The corresponding Hilbert space is the vector product R ⊗ T
of the original Hilbert space R and the Hilbert space of the time-periodic functions
T . An inner product in T is defined by

(f, g) =
1

Tωex

∫ Tωex

0

dt f ∗(t)g(t) .

The most simple basis {|nτ 〉} of orthonormalized vectors for this space is the set of
vectors defined by 〈t|nτ 〉 = exp[−inωext], where n is an integer. We can write the
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Floquet Hamiltonian H in this basis as

Hnn′ = (H0 − nωex)δnn′ +
f

2
X (δnn′+1 + δnn′−1) , (2.9)

with the undriven Hamiltonian H0 = P2/(2m) + (mω2
1/2)X 2 + (α/4)X 4.

(ii) The Floquet Hamiltonian can be derived starting from the Hamiltonian HSB =

HS +ωexb
†b+f/(2n

1/2
0 )X (b+b†) describing the system Hamiltonian linearly coupled

to a boson degree of freedom. If all the states relevant for the dynamics have photon
number n + n0 with |n| ≪ n0, i.e only few photons are exchanged between the
oscillator an the driving field compared to the average photon number n0, one obtains
the Floquet Hamiltonian in Eq. (2.9) by neglecting the terms of order O(n

−1/2
0 ) in

HSB. Thus, the additional degree of freedom can be interpreted as the number
of photon exchanged. The Schrödinger equation of the Floquet Hamiltonian in
the extended Hilbert space R ⊗ T yields the same mean values for the oscillator
observables as the Schrödinger equation for the time dependent Hamiltonian in Eq.
(2.6) in the system Hilbert space H once an initial coherent state with very large
average photon number n0 is assumed for the boson degree of freedom [73].

In analogy with the quasimomenta in Bloch theory, the quasienergies εα are
defined up to a multiple integer of ωex. In fact, the state |φ(n)

α (t)〉 = einωext|φα(t)〉
is also an eigenstate of the Floquet Hamiltonian, but with the eigenvalue εα,n =
εα +nωex. However these two Floquet states correspond to the same solution |ψα(t)〉
of the Schrödinger equation. Hence, the spectrum of the Floquet Hamiltonian has
a Brillouin zone structure, each Brillouin zone being of size ωex. Moreover, in order
to find a complete set {|ψα(t)〉} of solutions, it is sufficient to consider only those
Floquet states which lie within a single Brillouin zone, for example −ωex/2 ≤ ε <
ωex/2. Due to the Brillouin zone structure the quasienergies do not allow for global
ordering. This, however, can be achieved with the mean energies obtained after
averaging over one driving period, i.e.,

Eα =
1

Tωex

∫ Tωex

0

dt〈ψα(t)|H(t)|ψα(t)〉 =
∑

n

(εα + nωex)〈φ̂α,n|φ̂α,n〉 , (2.10)

with the Fourier components of the Floquet states

|φ̂α,n〉 =
1

Tωex

∫ Tωex

0

dt einωext|φα(t)〉 . (2.11)

The eigenvalue equation (2.8) can be solved numerically by using the representation
in Eq. (2.9). One has to approximate the Hilbert space R ⊗ T by considering the
subspace spanned by the first N eigenstates of the undriven Hamiltonian H0 and by
the 2M+ 1 vectors |nτ 〉 corresponding to n = −M,−M+ 1, . . . ,M− 1,M. Thus
the dimension of the Floquet matrix is N (2M+ 1) and the computational effort is
proportional to [N (2M + 1)]3.

2.3.2 Rotating wave approximation (RWA)

The Floquet solution presented in the previous subsection has the advantage of being
exact. Thereby it allows a numerical solution for rather strong driving strengths f
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and nonlinearities α. In this section we will present an alternative approximate
solution valid for weak anharmonicity α ≪ ω1, weak driving f ≪ α and close to the
fundamental resonance |ωex − ω1| ≪ ω1. This approach has the advantage to yield
simple analytical results that shed light on the physical picture for the nonlinear
oscillator. In particular we will derive a quasi-potential which is at the origin of
the bistability of the classical Duffing oscillator. For convenience, we switch to a
representation in terms of creation and annihilation operators a and a†, such that
X = x0(a + a†)/

√
2. Moreover, we switch to the rotating frame by performing the

canonical transformation R = exp [iωexa
†at]. The RWA consists in eliminating all

the fast oscillating terms from the transformed Hamiltonian. Thereby, one obtains
the Schrödinger equation in the rotating frame

H̃|ϕα〉 = εα|ϕα〉 , (2.12)

with the Hamiltonian in the RWA

H̃ = ω̃n̂+
ν

2
n̂(n̂+ 1) + µ

(

a + a†
)

. (2.13)

Here, we have introduced the detuning ω̃ = ω1 − ωex, the nonlinearity parameter
ν = 3α/(4m2ω2

1), the driving strength µ = (x0/2
3/2)f and n̂ = a†a. By projecting

onto the harmonic oscillator basis, we get

H̃nn′ =
(

ω̃n+
ν

2
n(n + 1)

)

δnn′ + µ
(√

n+ 1δnn′−1 +
√
nδnn′+1

)

. (2.14)

In the static frame, an orthonormal (at equal times) set {|ψα(t)〉} of approximate
solutions of the Schrödinger equations follows as

|ψα(t)〉 ≃ e−iεαte−iωexa†at|ϕα〉 . (2.15)

Since exp [−iωexa
†at]|ϕα〉 is Tωex-periodic, the solutions in the previous equation

have the form predicted by the Floquet theorem in Eq. (2.7). Within the limit of
validity of the RWA, we can thus identify εα and exp [−iωexa

†at]|ϕα〉 with the Flo-
quet quasi-energies and the Floquet states |φα(t)〉, respectively. It is instructive to
derive directly Eq. (2.12) from the defining eigenvalue equation (2.8) of the previous
section. One has to make the following steps:
(i) Approximate the undriven Hamiltonian H0 in Eq. (2.9) with its first order ex-
pansion in α, H0 ≃ ωn̂+ (ν/2)n̂(n̂ + 1)
(ii) Neglect in the driving term the contributions µ(aδnn′+1 + a†δnn′−1)
(iii) Project H onto the set {|n〉 ⊗ |mτ 〉}.
Then the Floquet Hamiltonian is block-diagonal, each block corresponding to the
subspace spanned by the subset {|n〉 ⊗ |mτ ≡ n + m〉}, with m a fixed integer.
Moreover, the block corresponding to m = 0 can be identified with the approxi-
mated Hamiltonian in the rotating frame H̃ , since Hnn,nn = H̃nn. The RWA is thus
equivalent to the approximation (i) and (ii).

We have performed the transformation to the rotating frame because it would
have been difficult to justify (ii) in the framework of Floquet theory. As already
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mentioned at the beginning of this subsection, another remarkable advantage of a
transformation to the rotating frame is that it is possible to derive the quasipotential
which is at the origin of the classical bistability of the Duffing oscillator. Following
Ref. [6] we introduce the reduced coordinate and momentum of the oscillator in the
rotating frame

Xr =
( ν

4ω̃

)1/2
(

a† + a
)

, Pr =

(

iν

4ω̃

)1/2
(

a† − a
)

(2.16)

with the commutator [Xr,Pr] = −iλ, λ = ν/(2ω̃). By substituting into Eq. (2.13),
one obtains

H̃ =
ω̃2

2ν

[

(

X 2
r + P2

r − 1
)2 − β1/2Xr

]

+ O(λ) (2.17)

with β = 4µ2ν/ω̃3. The quasipotential is sketched in Fig. 2.2. It has the shape of
a tilted Mexican hat. Its minimum and local maximum correspond to the classical
stable states of the forced vibration. They coexist for 0 < β < 16/27. For such β in a
certain range of quasienergies, there are two Hamiltonian trajectories corresponding
to the same quasi-energy, one on the internal part of the surface and the other on
the external one. When the motion is quantized, and two levels, corresponding to an
internal and an external trajectory respectively, coincide, many of them will coincide
pairwise [5, 6].

For zero driving strength one can easily identify these trajectories with the eigen-
states of the undriven Hamiltonian H0 in the rotating frame (see Eq. (2.13) with
µ = 0): the harmonic oscillator states |n〉. In fact, for ω̃ = −ν(N +1)/2 (N positive
integer), corresponding to ωex = ω1 + ν(N + 1)/2 ≡ ωN , we have εN−n = εn for
n ≤ N .

For a finite driving strength µ > 0, the exact crossings turn into avoided crossings
which is a signature of multiphoton transitions [5, 6, 12] as we shall explain at the
end of this section. A typical quasienergy spectrum is shown in Fig. 2.3 for the
parameters ν = 10−3 and µ = 10−4. The dashed vertical lines indicate the multiple
avoided level crossings which occur all for the same driving frequency.

The dynamics of the QDO near the multiple avoided level crossings can be un-
derstood by means of a perturbative approach, with the small parameter ε defined
as

ε =
2µ

ν(N + 1)
. (2.18)

For ε ≪ 1 and ωex ≃ ωN , each pair of degenerate levels interacts only weakly
with the other levels, and acts effectively like a two-level Rabi system [5]. The
Rabi frequency is equal to the minimal splitting of the levels. In the following, we
diagonalize the RWA Hamiltonian near the multiphoton resonances perturbatively,
with ε as a small parameter.

Let us therefore consider the multiphoton resonance at ω̃ = −ν(N + 1)/2. In
addition, we are interested in the response around the resonance and therefore in-
troduce the small deviation ∆. We formally rewrite H̃ as

H̃ =
ν(N + 1)

2

[

−(1 + ∆)n̂+
n̂ + 1

N + 1
n̂+ ε(a+ a†)

]

. (2.19)
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Figure 2.2:: Quasipotential for the
driven nonlinear oscillator. The
quasienergy is measured in unit of
ω̃2/2ν and β = 2/27. (a) shows a
cut along Pr = 0 through the con-
tour plot shown in (b), see horizon-
tal dashed line. The 1D cut dis-
plays (from left to right) a relative
minimum, a relative maximum and
the absolute minimum. They corre-
spond to a saddle point, a relative
maximum and the absolute mini-
mum of the complete 2D potential,
respectively. The surface of the po-
tential is divided into an internal
and an external dome. In the con-
tour plot are visible: i) The border
of the two domes, passing through
the saddle point and the absolute
minimum (dotted-dashed line) ii)
one trajectory around the minimun
of the quasipotential, iii) two trajec-
tories on the internal dome of the
potential, iv) several trajectories on
the external part. The most and
the second most internal trajectory
on the external dome have the same
quasi-energy as the most external
and the most internal trajectory on
the internal part, respectively.

Let us then first discuss the dynamics at resonance (∆ = 0). We divide it in the
unperturbed part H0 and the perturbation εV according to

H0 =
ν(N + 1)

2

[

−n̂ +
n̂ + 1

N + 1
n̂

]

, V =
ν(N + 1)

2

[

a + a†
]

, (2.20)

respectively. The unperturbed Hamiltonian is diagonal and near the resonance its
spectrum is divided in well separated groups of nearly degenerate quasienergy eigen-
values.

An appropriate perturbative method to diagonalize this type of Hamiltonian is
the Van Vleck perturbation theory [74–76]. A brief introduction to this formalism
is included in Appendix B. The central idea behind the Van Vleck formalism is that
it is possible to define a unitary transformation yielding the Hamiltonian H̃ in an
effective block diagonal form. The effective Hamiltonian has the same eigenvalues
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Figure 2.3:: Typical quasienergy spectrum εα for increasing driving frequency ωex

for the case ν = 10−3 and µ = 10−4. The vertical dashed lines indicate the multiple
avoided level crossings for a fixed driving frequency.

as the original one, with the quasi-degenerate eigenvalues in a common block. It
can be written as

H̃ ′ = eiSH̃e−iS . (2.21)

In our case, each block is a two by two matrix corresponding to a subspace formed
by a couple of quasienergy states forming an anticrossing. Let us consider the
effective Hamiltonian H ′n corresponding to the involved levels |n〉 and |N−n〉, being
eigenstates of the harmonic oscillator. The degeneracy in the corresponding block
is lifted at order N − 2n in Van Vleck perturbation theory. The block Hamiltonian
then reads 1

H̃ ′n =

(

ν
2
n(n−N) εN−2nC12,N−2n

εN−2nC12,N−2n
ν
2
n(n−N)

)

, (2.22)

where

C12,N−2n = (N + 1)N−2nν

2

√

(N − n)!√
n!(N − 2n− 1)!2

. (2.23)

This is the lowest order of the perturbed Hamiltonian which allows to calculate the
corresponding zeroth order eigenstates. By diagonalizing H̃ ′n in Eq. (2.22), one finds

1see Appendix B for the derivation of this formula
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the minimal splitting for the N−photon transition as

ΩN,n = |2εN−2nC12,N−2n|

= 2µ

(

2µ

ν

)N−2n−1
√

(N − n)!√
n!(N − 2n− 1)!2

. (2.24)

For the case away from the N−th resonance, we consider a detuning ∆ = εNδ.
Within the Van Vleck technique, only the zero-th block is influenced according to

H̃ ′0 =

(

0 εNC12,N

εNC12,N −ν(N+1)
2

εNNδ

)

, (2.25)

the other blocks given in Eq. (2.22) for n 6= 0 are not influenced by this higher-order
correction. The eigenvectors for the Hamiltonian H̃ at zero-th order are obtained
by diagonalizing H̃ ′n in Eq. (2.22). One finds |ϕn〉 = |n〉 for n ≥ N + 1 or |ϕn〉 =
(|n〉 + |N − n〉)/

√
2 and |ϕN−n〉 = (|n〉 − |N − n〉)/

√
2 for 0 < n < N/2 and

|φN/2〉 = |N/2〉 if N is even. Moreover,

|ϕ0〉 = cos
θ

2
|0〉 − sin

θ

2
|N〉 ,

|ϕN〉 = sin
θ

2
|0〉 + cos

θ

2
|N〉 , (2.26)

where we have introduced the angle θ via

tan θ = −2ΩN,0/[ν(N + 1)N∆] = −ΩN,0/[ωex − ωN ] . (2.27)

Note that the Rabi frequency ΩN,n sets the width of the corresponding multiphoton
resonance.

To conclude this section, let us discuss the physical interpretation of the mul-
tiphoton transitions and the corresponding Rabi frequencies: The system initially
prepared in the state |n ≤ N〉 in presence of a driving field with resonant frequency
ωex = ωN switches continuously between the pair of states |n〉 and |N − n〉. The
time scale of these virtual processes is set by the Rabi frequency ΩN,n. According to
the discussion in Section 2.3.1, the transition between different oscillator states are
due to the fluctuations of the photon number in the driving field. Within the limit
of validity of the RWA approximation, the virtual transition between the states |n〉
and |N − n〉 is accompanied by the absorption of exactly N − n photons from the
field. For this reason, such transitions are denominated multiphoton transitions as
already anticipated above. In the following we will refer to them also as multiple
multiphoton transitions, since, when the system is prepared in a generic state, there
is a multiphoton transition for each pair of quasidegenerate levels.

2.4 Dissipative dynamics

In the previous section we have described extensively the coherent dynamics of
the driven nonlinear oscillator. Within the RWA, the Hamiltonian of the system
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can be described in terms of a quasipotential. As a consequence of the particular
shape of the potential (a tilted Mexican hat), in a certain quasienergy range, there
are two classical orbits corresponding to the same quasienergy. In the classical
Duffing oscillator (which also comprises a dissipative force), this feature leads to
bistability. Canonical quantization of the RWA Hamiltonian H̃ leads to degenerate
multiphoton tunnelling transitions. It remains to be investigated what is the effect
of dissipation in the quantum system. In this section we will briefly present the
theoretical formalism necessary to describe dissipation in the framework of a fully
quantum mechanical analysis. For simplicity, we will often restrict the discussion to
the particular system we are investigating. For a more general and comprehensive
review on the subject, see Ref. [63].

Classically, dissipation can be introduced phenomenologically, by adding a ve-
locity proportional force. In principle, it could be possible to incorporate this model
in a Lagrangian description. However this approach leads to unphysical properties
when attempting a canonical quantization [63]. The most successful approach to dis-
sipation, consistent with the fundamental laws of quantum mechanics, is based on
the coupling of a system with external degrees of freedom, the so-called system-bath
model [63, 77–90]. It is possible to show that this model leads to a Langevin-type
equation with a memory-friction force and an operator valued random force. More-
over it obeys the Ehrenfest theorem: The Heisenberg equations of motion for the
canonical operators associated to the bath and system coordinates and momenta are
formally equivalent to the classical equations of motion for the corresponding classi-
cal variables. However, due to the non-linear contribution to the system potential,
the mean values of the system coordinate and momentum do not obey the classical
equations of motion. For this reason, we expect to find a signature of the quantum-
mechanical nature of such a system, even at equilibrium and after averaging out
quantum fluctuations.

An approach, alternative to the Langevin equation, to the quantum dynamics
of the central system is possible in the framework of the path integral formalism.
This consists in formally eliminating the bath degrees of freedom and describing
their influence on the system in term of a functional, the so-called Feynman Vernon
influence functional [81]. This approach enabled the investigation of dissipative
quantum system beyond the weak coupling limit. Unfortunately, it has the drawback
of being rather involved. As soon as non-linear force come into play, one has to resort
to sophisticated numerical treatments, such as quantum Monte-Carlo calculations
[91] or, alternatively, deterministic iterative real-time path integral simulations with
the QUAPI approach [92,93]. However in the deep quantum limit we are interested
in, which corresponds to a weak coupling to the bath, a perturbative approach is
appropriate. This leads to a Markovian master equation (MME) for the reduced
density matrix [94, 95]. At the end of the section we will show how to combine the
MME with Floquet theory in the spirit of Ref. [96]. When the RWA is applied in
addition, a rather simple dynamical equation follows.
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2.4.1 The system-bath model and the Langevin equation

In order to model dissipation, we will use the simplest system-bath model, consisting
in a set of harmonic oscillators coupled bilinearly to the system. This choice might
appear arbitrary. The most obvious motivation for this common approach, is that
it allows analytical progress and compact formulae. Most importantly, in the weak
coupling and low-temperature limit we are interested in, the physics will not depend
on the structure of the bath (as long as it has a smooth frequency distribution). As
it will be clear from the discussion, in this limit, the bath will be characterized by
only two phenomenological parameters, the damping strength γ and the tempera-
ture T .

The total Hamiltonian of the system plus bath is given by

H(t) = HS(t) +HB +HSB, (2.28)

where

HB =

N
∑

j=1

1

2

[

p2
j

mj
+mjω

2
jx

2
j

]

, (2.29)

HSB = −X
∑

j

cjxj + X 2
∑

j

c2j
2mjω2

j

. (2.30)

are the bath Hamiltonian and its coupling to the system, respectively. They rep-
resent an ensemble of N harmonic oscillators of masses mj with coordinate and
momentum operators xj and pj and oscillation frequencies ωj. The coupling of the
system to the bath is assumed to be linear both in the bath oscillator coordinates
xj and in the system coordinate X . The strength of the coupling is given by the
coupling constants cj. In Eq. (2.30), the additional potential term proportional to
X 2 is introduced in order to cancel a renormalization of the potential V (X , t), which
arises due to the linear coupling of the system to the bath [63] (counter term).

The Hamiltonian equations of motion for the system plus bath read

mẌ +mω2
1X + αX 3 + f cosωext+ X

N
∑

j=1

c2j
mjω

2
j

=
N
∑

j=1

cjxj , (2.31)

mj ẍj +mjω
2
jxj = cjX , j = 1, ...,N .(2.32)

Note that at this stage is not yet necessary to distinguish between classical coordi-
nates and momenta, and the corresponding quantum operators. Ehrensfest theorem
assures us that the classical and the Heisenberg quantum equations of motion are
formally equivalent. The equations for the harmonic oscillator configurations are
second order linear differential equations. They can be readily solved in terms of
the system configuration X and the time t. By substituting the solutions into the
equation for X , we get the Langevin-type equation

Ẍ +

∫ t

0

ds γ(t− s)Ẋ + ω2
1X +

α

m
X 3 +

f

m
cosωext =

1

m
ξ(t) . (2.33)
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On the righthand side of this equation we have neglected the transient term
−γ(t)X (0), which depends on the initial configuration of the system X (0). More-
over, we have introduced the memory-friction kernel

γ(t) =
Θ(t)

m

N
∑

j=1

c2j
mjω2

j

cosωjt , (2.34)

and the time-dependent force

ξ(t) =

N
∑

j=1

cj

[

x
(0)
j cosωjt+

p
(0)
j

mjωj
sinωjt

]

. (2.35)

The latter can be regarded has a stochastic force since the initial values x
(0)
j and p

(0)
j

are drawn from an initial thermal distribution.
In the following, we (i) assume that the bath is in equilibrium with a (not fur-

ther specified) superbath at temperature T and (ii) neglect the initial correlations
between the system and the bath. At this stage, we have to distinguish between the
classical and the quantum case. In the classical case, we expect the position and mo-
mentum of the system to assume the initial values X (0) and P(0), whereas the bath
coordinates and momenta are described by the classical Boltzmann distribution

̺
(0)
B = Z−1 exp

[

−β
∑

j

(

p
(0) 2
j

2mj
+
mjω

2
j

2
x

(0) 2
j

)]

. (2.36)

In this case, the force ξ(t) becomes a fluctuating force with colored noise and Gaus-
sian statistical properties

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(t′)〉 = mkBTγ(t− t′) . (2.37)

The second relation is the classical fluctuation-dissipation theorem. For the quantum
case, the assumption (i) and the approximation (ii) imply that the density operator
W (t) of the system-plus-bath at initial time t = 0 factorizes according to

W (0) = ρS(0) ⊗ e−HB/kBT

tr e−HB/kBT
. (2.38)

where ρS(0) is the density operator of the system at time 0. The influence of the fluc-
tuating force on the system is fully characterized by its symmetric autocorrelation
function, the noise kernel

K(t− t′) =
1

2
〈[ξ(t), ξ(t′)]+〉 =

1

2

N
∑

j=1

c2j
mjωj

coth
ωjβ

2
cosωj(t− t′) . (2.39)

Note that in this case, the fluctuating force is operator-valued and the average has
to be intended on both the quantum and the thermal fluctuations.
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It is now convenient to introduce the spectral density of the bath mode, defined
as

J(ω) =
π

2

N
∑

j=1

c2j
mjωj

δ(ω − ωj) . (2.40)

We can then express the friction and the noise kernel in terms of the spectral density
as

γ(t) = Θ(t)
2

πm

∫ ∞

0

dω
J(ω)

ω
cosωt , (2.41)

K(t) =
1

π

∫ ∞

0

dω J(ω) coth
ωβ

2
cosωt . (2.42)

The two kernels are not independent since they obey the second fluctuation-
dissipation theorem, which in Fourier representation reads

K̂(ω) + K̂(−ω) = mωRe[γ̂(ω)] coth
ωβ

2
. (2.43)

Before continuing the discussion about the Langevin equation, we make a few re-
marks on the spectral density J(ω). For a small number N of bath oscillators, the
time on which the transferred energy is fed back to the system is of the order of
other relevant time scales. However already for N = 20 this Poincaré recurrence
time results to be very large. Hence, any realistic bath can be described in terms
of an infinite number of degrees of freedom. In this continuum limit J(ω) will be
a smooth function. Throughout this work, we will consider the case in which J(ω)
has a power-law form with an exponential cut-off

J(ω) = mγs
ωs

ωs−1
1

e−ω/ωc (2.44)

The case s = 1 (when also the cut-off is sent to infinity) correspond to a memoryless
friction and a white noise (in the classical limit)

γ(t) = 2γ1δ(t) (2.45)

The damping term in the Langevin equation (2.33) becomes γsẊ . In the literature,
due to the formal analogy to Ohm’s law, such a bath is referred as to an Ohmic
bath. The cases 0 < s < 1 and s > 1 have been popularized as sub-Ohmic and
super-Ohmic respectively.

We close this subsection commenting on the connection between the quan-
tum and the classical Langevin equation. We start from the observation that, for
ω ≪ kBT , the second fluctuation-dissipation theorem in Eq. (2.43) reduce to its clas-
sical analogous in Eq. (2.37). Hence in the long-time limit, the quantum Langevin
equation is formally equivalent to the classical Langevin equation. When consider-
ing the damped harmonic oscillator (corresponding to α = 0), it is even possible
to go a step further: the mean value of the position operator obeys the classical
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equation of motion, as can be easily seen by taking the average on the quantum
fluctuations in Eq. (2.33). This does not hold anymore for the nonlinear damped
oscillator. To illustrate this, let us consider low temperature. In this limit, the ther-
mal fluctuations are strongly suppressed. As a consequence, in the classical case,
we can conclude that 〈X 3〉 ≃ 〈X 〉3 and that the Langevin equation (2.33) yields the
Duffing equation in Eq. (2.1) 2. This is not valid in the quantum limit: Due to quan-
tum fluctuations 〈X 3〉 6= 〈X 〉3 even at very low temperature and the mean value
for the system coordinate 〈X 〉 does not obey the classical Duffing equation of motion.

2.4.2 The influence functional and the Markovian master equa-
tion (MME)

In the previous subsection, we have shown that the mean value of the position
operator of a nonlinear damped quantum oscillator, unlike its harmonic counterpart,
does not obey the classical equation of motion. This implies that a signature of
the underlying quantum nature of the system can be discerned in the response of
the oscillator even at equilibrium and when a measurement scheme is used, which
averages over the quantum fluctuations. Moreover, since it is not possible to derive
a simple differential equation for the mean value of the position operator 〈X 〉, one
should solve the quantum Langevin equation (2.33) describing the time evolution in
the Heisenberg picture of the corresponding operator X . Such an approach appears
to be hopeless: It is usually challenging to solve a differential nonlinear equation,
the stochastic and operatorial nature of the quantum Langevin equation renders
exceedingly difficult even a numerical treatment of the problem. For this reason in
the following we will pursue a different approach based on a formalism developed
by Feynman and Vernon, leading, in the weak coupling limit, to a simple linear
equation for the reduced density matrix, the so-called Markovian master equation
(MME).

In their original paper in 1963 [81], Feynman and Vernon use Feynman’s real-
time path integral formulation to calculate the behavior of the central system of
interest, which is coupled to other external quantum systems, in terms of its own
variables only. Feynman and Vernon derive the elegant general result that the effect
of the external systems can always be included in a general class of functionals
of the coordinates of the central system only, the so-called influence functionals .
This finding is now applied to the situation where the nonlinear oscillator is coupled
bilinearly to a bath of harmonic oscillators. Due to the linear coupling to a harmonic
bath, a closed expression for the influence functional can be derived.

To this end, we introduce the shorthand notation x = {xj}, j = 1, ...,N , for the
bath oscillator coordinates and write down the full density operator W (t) at time t

2Strictly speaking, we recover Eq. (2.1), when also an Ohmic bath is considered. However,
a qualitatively similar response is expected at equilibrium in presence of a sub-Ohmic or super-
Ohmic environment, the major difference with respect to the Ohmic case being a ωex-dependence
of the damping strength, which might not be detected in a narrow interval around the resonant
frequency.
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in coordinate representation. It yields

〈Xfxf |W (t)|X ′f x′f〉 = 〈Xfxf |U(t, 0)W (0)U−1(t, 0)|X ′f x′f〉

=

∫

dXidX ′i
N
∏

j=1

dxj,i

N
∏

j=1

dx′j,iU(Xf ,xf , t;Xi,xi, t0)

×〈Xixi|W (0)|X ′i x′i〉U∗(X ′f ,x′f , t;X ′i ,x′i, t0) (2.46)

with

U(Xf ,xf , t;Xi,xi, 0) = 〈Xfxf |T exp

[

−i
∫ t

0

dsH(s)

]

|Xixi〉 (2.47)

being the propagator for the system-plus-bath from the initial state |Xixi〉 at time t0
to the final state |Xfxf〉 at time t. The similar restriction for the paths X ′,x′ in (2.46)
is understood implicitly. The integration over all the position coordinates is per-
formed from −∞ to +∞. Moreover, we have used the completeness property of the
composed Hilbert space (of the system-plus-bath) I =

∫

dXi

∏N
j=1

∫

dxj,i|Xixi〉〈Xixi|
with I being the identity operator. According to Feynman and Vernon [81], the
propagator can be represented as a real-time functional integral over all paths, i.e.,

U(Xf ,xf , t;Xi,xi, t0) =

∫ X (t)=Xf

X (t0)=Xi

DX
N
∏

j=1

∫ xj(t)=xj,f

xj(t0)=xj,i

Dxj exp

{

iSS[X ] +

N
∑

j=1

SB[X , xj ]

}

(2.48)
with

SS[X ] =

∫ t

t0

ds
{m

2
Ẋ 2(s) − m

2
ω2

1X 2(s) − α

4
X 4(s) − fX (s) cosωexs

}

,

SB[X , xj] =

∫ t

t0

ds

{

mj

2
ẋ2

j (s) −
mj

2
ω2

j [xj(s) −
cj

mjω2
j

X (s)]2
}

(2.49)

being the classical action of each path X (s) and [X (s), xj(s)] respectively. Since
the details of the single bath oscillators are not of interest at every instant of time,
averaging over the bath degrees of freedom is appropriate. We introduce the reduced
density operator ̺(t) by performing the trace over the bath degrees of freedom in
the full density operator W (t), i.e.,

̺(t) ≡ trBW (t) . (2.50)

Assuming furthermore a factorizing initial preparation (2.38) of system and bath,
the path-integral (2.48) over the bath coordinates xj can be performed since only
Gaussian integrals occur. The reduced density operator in coordinate representation
then reads

̺(Xf ,X ′f , t) =

N
∏

j=1

∫

dxj,f 〈Xfxf |W (t)|X ′f xf〉

=

∫

dXi

∫

dX ′i G(Xf ,X ′f , t;Xi,X ′i , 0)ρS(Xi,X ′i , 0) . (2.51)
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Here,

G(Xf ,X ′f , t;Xi,X ′i , 0) =

∫ X (t)=Xf

X (0)=Xi

DX
∫ X ′(t)=X ′

f

X ′(0)=X ′
i

DX ′ exp {i (SS[X ] − SS[X ′])}

× exp {−φFV[X ,X ′]} (2.52)

denotes the propagating function for the reduced density operator. The last term
in the previous equation is the Feynman-Vernon influence functional which covers
the entire influence of the bath. It contains the influence phase [81]

φFV[X ,X ′] =

∫ t

0

dt′
∫ t′

0

dt′′ [X (t′) −X ′(t′)]K(t′ − t′′) [X (t′′) − X ′(t′′)]

+
i

2

∫ t

0

dt′
∫ t′

0

dt′′ [X (t′) − X ′(t′)] γ(t′ − t′′)
[

Ẋ (t′′) + Ẋ ′(t′′)
]

+
i

2

∫ t

0

dt′ [X (t′) −X ′(t′)] γ(t′) [X (0) + X ′(0)] . (2.53)

The last term, just like the one neglected in Eq. (2.33), is a transient, and will be
omitted in the following.

Since we are considering a non-quadratic system Hamiltonian, the functional
integral in Eq. (2.52) can not be performed analytically. In principle, an exact
solution would be possible by means of numerical techniques such as Monte Carlo
integration or QUAPI. However, in the weak coupling limit in the focus of this work,
a perturbative approach is more appropriate. In order to be definite, from now
on, we consider the spectral densities in Eq. (2.44), characterized by the powerlaw
exponent s, the cut-off frequency ωc and the damping strength γs at the resonant
frequency. In the weak coupling limit, the damping strength γs is the smallest
frequency scale,meaning

γs ≪ T , ω1 ωex. (2.54)

We can thus expand the propagator for the reduced density matrix in Eq. (2.52) in
terms of γs. The zero-th order expansion G0(XfX ′f , t;X0X ′0, 0) is given by the first
line of Eq. (2.52). It can be expressed in terms of the propagator for the Schrödinger
equation U0(Xf , t;X0, 0) as

G0(XfX ′f , t;X0X ′0, 0) = U0(Xf , t;X0, 0)U∗0 (X ′f , t;X ′0, 0) . (2.55)

The first order expansion G1(XfX ′f , t;X0X ′0, 0) is obtained by substituting

exp (−φFV[X ,X ′]) ≈ 1 − φFV[X ,X ′] (2.56)
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into Eq. (2.52), yielding

̺(Xf ,X ′f , t) =

∫

dX0dX ′0 G0

(

Xf ,X ′f , t;X0,X ′0, t0
)

̺ (X0,X ′0, t0)

−
∫ t

0

dt′
∫ t′

0

dt′′
∫

dX1dX ′1dX2dX ′2 G0

(

Xf ,X ′f , t;X1,X ′1, t′
)

(X1 −X ′1)

×G0 (X1,X ′1, t′;X2,X ′2, t′′)K(t′ − t′′) (X2 − X ′2) ̺(X2,X ′2, t′′)

− i

2

∫ t

0

dt′
∫ t′

0

dt′′
∫

dX1dX ′1dX2dX ′2 G0

(

Xf ,X ′f , t;X1,X ′1, t′
)

(X1 −X ′1)

×G0 (X1,X ′1, t′;X2,X ′2, t′′) γ(t′ − t′′)
(

Ẋ2 + Ẋ ′2
)

̺(X2,X ′2, t′′) (2.57)

It is convenient to express ̺(t′′) in terms of ̺(t) by using the zero-th order propagator
in Eq. (2.55) such that

̺(X2,X ′2, t′′) =

∫

dXdX ′U0(X2, t
′′;X , t)U∗0 (X ′2, t′′;X ′, t)̺(X ,X ′, t) . (2.58)

By inserting this expression into Eq. (2.57), differentiating with respect to t, and
defining τ = t− t′′, we get the master equation

˙̺(Xf ,X ′f , t) = −i
(

HS (Xf) −HS

(

X ′f
))

̺(Xf ,X ′f , t)

−
∫ t

0

dτK(τ)

∫

dX2dX ′2dXdX ′
(

Xf − X ′f
)

U0 (Xf , t;X2, t− τ)U∗0
(

X ′f , t;X ′2, t− τ
)

× (X2 − X ′2)U0 (X2, t− τ ;X , t)U∗0 (X ′2, t− τ ;X ′, t) ̺(X ,X ′, t)

− i

2

∫ t

0

dτγ(τ)

∫

dX2dX ′2dXdX ′
(

Xf −X ′f
)

U0 (Xf , t;X2, t− τ)U∗0
(

X ′f , t;X ′2, t− τ
)

×
(

Ẋ2 + Ẋ ′2
)

U0 (X2, t− τ ;X , t)U∗0 (X ′2, t− τ ;X ′, t) ̺(X ,X ′, t) . (2.59)

This master equation is Markovian (memoryless) since the derivative of the reduced
density matrix ˙̺(t) depends only on the density matrix ̺(t) at equal time. The
MME can be written in the more compact operatorial form as

d

dt
̺ = −i[HS(t), ̺] + L̺ . (2.60)

The influence of the bath enters in the superoperator

L̺ = −[X , [P (t), ̺]+] − [X , [Q(t), ̺]] . (2.61)

Here we have defined the correlators

P (t) =
i

2

∫ ∞

0

dτγ(τ)U †0(t− τ, t)PU0(t− τ, t) (2.62)

and

Q(t) =

∫ ∞

0

dτK(τ)U †0(t− τ, t)XU0(t− τ, t) . (2.63)
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Moreover, we have assumed that the integration kernel K(t) and γ(t) are practically
zero after a finite time τB and extended the upper integration limit in Eq. (2.59) to
infinity, thereby implicitly considering the time distance t from the preparation to
be much larger than τB.

2.4.3 Floquet master equation

In this subsection we want to combine the MME approach with the Floquet formal-
ism described in Subsection 2.3.1. This treatment is appropriate for weak coupling
to the bath but arbitrary driving strengths, since the Floquet formalism is exact.
We start by selecting a complete set of Floquet solutions {|φα(t)〉}, such that

∑

α

|φα(t)〉〈φα(t)| = IR , (2.64)

with IR being the identity operator in the system Hilbert space R. The choice is
not unique, since, according to the discussion in Subsection 2.3.1, there is an infinite
number of eigenvectors of the Floquet Hamiltonian which correspond to the same
solution of the Schrödinger equation. We then project the density matrix onto the
selected set of Floquet states, such that the matrix elements read

̺αβ(t) = 〈φα(t)|̺(t)|φβ(t)〉 . (2.65)

Performing the derivative one obtains

˙̺αβ(t) = −i〈φα(t)|



i

←

d

dt
̺+ [H(t), ̺] + iL̺+ ̺i

d

dt



 |φβ(t)〉

= −i(εα − εβ)̺αβ(t) + 〈φα(t)|L̺|φβ(t)〉 . (2.66)

For the dissipative term, we need to compute

Xαβ(t) = 〈φα(t)|X |φβ(t)〉 =
∑

n

e−in ωextXαβ,n , n ∈ Z . (2.67)

The Fourier transform of the mean value of the position operator Xαβ,n can be
expressed in terms of the Fourier transform of the Floquet states, given in Eq.
(2.11), as

Xαβ,n =
∑

j

〈φ̂α j |X |φ̂β j+n〉 . (2.68)

We need, moreover,

Qαβ(t) =

∫ ∞

0

dτK(τ)〈φα(t)|U †0(t− τ, t)XU0(t− τ, t)|φβ(t)〉

=

∫ ∞

0

dτK(τ)e−i(εα−εβ)τ 〈φα(t− τ)|X |φβ(t− τ)〉

=
∑

n

e−in ωext

[
∫ ∞

0

dτK(τ)e−i(εα−εβ−n ωex)τ

]

Xαβ,n . (2.69)
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In an analogous way, we have

Pαβ(t) =
i

2

∫ ∞

0

dτγ(τ)e−i(εα−εβ)τ 〈φα(t− τ)|P|φβ(t− τ)〉

= −m
2

∫ ∞

0

dτγ(τ)e−i(εα−εβ)τ

×



〈φα(t− τ)|[±i
↔

d

dt
+H(t),X ]|φβ(t− τ)〉 − i

d

dt
〈φα(t− τ)|X |φβ(t− τ)〉





= −m
2

(

εα − εβ − i
d

dt

)[
∫ ∞

0

dτγ(τ)e−i(εα−εβ)τXαβ(t− τ)

]

. (2.70)

Here, we have defined the time derivative ±
↔
d
dt

where the positive (negative) sign
belongs to the left (right) direction. In the second line, we have used the canonical
relation P/m = −i[X , H(t)]. We can now compute the matrix elements of the
operators involved in the dissipative part in Eq. (2.66) and find for the terms in Eq.
(2.61)

(P +Q)αβ =
∑

n

e−in ωextNαβ,−nXαβ,n , (2.71)

and
(P −Q)αβ = −

∑

n

e−in ωextNβα,nXαβ,n . (2.72)

Here, Nαβ,n are defined as

Nαβ,n = N(εα − εβ + nωex) , N(ε) = J(|ε|)[nth(|ε|) + Θ(−ε)] , (2.73)

in terms of the bath density of states J(|ε|), the bosonic thermal occupation number

nth(ε) =
1

2

[

coth

(

ε

2kBT

)

− 1

]

, (2.74)

and the Heaviside function Θ(x).
Note that N(ε) in Eq. (2.73) diverges for s < 1 at low energies. This indi-

cates that a perturbative approach is not appropriate for a sub-Ohmic bath. For
this reason we will restrict to (super-)Ohmic baths. During the calculation, the
τ -integration in the double integrals in Eqs. (2.70) and (2.69) has been evaluated by
using the representation

∫∞

0
dτ exp (iωτ) = πδ(ω)+ iPp(1/ω), where Pp denotes the

principal part. The contributions of the principal part result in quasienergy shifts of
the order of γs which are the so-called Lamb shifts. As usual, these have also been
neglected here.

The ingredients can now be put together to obtain the Floquet Markovian master
equation as

˙̺αβ(t) = −i(εα − εβ)̺αβ(t)

+
∑

α′β′

∑

n,n′

e−i(n+n′)ωext [(Nαα′,−n +Nββ′,n′)Xαα′,nραβ′Xβ′β,n′

−Nβ′α′,−n′Xαβ′,nXβ′α′,n′ρα′β −Nα′β′,n′ραβ′Xβ′α′,n′Xα′β,n] . (2.75)
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Next, we perform a moderate rotating-wave approximation consisting in averaging
the time-dependent terms in the bath part over the driving period Tωex = 2π/ωex,
yielding

˙̺αβ(t) =
∑

α′β′

Sαβ,α′β′̺α′β′(t) =
∑

α′β′

[−i(εα − εβ)δαα′δββ′ + Lαβ,α′β′)]̺α′β′(t) (2.76)

with the dissipative transition rates

Lαβ,α′β′ =
∑

n

(Nαα′,−n +Nββ′,−n)Xαα′,nXβ′β,−n

−δαα′

∑

α′′;n

Nα′′β′,−nXβ′α′′,−nXα′′β,n

−δββ′

∑

β′′;n

Nβ′′α′,−nXαβ′′,−nXβ′′α′,n . (2.77)

The moderate rotating-wave master equation has been originally introduced in Ref.
[96], and has been since then used in a number of papers. The reason of its popularity
is that it yields a time-independent stationary solution ̺αβ , which can be obtained
by solving the simple linear system of equations

0 = −i(εα − εβ)̺αβ +
∑

α′β′

Lαβ,α′β′̺α′β′ . (2.78)

However, to the knowledge of the author of this thesis, a discussion on the limit of
validity of this approximation is still missing in the literature. It is thus worth to
state a few remarks on it. Since the right-hand side of Eq. (2.78) is of order γ, γ
acts as a cut-off frequency for the coherences in the stationary state: |εα − εβ| ≫ γ
implies ̺αβ = ̺βα = 0. Correspondingly ̺αβ = ̺∗βα 6= 0 implies |εα − εβ| ≈ γ or less.
However, as already observed, the choice of a Floquet basis is not unique. Let us
assume that in a certain Floquet basis there are two Floquet solutions |φα(t)〉 and
|φβ(t)〉 whose quasienergy difference |εα−εβ| is of order γ, the corresponding matrix
elements ̺αβ and ̺βα are thus finite at equilibrium. By replacing the element |φα(t)〉
in the Floquet basis with the vector |φ(n)

α (t)〉 = einωext|φα(t)〉 corresponding to the
same solution of the Schrödinger equation, the corresponding matrix elements ̺βα

and ̺αβ acquire a time dependence according to

̺βα = 〈φβ(t)|̺(t)|φα(t)〉 → 〈φβ(t)|̺(t)|φ(n)
α (t)〉 = einωext̺βα ,

̺αβ = 〈φα(t)|̺(t)|φβ(t)〉 → 〈φ(n)
α (t)|̺(t)|φβ(t)〉 = e−inωext̺αβ . (2.79)

On the other hand, if we had performed the moderate rotating-wave approxima-
tion directly in this basis we would have obtained a time-independent solution. In
particular, we would have obtained ̺αβ = 0, since

|εα − εβ| → |εα − εβ − nωex| ≫ γ (2.80)

within the limit of validity of the Markovian approximation γ ≪ ωex. The reason
of this discrepancy is that by replacing |φα(t)〉 with |φ(n)

α (t)〉 = einωext|φα(t)〉 in
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the Floquet basis the indices {αβ, n′} and {βα, n′} of the matrix elements Xαβ,n′

(Nαβ,n′) and Xβα,n′ (Nβα,n′), which appear in the Floquet master equation (2.75),
change according to

{αβ, n′} → {αβ, n′ + n} and {βα, n′} → {βα, n′ − n} , (2.81)

respectively. As long as we solve the full Floquet master equation in Eq. (2.75), we
get solutions that transform according to Eq. (2.79) under a change of the Floquet
basis. On the other hand, while performing the moderate rotating-wave approxima-
tion, the choice of a basis determines which contributions are included and which
are neglected in Eq. (2.76). Hence one has to be careful in choosing the Floquet
basis so that those terms are kept, that would yield a finite off-diagonal term in
the equilibrium density matrix. This can be achieved by selecting all the Floquet
states within one Brillouin zone. Moreover, one has to be careful with the states
whose energies lie near the borders of the Brillouin zone. If two states exist, such
that |εα − εβ| > ωex − γ the borders of the Brillouin zone have to be moved, so
that one of the states is replaced by its equivalent from the nearby Brillouin zone
and the quasi-energy difference becomes |εα − εβ| < γ yielding a finite off-diagonal
element ̺αβ of the equilibrium density matrix. If, consistent with the Markovian
approximation, γ ≪ ωex, it is possible to define a Brillouin zone so that no state lies
in a narrow stripe of width γ around the border and all the relevant contributions
are taken into account.

A simpler but more heuristic argument leading to the rotating-wave approxima-
tion corresponds to note that the characteristic frequency of the free evolution of the
density matrix (corresponding to γ = 0) ̺αβ(t) = e−i(εα−εβ)t̺αβ(0) is εα − εβ and to
assume that in the weak coupling limit only those terms of the superoperator L in
Eq. (2.75) are relevant for the dissipative dynamics, which oscillates with frequency
in an interval of width γ around εα − εβ. All the other terms can be averaged out.
If we choose a Floquet basis, corresponding to a Brillouin zone such that no state
lies in a narrow stripe of width γ around the border, all the relevant contributions
to the master equation (2.75) correspond to n = −n′ and are taken into account in
the moderate rotating-wave approximation.

2.4.4 RWA master equation

The Floquet master equation derived in the previous section treats the system
Hamiltonian exactly and is thus valid for an arbitrary nonlinearity and driving
strength. Its stationary solution can be straightforwardly computed numerically by
diagonalizing the Floquet Hamiltonian in Eq. (2.9), computing the Fourier compo-
nents of the position operator in Eq. (2.68) and solving the linear system in Eq.
(2.78). We will follow this approach in section 2.6. In this section, we derive a
different master equation by applying the RWA, introduced in Section 2.3.2, to the
system dynamics. This approach, valid for α ≪ ω1, f ≪ α and |ωex−ω1| ≪ ω1, will
allow an analytical perturbative treatment of the full dissipative dynamics, which
will be pursued in Section 2.5.
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We start by projecting the MME Eq. (2.66) onto the approximate Floquet states
{|φα(t)〉 ≡ exp[−iωexa

†at]|ϕα〉} rather than onto the exact Floquet solutions. As
a consequence to this approximation, all the Fourier components of Xαβ,n vanish
except for Xαβ,−1 and Xαβ,1, yielding

Xαβ(t) = 〈ϕα|eiωexa†atX e−iωexa†at|ϕβ〉 =
(

e−iωextXαβ,+1 + eiωextXαβ,−1

)

=
x0√

2

(

e−iωext〈ϕα|a|ϕβ〉 + eiωext〈ϕα|a†|ϕβ〉
)

. (2.82)

Hence the sums in Eq. (2.75) include only the terms with n, n′ = ±1. Being con-
sistent with the RWA, we can assume that |ν|, |µ|, |ωex − ω1| ≪ ω1, which yields to
|εα−εβ | ≪ ωex. According to the discussion in the previous subsection, we can then
perform the moderate rotating-wave approximation by averaging out the time de-
pendent contribution to L corresponding to n = n′ = ±1. The dissipative transition
rates, entering in the master equation (2.76) then read

Lαβ,α′β′ =
∑

n=±1

(Nαα′,−n +Nββ′,−n)Xαα′,nXβ′β,−n

−δαα′

∑

α′′;n=±1

Nα′′β′,−nXβ′α′′,−nXα′′β,n

−δββ′

∑

β′′;n=±1

Nβ′′α′,−nXαβ′′,−nXβ′′α′,n . (2.83)

The sums in Eq. (2.83) only include the n = ±1 terms indicating that only one-step
transitions are possible where n = −1 refers to emission and n = +1 to absorp-
tion. Since |εα − εβ| ≪ ωex, Nαβ,+1, given in Eq. (2.73), is the product of the bath
density of states and the bosonic occupation number at temperature T . This cor-
responds to the thermally activated absorption of a photon from the bath. On the
other hand, Nαβ,−1 contains the temperature-independent term ..+J(ωex) describing
spontaneous emission.

We can conclude that the RWA simplify considerably the Floquet master equa-
tion, leading to compact expressions for the transition rates, which will allow a fully
analytical treatment to take into account the influence of the thermal bath on the
system.

Interestingly enough, within the framework of the RWA, it is possible to derive
an extension of the master equation presented in this section to the bichromatically
driven anharmonic oscillator. The derivation is presented in Appendix C.

2.4.5 Observable for the nonlinear response

We are interested in the nonlinear response characterized by the mean value of the
position operator in the stationary state according to

〈X 〉t = tr(̺(t)X ) =
∑

αβ

̺αβ(t)Xβα(t) . (2.84)
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Using Eq. (2.68) yields 〈X 〉 = A cos (ωext+ ϕ), with the oscillation amplitude

A = 2

∣

∣

∣

∣

∣

∑

αβ

̺αβXβα,+1

∣

∣

∣

∣

∣

, (2.85)

and the phase shift

ϕ = −πΘ

(

−Re

[

∑

αβ

̺αβXβα,+1

])

+sgn

(

−Re

[

∑

αβ

̺αβXβα,+1

])

arctan





Im
[

∑

αβ ̺αβXβα,+1

]

Re
[

∑

αβ ̺αβXβα,+1

]



 , (2.86)

with Θ being the Heaviside function.

2.5 Analytical results in the perturbative regime

In this section we solve perturbatively the RWA master equation around resonant
frequency corresponding to the multiple multiphoton transitions. We then com-
pute the lineshape of the transition, resulting in a resonance or an antiresonance
depending on the bath parameter.

Within the limit of validity of the RWA, i.e., |ν|, |f |, |ωex − ω1| ≪ ω1, we have
|εα − εβ| ≪ ωex. In the regime of low temperature kBT ≪ ωex, it follows from Eq.
(2.73) that Nαβ,−1 ≃ J(ωex) and Nαβ,1 ≃ 0 entering in the transition rates in Eq.
(2.83). This approximation corresponds to consider spontaneous emission only and
yields the dissipative transition rates

Lαβ,α′β′ =
γs

2

(

ωex

ω1

)s
(

2Aαα′Aββ′ − δαα′

∑

α′′

Aα′′β′Aα′′β − δββ′

∑

β′′

Aβ′′αAβ′′α′

)

.

(2.87)

Here, we have defined Aαβ ≡ 〈ϕα|a|ϕβ〉. Note that it is consistent with the previous
approximation to set ωex/ω1 ≈ 1. Hence, all the following results are valid for Ohmic
as well as super-Ohmic baths.

In the following we will use this simplified transition rates to solve the master
equation near the multiple multiphoton resonances. The transition between the
groundstate and the N -photon state is the narrowest. Hence, it will be affected first
when a finite coupling to the bath is considered. In particular, it is interesting to
consider the case when the damping constant γs is larger than the minimal splitting
ΩN0 between the two quasienergy states but smaller than all the minimal splittings
of the other, i.e., ΩN0 < γs ≪ ΩNn for n ≥ 1. In this case, we can assume a
partial secular approximation: We set all the off-diagonal elements to zero except
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for ̺0N and ̺N0 = ̺∗0N . In this regime the stationary solutions are determined by
the conditions

0 =
∑

β

Lαα,ββ̺ββ + Lαα,0N 2 Re(̺0N ) ,

0 = −i(ε0 − εN)̺0N +
∑

α

L0N,ααραα + L0N,0N̺0N + L0N,N0̺
∗
0N . (2.88)

For very weak damping, i.e., when γs is smaller than all minimal splittings (γs ≪
ΩNn), the off-diagonal elements of the density matrix are negligibly small and can
be set to zero. Within this approximation, the stationary solution for the density
matrix is determined by the simple kinetic equation

0 =
∑

β

Lαα,ββ̺ββ . (2.89)

In this regime, a very simple physical picture arises. The bath causes transitions
between different quasienergy states, but here, the transition rates are independent
from the quasienergies. It is instructive to express the quasienergy solutions in terms
of the harmonic oscillator (HO) solutions as |ϕα〉 =

∑

n cαn|n〉 with some coefficients
cαn. The transition rates between two quasienergy states then read

Lαα,ββ = γs|〈ϕα|a|ϕβ〉|2 = γs

∑

n

(n+ 1)|cαn|2|cβn+1|2 . (2.90)

This formula illustrates simple selection rules in this low-temperature regime: When
the Floquet states are decomposed in terms of the harmonic oscillator eigenstates,
only those components of the two different quasienergy states contribute to the
transition rate whose excitation number differ by one (n↔ n+ 1).

2.5.1 One-photon resonance vs. antiresonance

Before we consider the general multiphoton case, we first elaborate on the one-
photon resonance. This, in particular, allows to make the connection to the standard
linear response of a driven damped harmonic oscillator which is resonant at the
frequency ω1 + ν. We will illustrate the mechanism how this resonant behavior is
turned into an antiresonant behavior when the damping is reduced (and the driving
amplitude µ is kept fixed).

The corresponding effective Hamiltonian H̃ ′0 follows from Eq. (2.25) and is read-
ily diagonalized by the quasienergy states |ϕ0〉 and |ϕ1〉 which are of zero-th order
in ε and which are given in Eq. (2.26). The master equation (2.88) can be straight-
forwardly solved in terms of the rates Lαβ,α′β′ for which one needs the ingredients
A00 = −A11 = sin(θ/2) cos(θ/2), A01 = cos2(θ/2) and A10 = − sin2(θ/2). The
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general solution follows as

̺00 =

−L00,11[L2
01,01 − L2

01,10 + Ω2(∆)] + 2L00,01L01,11(L01,01 −L01,10)

(L00,00 −L00,11)[L2
01,01 −L2

01,10 + Ω2(∆)] − 2L00,01(L01,00 − L01,11)(L01,01 − L01,10)
,

Re̺01 =
−(L01,01 −L01,10)[L01,11 + (L01,00 − L01,11)̺00]

L2
01,01 − L2

01,10 + Ω2(∆)
,

Im̺01 =
Ω(∆)

L01,01 − L01,10
Re̺01 , (2.91)

where Ω(∆) = ε0 − ε1.
In the following, we calculate the amplitude A according to Eq. (2.85) to zero-th

order in ε. In Fig. 2.4, we show the nonlinear response for the parameter set (in
dimensionless units) µ = 10−5 and ν = 10−3. Moreover, the one-photon resonance
condition reads ωex = ω1 + ν. The transition from the resonant to antiresonant
behavior depends on the ratio γ/Ω10 = γ/(2µ). For the case of stronger damping,
γ/(2µ) = 10, we find that the response shows a resonant behavior with a Lorentzian
form similar to the response of a damped linear oscillator. In fact, the corresponding
standard classical result is also shown in Fig. 2.4 (black dashed line). The only effect
of the nonlinearity to lowest order perturbation theory is to shift the resonance
frequency by the nonlinearity parameter ν. The resonant behavior turns into an
antiresonant one if the damping constant is decreased to smaller values. A cusp-like
line profile arises in the limit of very weak damping when the damping strength is
smaller than the minimal splitting, i.e., γ/(2µ) ≪ 1. Then, the response follows
from the master equation (2.89) as

A = x0

√
2

∣

∣

∣

∣

sin
θ

2
cos

θ

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

sin4 θ
2
− cos4 θ

2

sin4 θ
2

+ cos4 θ
2

∣

∣

∣

∣

∣

. (2.92)

This antiresonance lineshape is also shown in Fig. 2.4 (see dotted-dashed line). At
resonance ∆ = 0, we have an equal population of the quasienergy states: ̺00 = ̺11 =
1/2 and both add up to a vanishing oscillation amplitude A since A00 = −A11. Note
that we show also the solution from the exact master equation containing all orders
in ε, for the case γ/(2µ) = 0.5 and s = 1 (blue dashed line in Fig. 2.4), in order to
verify the validity of our perturbative treatment.

2.5.2 Multiphoton resonance vs. antiresonance

In this subsection we want to investigate the multiple multiphoton resonancesN > 1.
In order to illustrate the physics, we start with the simplest case at resonance and
within the secular approximation.

Secular approximation at resonance

The zero-th order quasienergy solutions are given in terms of the eigenstates of the
harmonic oscillator in Eq. (2.26) with θ = π/4. Then, |n〉 and |N − n〉 (n < N/2)
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Figure 2.4:: Nonlinear response of the nanoresonator at the one-photon resonance
N = 1, where ωex = ω1+ν for the parameters µ = 10−5 and ν = 10−3 (in dimension-
less units). The transition from a resonant behavior for large damping (γ/(2µ) = 10)
to an antiresonant behavior at small damping (γ/(2µ) ≪ 1)is clearly visible. The
resonant line shape is a Lorentzian and coincides with the linear response of a har-
monic oscillator at frequency ω1 + ν (see black dashed line for γ/(2µ) = 10). Also
shown is the limit of γ/(2µ) ≪ 1 (black dotted-dashed line) yielding a cusp-like
lineshape. Note that we also depict the solution from the exact master equation for
the case γ/(2µ) = 0.5 (blue dashed line).

form a pair of quasienergy solutions. For N odd, there are (N + 1)/2 pairs. For N
even, there are N/2 pairs whereas the state |ϕN/2〉 = |N/2〉 remains sole. Within
the secular approximation, we can describe the dynamics in terms of the kinetic
equation (2.89). Plugging Eq. (2.26) into the expression for the transition rates in
Eq. (2.90), we find that most of the transition rates between two different states
belonging to two different pairs are zero, except for

Lnn,n+1n+1 = Lnn,N−n−1N−n−1 = LN−nN−n,n+1n+1

= LN−nN−n,N−n−1N−n−1 =
γs

4
(n+ 1) ,

Ln+1n+1,nn = Ln+1n+1,N−nN−n = LN−n−1N−n−1,nn

= LN−n−1N−n−1,N−nN−n =
γs

4
(N − n) ,

LN/2N/2,N/2±1N/2±1 =
γs

4
(N + 2) (for N even) ,

LN/2±1N/2±1,N/2N/2 =
γs

4
N (for N even). (2.93)
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Figure 2.5:: Schematic view of the quasipotential and localized states in the rotating
frame for the case N = 8. Shown are the pairs of levels consisting of |n〉 and |N−n〉
each of which is localized in one of the two wells. The corresponding quasienergy
states |ϕn〉 and |ϕN−n〉 are a superposition of the two localized states, see text. The
horizontal arrows indicate the multiphoton transitions between the two quasienergy
states. The vertical arrows mark the bath-induced transitions with their thickness
being proportional to the transition rate. The quasienergy axis indicates that the
states on the bottom of this schematic quasipotential have larger quasienergy.

The transition rates between states belonging to the same pair are zero with the
exception L(N−1)/2(N−1)/2,(N+1)/2(N+1)/2 = γs(N + 1)/8.

The dynamics can be illustrated with a simple analogy to a double-well poten-
tial. Each partner of the pair |ϕn〉 and |ϕN−n〉 of the quasienergy states consists
of a superposition of two harmonic oscillator states |n〉 and |N − n〉 which are the
approximate eigenstates of the static anharmonic potential in the regime of weak
nonlinearity. In our simple picture, |n〉 and |N − n〉 should be identified with two
localized states in the two wells of the quasienergy potential, see Fig. 2.5 for il-
lustration. In Subsection 2.3.2, we have derived the quasipotential in Eq. (2.17)
by writing the RWA Hamiltonian Eq. (2.13) in terms of the reduced position and
momentum operators Xr and Pr. The right/left well should be identified with the
internal/external part of the quasienergy surface shown in Fig. 2.2

In Fig. 2.5, we have chosen N = 8. Within our analogy, the states
|0〉, |1〉, ..., |N/2 − 1〉 are localized in one (here, the left) well, while |N〉, |N −
1〉, ..., |N/2 + 1〉 are localized in the other well (here, the right). The fact that the
true quasienergy states are superpositions of the two localized states is illustrated
by a horizontal arrow representing tunnelling.

From Eq. (2.93) follows that a bath-induced transition is only possible between
states belonging to two different neighboring pairs. As discussed after Eq. (2.90), the
only contribution to the transition rates comes from nearby HO states. In our case,
we consider only spontaneous emission which corresponds to intrawell transitions
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induced by the bath. This is shown schematically in Fig. 2.5 by the vertical arrows
with their thickness being proportional to the transition rates. We emphasize that
the bath-induced transitions occur towards lower lying HO states. Consequently, in
our picture, spontaneous decay happens in the left well downwards but in the right
well upwards.

The driving field excites the transition from |0〉 to |N〉 while the bath generates
transitions between HO states towards lower energies according to |N〉 → |N−1〉 →
...→ |0〉 when only spontaneous emission is considered.

As a consequence, the ratio of the occupation numbers of two states belonging
to two neighboring pairs is simply given by the ratio of the corresponding transition
rates according to

̺nn = ̺N−nN−n ,
̺nn

̺n+1n+1
=

Lnn,n+1n+1

Ln+1n+1,nn
=

n + 1

N − n
. (2.94)

Hence, the unpaired state |ϕN/2〉 (for N even) or the states |ϕ(N−1)/2〉 and |ϕ(N+1)/2〉
(for N odd) are the states with the largest occupation probability. By iteration, one
finds

̺N/2 =



1 + 2

N/2
∑

n=1

n−1
∏

k=0

N − 2k

N + 2 + 2k





−1

= 0.5, 0.37, 0.31, 0.27, . . .

for N = 2, 4, 6, 8, . . . , (2.95)

and

̺(N∓1)/2 =



2 + 2

(N−1)/2
∑

n=1

n−1
∏

k=0

N − 1 − 2k

N + 3 + 2k





−1

= 0.37, 0.31, 0.27, 0.25, . . .

for N = 3, 5, 7, 9, . . . (2.96)

Density matrix of the stationary state around the resonance

So far, we have discussed the dynamics exactly at resonance. Next, we consider the
situation around the resonance and for an increased coupling to the bath. Therefore,
we compute the stationary solution using the conditions in Eq. (2.88) and the general
leading order solution for the quasienergy states given in Eq. (2.26). The expressions
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for the rates which are modified compared to before are readily calculated to be

L00,11 = L00,N−1N−1 =
γs

2
cos2 θ

2
,

LNN,11 = LNN,N−1N−1 =
γs

2
sin2 θ

2
,

L11,00 = LN−1N−1,00 =
γs

2
N sin2 θ

2
,

L11,NN = LN−1N−1,NN =
γs

2
N cos2 θ

2
,

L00,0N = L00,N0 = LNN,0N = LNN,N0 = L0N,00 = LN0,00

= L0N,NN = LN0,NN =
γs

2
N sin

θ

2
cos

θ

2
,

L11,0N = L11,N0 = LN−1N−1,0N = LN−1N−1,N0

= −γs

2
N sin

θ

2
cos

θ

2
,

L0N,11 = LN0,11 = L0N,N−1N−1 = LN0,N−1N−1

=
γs

2
sin

θ

2
cos

θ

2
. (2.97)

Similarly, there are only three equations which change compared to the previous
situation. They read

0 = −N sin2 θ

2
̺00 + cos2 θ

2
̺11 +N cos

θ

2
sin

θ

2
̺N0 ,

0 = −N cos2 θ

2
̺NN + sin2 θ

2
̺11 +N cos

θ

2
sin

θ

2
̺N0 ,

0 = −iΩ(∆)̺N0 +
γs

2

[

−N̺N0 + cos
θ

2
sin

θ

2
(N̺00 +N̺NN + 2̺11)

]

, (2.98)

with the quasienergy level splitting

Ω(∆) = εN − ε0 = −sgn(∆)

[

(

ν(N + 1)

2
N∆

)2

+ Ω2
N,0

]1/2

. (2.99)

These equations can be straightforwardly solved by

̺00 =

[

1

N
cot2 θ

2
+
Ng2

2
cos2 θ

2

(

1 +
1

2
tan2 θ

2
+

1

2
cot2 θ

2

)]

̺11 ,

̺NN =

[

1

N
tan2 θ

2
+
Ng2

2
sin2 θ

2

(

1 +
1

2
tan2 θ
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Here, g = γs/Ω(∆) has been defined as the ratio between the damping strength and
the Raby frequency of the narrowest avoided crossing. Away from the resonance
(|θ| ≪ 1), the density matrix follows as

̺ ≃ |ϕ0〉〈ϕ0| ≃ |0〉〈0| . (2.101)
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In the limit of strong coupling corresponding to g ≫ 1, one finds

̺ ≃ cos2 θ

2
|ϕ0〉〈ϕ0| + sin2 θ

2
|ϕN〉〈ϕN | + sin

θ

2
cos

θ

2
(|ϕ0〉〈ϕN | + |ϕN〉〈ϕ0|) = |0〉〈0| ,

(2.102)
for any θ. In the opposite limit g ≪ 1 and for θ ≈ π/2 (near resonance) we recover
the solution in Eq. (2.94) characterized by a large occupation of the unpaired state
|ϕN/2〉 (for N even) or the states |ϕ(N−1)/2〉 and |ϕ(N+1)/2〉 (for N odd).

These results can be interpreted in the framework of the analogy to the double-
well potential carried out in the previous section. Starting from the bottom of
the right well, dissipation causes transitions towards the top of the right well and
subsequently towards the bottom of the left well and tends to populate the state
|0〉 at the bottom of the left well. On the other hand, tunnelling causes transition
from the left to the right well and vice versa. Away from resonance, the tunnelling
from the state at the bottom of the left well to the bottom of the right well is not
possible and the resonator gets stuck at the bottom of the left well. Near resonance
the stationary solution results from a competition between dissipation and driving
induced tunnelling to the state |N〉. For g ≫ 1, the dissipation is much faster
than tunnelling and at equilibrium we expect the oscillator to populate the state
|0〉. On the other hand for g ≪ 1 and θ ≈ π/2, the tunnelling is much faster than
dissipation and since the dissipation towards the top of the right well is faster than
the one towards the bottom of the right well, an higher population of the states at
the top of the quasipotential results.

In the next subsection we will derive an analytical expression for the lineshape of
the multi-photon resonances when α ≈ 0.01 or less, being consistent with the RWA.
In this limit there are multiple avoided level crossings at the same driving frequency.
Nevertheless only the N−photon transition is crucial for the mechanism illustrated
above. For this reason, we expect the analytically computed lineshape to yield a
qualitatively correct picture also for stronger anharmonicity, when the degeneracy
of the avoided level crossing is lifted. We shall prove this statement by numerically
calculating the lineshape for α ≈ 0.1 in Section 2.6.

Lineshape around the resonance

Within our partial secular approximation, the lineshape of the oscillator’s nonlinear
response given in Eq. (2.85) reduces to

A =
√

2x0

∣

∣

∣

∣

∣

∑

αβ

̺ααAαα + ̺0NA0N + ̺N0AN0

∣

∣

∣

∣

∣

. (2.103)

The leading order is given by the zeroth order expression for ̺ and the first-order
expressions for Aαα, AN0 and A0N . In order to compute these matrix elements, we
determine the first order eigenvectors using Van Vleck perturbation theory according
to

|ϕ0〉1 = eiεS1|ϕ0〉0 , (2.104)
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where S1 is the first order component in the expansion of S with respect to ε given
in Eq. (2.21). The matrix elements of its off-diagonal blocks are given by

〈α|S1|β〉 = −i 〈α|V |β〉
Eβ −Eα

. (2.105)

Here, Eα are the eigenenergies of the unperturbed Hamiltonian H0 given in Eq.
(2.20). This yields for N = 2

A00 = 3ε

(

1 − 2
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2 sin
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2
cos
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2

)

, A22 = 3ε

(
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√
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2
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2

)

,

A02 = 6
√

2ε cos2 θ

2
A20 = −6

√
2ε sin2 θ

2
, A11 = −9ε . (2.106)

The corresponding result for the nonlinear response for N = 2 is shown in Fig.
2.6 for the case ν = 10−3 and f = 10−4 for different values of γs/Ω2,0. For strong
damping γs/Ω2,0 = 5, the resonance is washed out almost completely. Decreasing
damping, a resonant lineshape appears whose maximum is shifted compared to the
resonance condition ωex = ω1 + 3ν/2. Note that the dashed line refers to the result
which includes all orders in ε and which follows from the numerical solution of the
master equation for an Ohmic bath at temperature T = 0.1T0.

The picture which arises for the behavior is the following: For weak damping
(γs ≪ Ω2,0), the equilibrium state is a statistical mixture of quasienergy states. At
resonance, the most populated state is |ϕ1〉 which oscillates with a phase difference
of −π in comparison with the driving. This is due to the negative sign of A11 in Eq.
(2.106). Hence, at resonance the overall oscillation of the observable occurs with a
phase difference of ϕ = −π. Far away from resonance, the most populated state is
|ϕ0〉, see Eq. (2.101), which oscillates in phase with the driving. Thus, the overall
oscillation occurs in phase, i.e., ϕ = 0. If no off-diagonal element of the density
matrix is populated (which is the case for weak damping), the overall phase is either
ϕ = 0 or ϕ = −π. Hence, increasing the distance from resonance, the amplitude
A has to go through zero yielding a cusp-like line-shape. This implies the existence
of a maximum in the response. For slightly larger damping, the finite population
of the off-diagonal elements leads to a smearing of the cusp. For larger damping,
the resonance is washed out completely, as has been already discussed, see Eq.
(2.102). In this regime, the oscillation is in phase with the driving. By decreasing
the damping, the population of the out-of-phase state starts to increase near the
resonance resulting in a reduction of the in-phase oscillation and thus producing a
minimum of the response.

Let us now consider the case of an arbitrary resonance N > 2. A straightforward
calculation yields

AN/2N/2 = −ε(N + 1)2 A(N±1)/2 = ±1

2

√

N + 1

2
− ε

(N + 1)2

4
. (2.107)

Hence an occupation of the states at the top of the quasipotential results in an −π
out-of-phase response. With a detailed calculation it can be proved that at equilib-
rium and for θ ≈ π/2 and g ≪ 1 these states dominates the dynamics, and an overall
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Figure 2.6:: Nonlinear response at the two-photon resonance N = 2, where ωex =
ω1 + 3ν/2 for the parameters µ = 10−4 and ν = 10−3 (in dimensionless units) for
different values of the damping.

out-of-phase oscillation results. Note that a calculation up to first order in ε for the
density matrix is required for N odd, since the matrix elements A(N±1)/2(N±1)/2 have
a zero-th order term, in order that the overall result for A is again of first order in
ε. We omit this cubersome and scarcely illuminating calculation. However, since
all the other Floquet states oscillates in-phase it is clear that also in this case a
transition to an in-phase antiresonant response is expected.

Some remarks on the observability of such high photon number resonances are in
order. The size of the Rabi frequency ΩN,0 for the N−photon transition is crucial.
In fact, it specifies both the width of the transition and the order of magnitude of the
coupling to the bath, which is compatible to the observability of this quantum effect.
Its perturbative expression, given in Eq. (2.24), is of N−th order in ε. In Fig. 2.7, we
show the behavior for N = 3 for various damping constants γs/Ω3,0 for the case µ =
0.5×10−4 and ν = 10−3 corresponding to ε = 0.025 and Ω3,0 = 0.7×10−7. For such
a small ε there is a good agreement between the perturbative solution, and the exact
solution. However, for γs/Ω3,0 = 5 corresponding to γs = 0.35×10−6, the resonance
is washed out completely. Only when the damping is decreased, a dip appears which
corresponds to an antiresonance. Decreasing the damping further, the antiresonance
turns into a clear resonance. However an oscillator with a quality factor Q ≈ 108

is required to observe such a resonance. Although the experimental techniques are
evolving rapidly, such high quality factors seem very difficult to achieve in a near
future. Hence, it seems more relevant for the experiments to consider larger driving
strengths yielding larger Rabi frequencies. For this reason, in the next section we will
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Figure 2.7:: Nonlinear response at the three-photon resonance N = 3, where ωex =
ω1 +2ν for the parameters µ = 0.5× 10−4 and ν = 10−3 (in dimensionless units) for
different values of the damping.

leave our analytical perturbative approach and treat the system dynamics exactly
by diagonalizing numerically the Floquet Hamiltonian given in Eq. (2.9).

2.6 Numerical results in the strong driving regime

In this section we solve numerically the Floquet master equation (2.76). We will show
that the physical picture that arouse from the analytical perturbative treatment of
Sections 2.3.2 and 2.5 allows to interpret the lineshape and the phase response of
the quantum Duffing oscillator for a broad range of parameters, including larger N ,
larger T and larger ε. Moreover we will investigate the tunnelling dynamics near the
stationary regime, which prevents the bistability of the classical Duffing oscillator
to show up in the quantum regime.

We first compute the quasi-energies εα and the Floquet states |φα(t)〉 as out-
lined at the end of Section 2.3.1. Thereby, we truncate the total Hilbert space of
the anharmonic resonator to its N−dimensional lowest energy subspace. We then
compute the matrix elements, defined in Eqs. (2.68) and (2.73), which are needed to
evaluate the operator S in Eq. (2.76). This is a N 2×N 2−matrix and can be readily
diagonalized numerically by standard means. In order to be definite, we consider
Ohmic damping only. However, according to the discussion in the previous section,
the results are not expected to change qualitatively in the case of a super-Ohmic
bath. For practical purposes, we set N = 12 throughout this part. Note that we
have confirmed convergence with respect to N for all results shown below.
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for varying the driving frequency ω. Parameters are kBT = 0.1~ω1, α = 0.1α0, f =
0.1f0, γ = 0.005ω1. Dashed line: Results of the classical Duffing oscillator at T = 0
with the remaining parameters being the same.

The stationary solution of Eq. (2.78) corresponds to a zero eigenvalue of S.
The remaining eigenvalues all have a negative real part leading to a decay of the
corresponding mode with time. Due to the structure of the master equation (2.76),
there exist two classes of eigenvalues: (i) the first class having an imaginary part of
zero consists of individual eigenvalues (associated to relaxation), and (ii) the second
class having non-zero imaginary parts (associated to dephasing) consists of pairs of
complex conjugated eigenvalues. The eigenvalues can be ordered according to the
size of the absolute value of their real parts. As it turns out, there is one eigenvalue,
corresponding to a relaxation process, with the smallest non-zero absolute value of
the real part. Moreover, we find that its real part, which we denote by Γ, is clearly
separated in size from the remaining ones indicating a separation of time scales.
That eigenvalue is responsible for the tunnelling dynamics at long times, as will be
discussed in Section 2.6.3.

2.6.1 Amplitude and phase response

A typical response profile for the amplitude A(ω) as a function of the driving fre-
quency is shown in Fig. 2.8. For increasing driving frequency, the lineshape shows:
(i) several broad resonances, (ii) a dramatic decreases of the response, showing
a shoulder-like shape remnant of the classical form of the response (indicated by
the dashed line), (iii) a sharp resonance and (iv) an antiresonance. The associated
quasienergy spectrum, shown in Fig. 2.9 a), displays multiple avoided level crossings
of the quasienergies in correspondence of the distinct resonances and the antireso-
nance. By switching-off adiabatically the driving strength, we label the different
quasienergy level with the quantum number n associated with the unperturbed lev-
els of the nonlinear oscillator. Thereby, we can identify each avoided crossing with
a multiphoton process. For the moderate value of the nonlinearity considered here
(α = 0.1α0 for all the simulations in this section), the avoided crossings are no longer
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Figure 2.9:: a) Quasienergy levels εα(ωex) , b) amplitude A(ωex) of the fundamental
mode, c) occupation probability of the Floquet state oscillating out-of-phase P (ωex),
d) overall phase response ϕ(ωex) (bottom right) for for different temperatures. The
remaining parameters are α = 0.1α0, f = 0.1f0 and γ = 0.005ω1.

degenerate. However, the driving strength is also rather strong (f = 0.1f0) and the
widths of the broader multiphoton transitions result to be much larger than their
displacements from the narrowest one. We label each resonance with the number N
of photon exchanged in the transition corresponding to the narrowest avoided cross-
ing of the levels εN and ε0. Near a resonance corresponding to N even, the level with
the lowest quasienergy is associated to the N/2−th Floquet state and is unpaired.
At the following resonance N ′ = N + 1 (odd), it displays an avoided crossing with
the level corresponding to the (N ′+ 1)/2-Floquet state and the two levels exchange
their labels. The lowest energy level switch from the N/2 = (N ′−1)/2-Floquet state
to the (N ′ + 1)/2-Floquet state. Hence the lowest quasienergy level, in Fig. 2.9 a),
corresponds to the state, which has the largest occupation probability around the
resonances and is responsible for the large out-of-phase oscillation, in the limit of
weak nonlinearities and weak driving.

In this moderate driving regime, we do not expect the perturbative result for
the stationary density matrix to be accurate. However, the occupation probability
of such a state, shown in Fig. 2.9 c), displays clear peaks around the resonance fre-
quencies. To each of these peaks corresponds a minimum close to −π in the phase
response, shown in figure 2.9 d). This suggest that the interpretation, carried out
in Section 2.5, of the resonances and the antiresonances, as a result of competing
out-of-phase and in-phase oscillations of different Floquet states is still valid in this
moderate nonlinearity and driving regime. In fact, this picture explains qualitatively
the different structures present in the lineshape of the response:
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(i) For frequency corresponding to N small (N = 2, 3) where broad resonances are
present, the population of the lowest quasienergy level decreases while moving away
from one resonance. However, the transition to an in-phase oscillation is not pos-
sible, because the degenerate avoided crossings associated with the next resonance
are very broad, and they readily cause an increase of the occupation of the lowest
energy state while approaching the resonance. In this regime the overall phase of
the oscillation stays close to −π.
(ii) While moving away from the 4−photon resonance, the population of the low-
est quasienergy state decreases sharply, correspondingly the phase increases up to
ϕ ≈ −π/2 indicating that the contribution of the in-phase Floquet states and the
out-of-phase Floquet state to the overall oscillation cancel out. The amplitude does
not vanish due to non-vanishing coherences in the stationary state, which yield a
small oscillation. The transition to an overall in-phase oscillation is blocked by the
influence of the the next group of avoided crossings corresponding to the 5−photon
resonance.
(iii) Around this resonance the population of the lowest energy state displays a clear
peak, correspondingly the phase defines a minimum close to −π and the amplitude
has a sharp maximum.
(iv) Moving away from the 5−photon resonance the occupation probability of the
state oscillating out-of-phase decreases down to zero, while the overall phase in-
creases up to zero: only states oscillating in-phase are occupied. Around the
6−photon resonance the occupation probability of the out-of-phase state displays
a small maximum. The corresponding out-of-phase oscillation partially cancel the
dominating in-phase oscillation, yielding an antiresonance.

2.6.2 Interplay between dissipation and tunnelling

In the limits of validity of the leading order RWA, we have interpreted the large
occupation at resonance of the state oscillating out-of phase in terms of the analogy
between this system and a static double-well potential. This analogy is based, in
first place, on the similarity of the quasienergy spectrum of the driven nonlinear
oscillator to the energy spectrum of the double well potential. The quasienergy (en-
ergy) levels of both systems display multiple avoided crossings for certain value of
the control parameter (the driving frequency or a static bias for the driven oscilla-
tor and the double well, respectively). In correspondence to these multiple avoided
crossings, each pair of eigenstates of the double well potential, whose energy levels
are displaying an avoided crossing, is given by the symmetric and the antisymmetric
superposition of two states localized in opposite wells. Correspondingly, the pair of
states of the driven oscillator, whose quasienergy levels display the avoided crossing
associated with the (N − 2n)−photon transition, is the superposition of the eigen-
states of the harmonic oscillator in the rotating frame |N − n〉 and |n〉 (n < N/2).
It is thus natural to identify the two opposite wells as the set {|N − n〉} and {|n〉}
respectively, with the state |N/2〉 sitting on top of the two well (for N even). Such
an identification sheds light to the other central similarity between the two systems:
the bath induced dissipation induces intrawell transitions only. In fact, we can read
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from the transition rates in Eq. (2.90), that two states localized in opposite wells
have a vanishing transition rate. In contrast to a real static double-well potential
the dissipation induces transitions toward the top of the potential in one well (corre-
sponding to the set {|n〉}, we refer to this set as ‘right’ well) and toward the botton
in the other well (corresponding to the set {|N − n〉}, we refer to this set as ‘left’
well) when only spontaneous emission is taken into account . Hence, dissipation
tends to populate the state at the bottom of the ‘right’ well (that we have identified
with the groundstate of the harmonic oscillator in the rotating frame).

At resonance, this mechanism is competing with tunnelling, which induces tran-
sition from the bottom of the ‘right’ well to the bottom of the ‘left’ well. When
tunnelling is faster than dissipation the states at the top of the potential are fa-
vored because dissipation is faster in the ‘right’ well than in the ‘left’ well (see the
transition rates in Eq. (2.93)). The time scale of this tunnelling transition and of
dissipation are set by the inverse Rabi frequency of the narrowest avoided crossing
Ω−1

N,0 and the inverse coupling to the bath γ−1. Away from the narrowest resonance,
the tunnelling from the state at the bottom of the ‘left’ well to the right well is
not possible and the oscillator is blocked in the ‘right’ well. The results for the
quasienergy spectrum, the occupation of the state oscillating out-of-phase, the am-
plitude and the phase response indicate that a similar mechanism is present beyond
the limit of validity of the leading order low temperature RWA. The investigation
of such a mechanism is the focus of this section.

First, we check that the physics is still governed by the ratio between the Rabi
frequency of the narrowest avoided crossing and the coupling to the bath, by consid-
ering the response at the multiple avoided crossings associated with the 6−photon
antiresonance for varying coupling γ. We expect a transition from the in-phase an-
tiresonant to the out-of-phase resonant behavior, when γ ≈ ΩN,0. The amplitude
and phase responses for different damping constants γ are shown in Fig. 2.10. The
6−photon antiresonance turns into a resonance when γ is decreased below the critical
value γc = 0.001. For the same value of γ, the minimum in the phase response ap-
proaches −π indicating out-of-phase oscillation. The Rabi frequency Ω6,0 ≃ 0.0005,
given by the minimal splitting of the narrowest avoided crossing, shown in the inset
of Fig. 2.10, is of the same order of magnitude, whereas the Rabi frequency of the
second narrowest avoided crossing Ω6,1 = 0.02 is much larger than the threshold
value of γ. This is the only resonance which is well separated from all the others,
and is best suited to be compared with the analytical results of Section 2.5. The
similarity with the 3−photon resonance in Fig 2.7 is striking.

However, two important differences can be noticed after a careful inspection:
First, the resonant behavior seems to be compatible with a stronger coupling to the
bath. In fact, here, we have Ω6,0/γc = 0.5, whereas for the 3−photon resonance
in the RWA it is Ω6,3/γc = 2. Second, the width of the antiresonance is much
larger than the width of the resonance. The width of the resonance, as expected, is
related to Ω6,0, whereas the width of the antiresonance seems more close to the Rabi
frequency of the second narrowest avoided crossing Ω6,1. These two observations
indicate that the low temperature RWA neglects some mechanisms, which favor the
resonant behavior and allow a small population of the out-of-phase state even far
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Figure 2.10:: a) Five-
and six-photon resonance of
the response curve A(ωex)
for different values of the
damping constant γ. The
inset shows the narrow-
est avoided crossing at the
6−photon resonance. Re-
maining parameters are f =
0.1f0, α = 0.1α0, T = 0.1T0.
b) Phase response ϕ(ωex)
for the same parameter as
above. The dashed vertical
lines mark the N = 5− and
the N = 6−photon transi-
tion.

away from the narrowest avoided crossing. This mechanism can be identified with
a finite transition rate from the bottom of the ‘left’ well to its first excited state.
Away from the narrowest avoided crossing, the presence of such a transition permits
a subsequent (N−2)−photon tunnelling process associated to the second narrowest
avoided crossing. Consequently the system can escape from the ‘right’ well and a
finite occupation of the state at the top of the quasipotential is expected even away
from the narrowest avoided crossing. This scenario is illustrated schematically in
Fig. 2.11.

Temperature assisted tunnelling

An obvious mechanism yielding a transition from the bottom of the right well to its
first excited state and a consequent broadening of the resonances (antiresonances)
is the absorption of one photon from the bath. Such thermal processes can be
neglected only when T ≪ T0. The effect of an increasing temperature on the
5−photon and 6−photon resonances is shown in Fig. 2.12. When temperature is
increased from T = 0.1T0 to T = 0.2T0 the effect of the enhancement of the thermal
processes is negligible around the 5−photon resonance whereas it is visible around
the antiresonance. The reason is that when the oscillator is blocked in the ’right’ well
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Figure 2.11:: Schematic view of the quasipotential and localized states in the rotat-
ing frame for the case N = 8 away from the narrowest avoided crossing. There are
three pairs of extended states, but the two states at the bottom of the quasi-potential
are localized in one well. The vertical arrows mark the bath-induced transitions with
their thickness being proportional to the transition rate. The quasienergy axis in-
dicates that the states on the bottom of this schematic quasipotential have larger
quasienergy.

even a small increase in the thermal transition rate from the bottom of the ‘right’
well activates the 4−photon tunnelling to the ‘left’ well and changes dramatically
the stationary solution. This is even more apparent when the temperature is further
increased and a transition to a resonant out-of-phase oscillation is observed. Such
a behavior is clearly due to the interplay of a thermal transition to the first excited
state of the ‘right’ well and the 4−photon tunnelling to the ‘left’ well.

Driving induced dissipation

By increasing the driving strength, the multiple avoided crossings become broader,
thereby enhancing resonant tunnelling. The increased tunnelling rate leads obviously
to a broadening of the resonances in the amplitude response. However, there is a
more subtle mechanism leading to the broadening of the resonances. When the
driving is increased above the weak driving limit, a bath induced transition from
the bottom of the ‘right’ well becomes possible and the (N − 2)−photon transition
is activated as for the temperature assisted tunnelling. In fact, the assumption that
the relaxation takes place towards the bottom (top) of the ‘right’ (‘left’) well is
not based only in disregarding the thermal processes but also in using the leading
order RWA. Within this approximation the two Floquet states in the rotating frame
|ϕN〉 ≡ eiωexa†at|φN(t)〉 and |ϕ0〉 ≡ eiωexa†at|φ0〉, which correspond to the pair of
levels displaying the avoided crossing associated with the N−photon transition, are
a superposition of the eigenstates of the harmonic oscillator in the rotating frame
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Figure 2.12:: a) Five-and
six-photon resonance of the
response curve A(ωex) for
different values of the tem-
perature T . The six-photon
resonance develops from an
antiresonance for low T to a
true resonance for higher T .
Remaining parameters are
f = 0.1f0, α = 0.1α0, γ =
0.005ω1. b) Phase shift
ϕ(ωex) for the same param-
eters as above. The dashed
vertical lines mark the N =
5− and the N = 6−photon
transition.

|N〉 and |0〉. Exactly at resonance, |ϕN〉 and |ϕ0〉 are given by a symmetric and
an antisymmetric superposition, respectively, leading to a finite transition rate to
the states |ϕ(N−1)〉 ≡ eiωexa†at|φ(N−1)(t)〉 and |ϕ1〉 ≡ eiωexa†at|φ1(t)〉 (see Eqs. (2.90)
and (2.93)). Away from resonance, |ϕ0〉 ≃ |0〉 and at low temperature no bath-
induced transition from this state is possible and at equilibrium the oscillator is
stuck in this state. However, already at second order in perturbation theory a
finite tunnelling rate to the states |ϕN−1〉 and |ϕ1〉 is possible activating the broader
(N − 2)−photon transition. When moderate driving strengths are considered, this
mechanism is favored also by the terms in the driving part of the Hamiltonian, which
are fast oscillating in the rotating frame and are neglected in the RWA Hamiltonian
Eq. (2.13). When also these terms are considered, the full Floquet solution are
time-dependent also in the rotating frame. They can be expressed as vectors of
the extended Hilbert space R ⊗ T , as seen in Section 2.3.1. The general form in
terms of the harmonic oscillator eigenstates |n〉 and the m−photon state |mτ 〉 of the
driving field is |φα〉 =

∑

n,m cn,m|n〉⊗|mτ 〉. The index n in the sum appearing in the
dissipative transition rates Eq. (2.77) refers to the number of photons exchanged in
the corresponding process. n > 0 (n < 0) corresponds to the emission (absorption)
of n−photon from the driving field to the bath.
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Figure 2.13:: a) Five-
and six-photon resonance of
the response curve A(ωex)
for different values of the
driving amplitude f . The
six-photon resonance devel-
ops from an antiresonance
for small driving strengths
to a true resonance for
larger values of f . Remain-
ing parameters are kBT =
0.1~ω1, α = 0.1α0, γ =
0.005ω1. b) Phase response
ϕ(ωex) for the same param-
eter as above. The dashed
vertical lines mark the N =
5− and the N = 6−photon
transition.

Within the RWA, the only relevant transitions describe the emission (absorption)
of one photon always associated to the increment (reduction) of the harmonic oscil-
lator occupation number by one. This is in general not true when stronger driving
is considered. Even in the low temperature limit T ≪ T0, the excitation to a state
with an higher occupation number is possible, when such a process is associated
to the spontaneous emission of n photons from the driving field to the bath. Such
low temperature bath-induced processes, as the thermal processes considered in the
previous section, can activate the (N −2)−photon transition, yielding a broadening
of the resonances. The effect of an increasing driving strength on the 5−photon and
the 6−photon resonance is shown In Fig. 2.13, the 5−photon resonance becomes
broader while its phase shift approaches −π. The 6−photon antiresonance turns
into a resonance while its phase shift varies from ≃ 0 to ≃ −π.

2.6.3 Quantum relaxation in the driving induced bistability

The dynamic bistability of the steady state of the classical Duffing oscillator does
not survive in the quantum system. The reason is that the system will escape the
metastable state asymptotically via tunnelling, similar to the case of the driven
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Figure 2.14:: a) Time-resolved dynamics of the amplitude A for ωex = 1.167ω1

(black solid line). Fast transient oscillations occur as relaxation in the metastable
well. The long-time dynamics is governed by a slow exponential decay to the globally
stable state characterized by a rate Γ (relaxation rate). The red solid line shows a
fit to an exponential e−Γt. The other parameters are: α = 0.1α0, f = 0.1f0, kBT =
0.1~ω1 and γ = 0.005ω1. b) Relaxation rate Γ as a function of the driving frequency
for different damping strengths. The peaks correspond to resonant tunnelling in the
dynamic bistability. The other parameters are the same as in a).

double-well potential [97]. Note also that, as a consequence, the hysteretic behavior
is suppressed if the control parameter ωex is varied truly adiabatically.

Nevertheless, signatures of the dynamic bistability and tunnelling can be found
if we consider how the steady state is reached. For this, we show in Fig. 2.14 a) the
time evolution of the amplitude A (local maxima of the vibrations) starting with the
ground state of the undriven oscillator as the initial state [98]. We observe fast oscil-
lations at short times. They decay, on the time scale γ−1 associated to the relaxation
of the damped oscillator in a metastable state. Then, starting from a metastable
state at intermediate times, a slow exponential decay towards the asymptotically
globally stable state can be observed. During this process no oscillation is visible
indicating that it can be associated with a relaxation transition rather than with
the decay of a coherence.

The inverse timescale of this slow process is the quantum relaxation rate Γ for
the nonlinear oscillator. It is determined by the smallest absolute value of the real
part of the eigenvalues of the operator S in Eq. (2.61). Results for the quantum
relaxation rate Γ as function of the control parameter ωex are shown in Fig. 2.14 b)
for different damping constants γ.

In the monostable region (not shown in the figure), the relaxation rate Γ is close
to γ, which is the relaxation rate of the monostable damped harmonic oscillator.
In the bistable region, it decreases sharply, thereby defining a separation of time
scales. Most importantly, it displays resonances at the same values of the frequencies
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where the avoided crossings of the quasienergy levels occur (see dashed vertical
lines). This results are very similar to the corresponding results for a static double-
well potential [97]. This similarity is not surprising, having extensively analyzed in
sections 2.5.2 and 2.6.2 the formal analogy between the two systems. In fact, the
results can be qualitatively explained in terms of that analysis. The quasipotential
defines two wells and the dissipation is characterized by intrawell transitions. For
this reason the dissipation is much slower than in the monostable region or for
the harmonic damped oscillator, characterized by the relaxation rate γ. Around the
multiple avoided crossing this separation of time scales does not take place when the
two wells are connected through resonant multiphoton transitions. For this reason,
provided that the tunnelling is not destroyed by the system-bath interaction, peaks
in the relaxation rate appear.

2.7 Conclusions and outlook

In this chapter, we have investigated the dynamics of the quantum Duffing oscil-
lator. Starting from the solution of the coherent problem, we have subsequently
included the influence of the environment by means of a Born-Markovian master
equation. In particular, we have laid the focus on the deep quantum regime solv-
ing the problem for a broad range of parameter, by means of analytical as well as
numerical approaches.

We have identified the double-well quasipotential governing the coherent dynam-
ics. The dissipative dynamics is characterized by inter-well tunnelling transitions
and intra-well bath-induced transitions. The complex interplay of tunnelling and
dissipation gives rise to a rich phenomenology, which remained unaddressed in pre-
vious works. The two main features are:
(i) The lineshape of the nonlinear response displays resonances as well as antireso-
nances corresponding to degenerate multi-photon transitions for the coherent sys-
tem. These structures are visible as long as the coherent tunnelling is faster than
the dissipative processes.
(ii) The quantum relaxation rate Γ associated to the slowest relaxation process de-
creases below the linear relaxation rate γ in the bistable region, thereby defining a
separation of time-scales. The effect might be reduced around the multiple avoided
level crossings, if the oscillator can switch between the two wells via resonant multi-
photon transitions. As a consequence the relaxation rate as a function of the driving
frequency displays peaks, if the tunnelling is not suppressed by the coupling to the
bath.

The formalism developed in this chapter could represent an effective tool to in-
vestigate more general problems. For instance the dynamics of a driven nonlinear
oscillator parametrically coupled to a two level system, describing a SQUID cou-
pled to a flux qubit by a mutual inductance. Another interesting generalization of
the Duffing oscillator model is the bichromatically driven nonlinear oscillator. The
investigation of its dissipative dynamics in the deep quantum regime will be the sub-
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ject of a future publication. In Appendix C of this thesis, we preliminarily present
the derivation of the corresponding master equation.
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3 Nanoscale atomic waveguides with

suspended carbon nanotubes

In this chapter we present the proposal of an experimentally viable set up for the
realization of a one-dimensional (1D) ultracold atom gas in a nanoscale magnetic
waveguide formed by a single doubly-clamped suspended carbon nanotubes (CNT).

The experimental techniques for manipulating alkali cold atom clouds via elec-
tromagnetic fields has been rapidly evolving throughout the past quarter of the
century. This path led in 1995 to the realization of the first Bose-Einstein conden-
sate in diluted gases [99] and more recently to the realization of 1D gases of bosons
and fermions [32–34]. A comprehensive review on this topic goes beyond the scope
of this work, we refer the interested reader to Refs. [15, 100, 101]. Nevertheless,
an introductory section is devoted to the fundamental problem of the interaction
between alkali atoms and the electromagnetic field. In passing, we sketch also the
most important experimental applications.

3.1 Introduction: Alkali atoms in electromagnetic fields

As we shall detail below, the interaction of an atom with the electromagnetic field is
specified by its ground-state configuration and its low-energy excitations. For this
reason, we start by shortly reviewing the electronic structure of the alkali atoms.

The ground-state electronic structure of alkali atoms is simple: all electrons but
one occupy closed shells and the remaining one is in an s-orbital in an higher shell.
The only degree of freedom which is not fixed is the orientation of the valence electron
spin. Therefore the doubly degenerate ground-state has the total spin S = 1/2, total
orbital momentum L = 0 and total angular momentum J = 1/2 and is denoted in
standard notation by 2S1/2.

The lowest energy excitation consists in an intra-shell transition of the valence
electron from the orbit with zero angular momentum to the orbit with one quantum
unit of angular momentum (ns → np transition). This process yields a doublet in
the excitation spectrum due to spin-orbit interaction. The lowest (highest) energy
level of the doublets 2P3/2 (2P1/2) is fourfold (doubly) degenerate. The corresponding
states are characterized by the electron spin being opposite to (aligned with) the
orbital angular momentum.

In Table 3.1, we list the wavelengths associated to the nS1/2 → nP3/2 transitions
between the ground-state 2S1/2 and the lowest energy excited state 2P3/2. They are
relevant for experiments were atoms are trapped by means of laser light. In fact,
when the wavelength associated to the laser field is close to the one associated to the
nS1/2 → nP3/2 transition, the atoms experience a strong field-dependent potential.
We shall detail this effect in Section 3.1.1.
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Isotope Z I λsp (nm) ∆Ehf(MHz)
1H 1 1/2 122 1420
6Li 3 1 671 228
7Li 3 3/2 671 804
23Na 11 3/2 589 1772
39K 19 3/2 767 462
40K 19 4 767 -1286
41K 19 3/2 767 254
85Rb 37 5/2 780 3036
87Rb 37 3/2 780 6835
133Cs 55 7/2 852 9193

Table 3.1:: Proton number Z, nuclear spin I, wave-length λsp of the nS1/2 → nP3/2

transition and hyperfine splitting ∆Ehf for the different alkali atoms

In many applications, e.g. in traps operating by means of not too strong magnetic
fields or almost resonant laser light, the hyperfine splitting, due to the coupling
between the electron angular momentum and the nuclear spin, becomes relevant.
This interaction is given in terms of the operators for the nuclear spin I and electronic
angular momentum J as

Hhf = AI · J (3.1)

where A is a constant which depends on the element considered. Since this Hamilto-
nian is invariant under rotation, it conserves the total angular momentum operator
F = I + J. A basis of eigenstates is given by the eigenvectors of F and Fz, denoted
by |F,mF 〉. When the hyperfine interaction is taken into account, the ground-state
level of the alkali atoms splits into a doublet. The two levels forming the doublets
correspond to the total angular momentum F = I + 1/2 (electronic spin aligned
with the magnetic spin) and F = I − 1/2 (electronic spin opposite to the magnetic
spin), respectively. The hyperfine splitting is given by ∆Ehf = (I + 1/2)A. The
corresponding numerical values are listed in Table 3.1 for the different alkali atoms.

3.1.1 Zeeman interaction with an external magnetic field

When an alkali atom is in its electronic ground-state configuration, the only relevant
coupling of the atom degrees of freedom to an external magnetic field is the one of
the valence electron spin. However, many experiments with cold atoms are carried
out in presence of an external field, whose interaction with the electron spin is of
the same order or smaller than the hyperfine electron-nuclear spin coupling. In this
regime, it is necessary to take the hyperfine interaction into account in order to
investigate the dynamics of the electron spin.

We first consider uniform magnetic fields pointing in the z direction. The spin
part of the Hamiltonian then reads

HS = AI · S + gSµBSzBz (3.2)
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with gS ≈ 2 being the Landé factor for the electron spin and µB the Bohr magneton.
In the weak field limit, relevant for most experimental applications, the problem is
formally equivalent to the Zeeman effect in presence of spin-orbit interaction. The
hyperfine term is governing the dynamics and the coupling to the magnetic field
is regarded as a small perturbation. The total angular momentum is thus still
approximately conserved, and the states |F,mF 〉 are approximate eigenstates. At
first order in perturbation theory, the energy level splittings are given by

HS =
A

2
[(F (F + 1) − S(S + 1) − I(I + 1)] + gFµBmFBz , (3.3)

with the Landé factor being

gF = gS
F (F + 1) + S(S + 1) − I(I + 1)

2F (F + 1)
. (3.4)

Let us now consider the more general case of an atom moving in a space-
dependent field. When the hyperfine splitting is much larger than the Zeeman
splitting, we can consider F as a constant of motion, and drop the corresponding
hyperfine term from the spin part of the Hamiltonian Eq. (3.3). Thus, if the field
varies slowly with respect to the atomic lengthscale a0 = 0.52Å, the total Hamilto-
nian for an atom moving in a weak space-dependent magnetic field reads

H =
P2

2m
− µ · B(R) . (3.5)

In the above equation µ = −gFµBF is the atom magnetic moment, whereas R and
P are the center-of-mass (COM) position and momentum operators, respectively.
It is convenient to introduce the local rotation U(R), which rotates the magnetic
fields to be parallel to the z axis. The Hamiltonian in the rotated frame reads

H ′ = U †(R)HU(R) =
P2

2m
+ ∆T + gFµBFz|B(R)| . (3.6)

The additional term ∆T appears because the kinetic term is not invariant under a
local rotation. When it is neglected, the eigenstates in the rotated frame are the
states |F,mF 〉, whose spin follows adiabatically the direction of the field. We refer
to this approximation as adiabatic approximation.

According to the sign of gFmF an atom is attracted to or repelled from regions
of high field. The states corresponding to gFmF positive (negative) are referred to
as weak-field (strong-field) seeking states. The term ∆T causes non-adiabatic spin
flip transitions from weak-field seeking to strong-field seeking states. This transition
are often referred to as Majorana spin flips.

Since there cannot be a maximum of the magnetic field in free space [102], atoms
in a strong-field seeking state can not be trapped by means of a purely magnetic
confinement. Conversely, there are many alternative strategies for designing a mini-
mum of the magnetic field by means of wire and bias fields, thereby trapping atoms
in weak-field seeking states. One refers to such traps as magnetic traps. The most
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simple configuration, the so-called side-guide, is illustrated below in the framework
of our proposal for a nanowaveguide. For a comprehensive review on this subject
see Ref. [15].

Let us mention in passing that the adiabatic approximation is not valid near a
zero minimum of the magnetic field. Such a minimum constitutes an hole in the trap,
since the rate of non-adiabatic spin flip transition diverges while it is approached.
This problem can be circumvented in a number of ways, for instance, by applying
laser radiation near the node of the field.

The spin flip transitions play an important role also in the framework of evapo-
rative cooling. By selectively removing the most energetic atoms, the remaining one
are cooled once the system thermalizes via elastic scattering. This can be effectively
achieved in a magnetic trap by means of a radio frequency radiation, which induces
spin flip transitions. Since the resonant frequency for these transitions is propor-
tional to the intensity of the magnetic field, sweeping the frequency of the radiation
above a certain threshold corresponds to removing the most energetic atoms, which
can explore the external region of the potential.

3.1.2 Dynamical Stark interaction with a laser field

A second mechanism permitting confinement and cooling of neutral atoms is the
dynamical Stark effect, which describes the interaction of the electric field with the
dipole moment it induces on the atom.

Let us consider an atom immersed in a standing-wave

E(x, t) = E0(x) Re[ε(z) exp (−iωlast)] , (3.7)

obtained by two counterpropagating laser beams whose wave-length λlas = 2πc/ωlas

is of the order of magnitude of the wave-length λsp associated to the nS1/2 →
nP3/2 transition (listed in Table 3.1). For definiteness, we assume that the beams
propagate along the zaxis. Since the electric field is uniform on the atomic length-
scale a0, we can apply the dipole approximation, yielding the interaction term

HI(t) = −d · E(R, t) = −e
∑

i

E0(R) Re[ri · ε(Z) exp (−iωlast)] . (3.8)

Here, d is the dipole operator given in terms of the positions of the electrons relative
to the atomic nucleus as d = e

∑

i ri.
In the absence of an external field the mean value of the dipole operator vanishes,

since the atomic states are approximately eigenstates of the parity operator (when
the weak nuclear interaction is neglected). A weak electric field perturbs the orbit
of the valence electron only. It is thus safe to disregard the interaction with the
inner-shell electrons.

Moreover, it is reasonable to treat the coupling between the COM and the valence
electron coordinates adiabatically by regarding the slow COM degrees of freedom
as fixed, when the fast electron dynamics is considered. The latter is governed by
the usual Hartree-Fock atomic Hamiltonian with an additional time periodic driving
term associated to the dipole interaction in Eq. (3.8). The Floquet theorem assures



3.1 Introduction: Alkali atoms in electromagnetic fields 61

us that, for a fixed atom position R, the electron dynamics is described in terms
of a set of time-periodic Floquet states, see Section 2.3.1. These vectors change
continuously, while the atom position R changes, and coincide with the unperturbed
atomic states in the region outside the laser field. One often refers to these Floquet
states as dressed states. In the absence of any non-adiabatic transition, such as
the absorption (emission) of a photon, the atoms remain in the dressed states,
which coincide with the unperturbed ground-state outside the laser field. Since the
unperturbed ground-state is doubly degenerate, but the interaction with the laser
field splits the degeneracy, there are two relevant Floquet states. In the following,
we refer to these states as the dressed ground-states or simply dressed states and
denote them as |φ±R(t)〉, thereby pointing out that the atom position enters as a
parameter. One can regard the meanvalue of the dipole interaction on this state
and on the period Tω = 2π/ω,

V±(R) =
1

Tω

∫ Tω

0

dt
(

〈φ±R(t)| ⊗ 〈R|
)

HI(t)
(

|R〉 ⊗ |φ±R(t)〉
)

, (3.9)

as an effective potential experienced by the atoms moving in the laser field. The
description of the atom dynamics in terms of this effective potential is often referred
to as dressed atom picture, since the energy of interest is that of the atom with its
accompanying perturbation produced by the radiation field.

In principle it would have been possible to evaluate the above defined dressed
potential by means of a very simple leading order perturbative calculation, without
introducing the Floquet solutions. In fact, this is the approach of standard textbooks
[100]. However, motivated by the formal analogy to the problem considered in
Chapter 2, it is worth to spend here some more efforts to comment on the driven
dynamics of the valence electron.

In most applications, the detuning of the laser field ∆ ≡ ωlas − 2πc/λsp is much
smaller than the spin-orbit splitting but is still larger than the hyperfine splitting.
In this limit, it is reasonable to introduce a rotating-wave approximation (RWA)
similar to the one presented in Section 2.3.2. In this case, it consist in:
(i) considering the six-dimensional Hilbert space HR composed of the doubly degen-
erate S1/2 and the fourfold degenerate P3/2 resonant levels,
(ii) introducing a transformation that rotates the level P3/2 with frequency ωlas,
(iii) dropping the oscillating terms, which describe transitions from the S1/2 (P3/2)
to the P3/2 (S1/2) level accompanied by the emission (absorption) of one photon.

This procedure yields the 6×6 time-independent RWA Hamiltonian matrix H̃ . It is
convenient to project the RWA Hamiltonian onto a basis of eigenstates of J and Jz for
HR, which we denote as |j,mj〉1. Since the polarization ε is orthogonal to the z-axis,
a finite off-diagonal element of H̃ is possible only for those states whose total angular
momentum and its component along the z−axis differ by one. Hence in this basis,
the RWA Hamiltonian has the block form H̃ = H̃+⊕H̃−. The two blocks correspond
to the three dimensional Hilbert spaces H± ≡ |1/2,±1/2〉⊕|3/2,∓1/2〉⊕|3/2,±3/2〉.

1We do not indicate explicitly the orbit occupied by the valence electron. It is understood that
it is ns when j = 1/2 and np when j = 3/2.
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Let us first consider the special case of a circularly polarized electric field with
positive sense about the z−axis (ε = (êx + iêy)/

√
2). The absorption of one photon

is always accompanied with the excitation of the valence electron to a state with
component of the angular momentum along the z−axis larger by one unit. Hence,
the two blocks composing the RWA Hamiltonian have the simple form

H̃+ =





0 0 Ω>/2
0 −∆ 0

Ω>/2 0 −∆



 , H̃− =





0 Ω</2 0
Ω</2 −∆ 0

0 0 −∆



 . (3.10)

The corresponding quasienergy spectrum as a function of the detuning ∆ is shown
schematically in Fig. 3.1. The straight line corresponds to the two non-interacting
degenerate states |3/2, 3/2〉 and |3/2,−1/2〉. The two one-photon avoided cross-
ings, are due to the resonant interaction of the pairs |1/2, 1/2〉, |3/2, 3/2〉 and
|1/2,−1/2〉, |3/2, 1/2〉. The corresponding Rabi frequencies are given by

Ω> = eE0(R)|〈1/2, 1/2|r ·
[

σ+ ≡ (êx + iêy)/
√

2
]

|3/2, 3/2〉| ,

Ω< = eE0(R)|〈1/2,−1/2|r ·
[

σ+ ≡ (êx + iêy)/
√

2
]

|3/2, 1/2〉| , (3.11)

respectively. The Rabi frequencies in the above equation depend on the field strength
and on the atom species, whereas their ratio is fixed by the ratio of the relevant
Clebsh-Gordon coefficients: Ω>/Ω< = 1/(1/

√
3) =

√
3. The dressed states |φ±R(t)〉

(in the static frame) are given by

|φ+
R(t)〉 = cos

θ>

2
|1/2, 1/2〉 − e−iωlast sin

θ>

2
|3/2, 3/2〉

|φ−R(t)〉 = cos
θ<

2
|1/2,−1/2〉 − e−iωlast sin

θ<

2
|3/2, 1/2〉 (3.12)

with the angles θ≷ defined via tan θ≷ = −Ω≷/∆.
In presence of an arbitrary polarization, the dynamics is very similar. The spec-

trum is qualitatively the same: there are two avoided level crossings, and a degen-
erate non-interacting level. The dressed states becomes

|φ±R(t)〉 = cos
θ±
2
|g±〉 − e−iωlast sin

θ±
2
|e±〉 , (3.13)

with |g±〉 = |1/2,±1/2〉 and |e±〉 being a superposition of |3/2,±3/2〉 and
|3/2,∓1/2〉. The angles θ± are defined via tan θ± = −Ω±/∆ in terms of the Rabi
frequencies Ω± = eE0(R)|〈g±|r·ε|e±〉|. The latter equation yields two Rabi frequen-
cies, which fullfills Ω< ≤ Ω± ≤ Ω>. In presence of linear polarization the two avoided
crossing are degenerate. The corresponding Rabi frequency is Ω± =

√

2/3Ω>.
By expanding Eq. (3.13) up to first order in θ and plugging it into Eq. (3.9) we

get

V (R)± = −1

2
α±(ωlas)[E0(R)]2 , (3.14)
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Figure 3.1:: Schematic view of the
crossing displayed by the S1/2 doublet
and P3/2 quadruplet varying the detun-
ing ∆ for a fixed non-linear polariza-
tion ε. Away from resonance there are
two degenerate levels. At resonance the
doublet splits and each state form an
avoided crossing with a state belong-
ing to the quadruplet. The remain-
ing two state composing the quadru-
plet do not mix with the doublet and
define a straight line. We denote by ε+

and ε−, the two levels which correspond
to the degenerate unperturbed ground-
state when the laser field perturbation
is switched-off adiabatically.

with the dynamical polarizability

α±(ωlas) ≈ −e
2|〈e±|r · ε|g±〉|2

∆
. (3.15)

We can conclude that the dipole induced by an electric field aligns in the direction of
(opposite to) the field if its frequency is below (above) the characteristic frequency
ωsp associated with the relevant ns → np transition. As a consequence, the atoms
are attracted by (repelled from) regions of high field. One refers to laser fields whose
frequencies are below (above) ωsp as red-detuned (blue-detuned) fields.

So far, we have implicitly assumed that the atomic excited states have an in-
finitely long life-time, thereby neglecting spontaneous emission. We can include
phenomenologically a finite lifetime 1/Γe of the np configuration for the valence
electron by adding the imaginary part iΓe/2, to its energy. The dressed state de-
scribing the atom in the laser field is a dynamical superposition of a ns and a np
state. Hence, by phenomenologically introducing a finite lifetime of the np config-
uration, one should expect non-adiabatic transitions from the dressed ground-state
to an excited dressed state. In fact, the effective potential becomes complex. We
formally write it as

V± = Va± + iΓg±/2 . (3.16)

We interpret its real part

Va±(R) = −1

2
α′±(ωlas)[E0(R)]2 , (3.17)

with

α′±(ω) ≈ −∆e2|〈e±|r · ε|g±〉|2
∆2 + (Γe/2)2

, (3.18)
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as the potential experienced by the atom in the dressed ground-state while moving
adiabatically in the field. On the other side, Γg, given by

Γg±(R) = −1

2
α′′±(ωlas)[E0(R)]2 , (3.19)

with

α′′±(ωlas) ≈
(Γe/2)e2|〈e±|r · ε|g±〉|2

∆2 + (Γe/2)2
, (3.20)

is the loss rate from the dressed ground-state, due to non-adiabatic transitions.

By using several laser beams, it is possible to design a variety of potentials. The
building block is often a standing-wave created by two counter propagating beams.
One can then superpose more than one standing-wave. Interference effects between
different standing waves are avoided by either slight detuning of the two laser fre-
quencies or by choosing two orthogonal polarizations. The resulting potentials are
characterized by arrays or lattices of local minima. For example, by superposing
two horizontal orthogonal standing-waves, one achieves a 2D lattice of 1D tubes.
One refers to these ensembles of local minima as optical traps.

The emission of one photon with momentum q = c/ωlas causes an energy varia-
tion of the order Ec = q2/2m. This energy is called recoil energy and is associated
with the minimal temperature which can be achieved when spontaneous emission
is not negligible. In order to obtain a BEC or a degenerate 1D quantum-gas at the
dilute densities characteristic of typical samples, one has to cool the atoms below
the recoil energy. In the ultracold regime, it is thus very important to suppress
spontaneous emission. This is achieved by confining the atoms in regions of low-
field, thereby using blue-detuned laser beams. In order to further reduce Γg, it is
advisable to detune them by at least 10%.

The non-adiabatic transition can be exploited to cool atoms moving in a laser
field down to the recoil temperature. The most simple set up is based on two coun-
terpropagating beams with orthogonal polarization. The resulting standing wave
has a position dependent polarization. The resulting effective potentials Va± have
the form V0[−2 ± sin (4πz/λlas)]. The maxima of Va+ (the potential experienced
by an atom in the dressed state |φ+〉) correspond to minima of Va− (the potential
experienced by an atom in the dressed state |φ−〉) and vice versa. Va+ displays a
minimum, when the laser light has σ+ polarization. At the corresponding positions,
the state |e−〉 ≡ |3/2, 1/2〉 and |e+〉 ≡ |3/2, 3/2〉 are resonantly populated. Spon-
taneous emission of a photon with longitudinal polarization (with respect to the z
axis along which the two beams are propagating) causes a transition from |e−〉 to
the unperturbed ground-states |g+〉 ≡ |1/2, 1/2〉. As a consequence a net population
flow from the higher energy |φ−〉 dressed state to the lower energy |φ+〉 dressed state
results. An analogous flow to the lower energy state takes place when Va− displays
a minimum and the light has σ

−
polarization. As a result the atoms continuously

climb potential barriers and are thereby cooled. This cooling mechanism through
non-adiabatic transition is known as Sisyphus cooling.
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Figure 3.2:: Sketch of the proposed device. A current-carrying suspended NT is
positioned at (−x0, 0, z) and together with the transverse magnetic field Bx, a 1D
trapping potential is formed. The shaded region indicates the atom gas. A similar
two-wire setup allows the creation of a bistable potential.

3.2 The setup for a nanowaveguide

In this section, we return to the main topic in the focus of this chapter: The proposal
for a nanoscale magnetic waveguide to confine ultracold atoms to 1D. A typical
proposed setup is sketched in Fig. 3.2. The setup employs a single suspended doubly-
clamped NT (left NT in Fig. 3.2, the second suspended NT on the right will be
used to create a double-well potential, see below), where nanofabrication techniques
routinely allow for trenches with typical depths and lengths of several µm [22].
To minimize decoherence and loss effects [19], the substrate should be insulating
apart from thin metal strips to electrically contact the NTs. Since strong currents
(hundreds of µA) are necessary, thick multiwall nanotubes (MWNTs) or ‘ropes’ [22]
are best suited. The suspended geometry largely eliminates the influence of the
substrate. A transverse magnetic field Bx is required to create a stable trap while
a longitudinal magnetic field Bz suppresses Majorana spin flips [103, 104]. With
this single-tube setup, neutral atoms in a weak-field seeking state can be trapped.
Studying various sources for decoherence, heating or atom loss, and estimating the
related time scales, we find that, for reasonable parameters, detrimental effects are
small. As a concrete example, we shall consider 87Rb atoms in the weak-field seeking
hyperfine state |F,mF 〉 = |2, 2〉.

We next describe the setup in Fig. 3.2, where the (homogeneous) current I flows
through the left NT positioned at (−x0, 0, z). With regard to the decoherence prop-
erties of the proposed trap, it is advantageous that the current flows homogeneously
through the NT, as disorder effects are usually weak in NTs [22]. Neglecting bound-
ary effects due to the finite tube length L, the magnetic field at x = (x, y, z) = (x⊥, z)
is given by

B(x) =
µ0I

2π

1

(x+ x0)2 + y2





−y
x+ x0

0



+





Bx

0
Bz



 (3.21)
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with the vacuum permeability µ0. To create a trapping potential minimum,
let us write Bx = µ0I/(2πy0). Then the transverse confinement potential is
V (x⊥) = µ|B(x)|, where µ = mF gFµB with the Landé factor gF and the Bohr
magneton µB. It has a minimum along the line (−x0, y0, z), with the distance
between the atom cloud and the wire being y0. Under the adiabatic approxima-
tion, mF is a constant of motion, and the potential is harmonic very close to the
minimum of the trap, i.e., V (x) ≃ µBz + 1

2
mω2[(x + x0)

2 + (y − y0)
2], with fre-

quency ω = [µ/(mBz)]
1/2µ0I/(2πy

2
0) and associated transverse confinement length

l0 = (~/mω)1/2 ≪ y0, where m is the atom mass. The adiabatic approximation is
valid as long as ω ≪ ωL with the Larmor frequency ωL = µBz/~. Non-adiabatic
Majorana spin flips to a strong-field seeking state generate atom loss [15,104] char-
acterized by the rate Γloss ≃ (πω/2) exp(1 − 1/χ), with χ = ~ω/(µBz) [103]. For
convenience, we switch to a dimensionless form of the full potential V (x⊥) by mea-
suring energies in units of ~ω and lengths in units of l0,

χV =

(

1 + χ
d2[(x+ x0)

2 − dy + y2]2 + d4(x+ x0)
2

[(x+ x0)2 + y2]2

)1/2

, (3.22)

which depends only on d = y0/l0 and χ. The trap frequency then follows as

ω =
mχµ2

~3

( µ0I

2πd2

)2

. (3.23)

Note that a real trap also requires a longitudinal confining potential with frequency
ωz ≪ ω.

To obtain an estimate for the design of the nanotrap, we choose realistic pa-
rameters: χ = 0.067, corresponding to a rate of spin flip transition per oscillation
period Γloss/ω ∼ 10−6. Decreasing d increases the trap frequency. However, d cannot
be chosen too small, for otherwise the potential is not confining anymore (and the
harmonic approximation becomes invalid). Using V (∞) = χ−1(1 + χd2)1/2 for the
potential at |x⊥| → ∞, we now show that for d ∼ 5, the harmonic approximation
breaks down. To see this, note that for d = 10, the potential provides a confin-
ing barrier (in units of the trap frequency ω) of V (∞) − V (0, 0, z) = 23.8, while
for d = 5, we get only V (∞) − V (0, 0, z) = 9.8. Thus exceedingly small values of d
would lead to unwanted thermal atom escape processes out of the trap. To illustrate
the feasibility of the proposed trap design, we show in Table 3.2 several parameter
combinations with realistic values for the MWNT current together with the resulting
trap parameters. In practice, first the maximum possible current should be applied
to the NT, with some initial field Bx. After loading of the trap, the field Bx should
be increased, the cloud thereby approaching the wire with a steepening of the con-
finement. At the same time, y0 and consequently d decrease. This procedure can be
used to load the nanotrap from a larger magnetic trap (ensuring mode matching).
For a given current, there is a corresponding lower limit ymin for stable values of
y0 from the requirement d < 5, as already mentioned above. To give an example,
the confining potential is shown in Fig. 3.3a) for I = 100µA, representing a reason-
able current through thick NTs [22], d = 10, x0 = l0 and Γloss/ω = 10−6 (where
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I(µA) d ω(kHz) y0(nm) l0(nm)
1000 10 2π×460 144 14
250 5 2π×460 72 14
250 10 2π×28.7 576 58
100 5 2π×73.8 180 36
100 10 2π×4.6 1440 144
50 5 2π×18.4 360 72
25 5 2π×4.6 720 144

Table 3.2:: Trap frequencies ω, distances y0 of the atomic cloud from the NT wire,
and oscillator lengths l0 for χ = 0.067 and various I, d.

χ = 0.067). The resulting trap frequency is ω = 2π × 4.6 kHz and the associated
transverse magnetic field is Bx = 0.14 G.

3.3 Influence of destructive effects

For stable operation, it is essential that destructive effects like atom loss, heating or
decoherence are small.

(i) One loss process is generated by non-adiabatic Majorana spin flips as discussed
above. It is sufficiently suppressed by the choice χ = 0.0067 yielding Γloss/ω ∼ 10−6.

(ii) Atom loss may also originate from noise-induced spin flips, where current
fluctuations cause a fluctuating magnetic field generating the Majorana spin flip
rate [18]

γsf ≃
(

µ0µ

2π~y0

)2
SI(ωL)

2
, SI(ω) =

∫

dte−iωt〈I(t)I(0)〉. (3.24)

At room temperature and for typical voltages V0 ≈ 1 V, we have ~ωL ≪ kBT ≪ eV0,
and SI(ωL) is expected to equal the shot noise 2eI/3 of a diffusive wire. For the
parameters above, a rather small escape rate results, γsf ≈ 0.051 Hz. If a (proximity-
induced) supercurrent is applied to the MWNT, the resulting current fluctuations
could be reduced even further.

(iii) Thermal NT vibrations might create decoherence and heating, and could
even cause a transition to the first excited state of the trap. Using a standard
elasticity model for a doubly clamped wire in the limit of small deflections, the
maximum mean square displacement is [105]

σ2 = 〈φ2(L/2)〉 =
kBTL

3

192YMI
, (3.25)

where φ(z) is the NT transverse displacement, L the (suspended) NT length, T
the temperature, Y the Young modulus, and MI the NT’s moment of inertia. For
L = 10µm and typical material parameters from Ref. [22], we find σ ≈ 0.2 nm at
room temperature. This is much smaller than the transverse size l0 of the atomic
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Figure 3.3:: (a) Transverse trapping potential of the nanoscale waveguide for I =
100 µA, d = 10, χ = 0.067 and x0 = l0. The resulting trap frequency is ω = 2π×4.6
kHz while y0 = 1440 nm, corresponding to Bx = 0.14 G. (a1) shows a cut along
y = ymin through the contour plot shown in (a2), see horizontal dashed line. (b)
Bistable potential for the double-wire configuration for χ = 0.067, I = 100 µA,
x0 = 200 nm and y0 = 100 nm. (b1) displays a cut along y = ymin through the
contour shown in (b2), see dashed line.

cloud. Small fluctuations of the trap center could cause transitions to excited trans-
verse trap states. Detailed analysis shows that the related decoherence rate is also
negligible, since the transverse fundamental vibration mode of the NT has the fre-
quency

ωf =
β2

1

L2

√

YMI

ρLAc
, (3.26)

with β1 ≃ 4.73, the mass density ρL, and the cross-sectional area Ac. For the above
parameters, ωf = 2π× 11.9 MHz is much larger than the trap frequency itself. Due
to the strong frequency mismatch, the coupling of the atom gas to the NT vibrations
is therefore negligible.

(iv) Another decoherence mechanism comes from current fluctuations in the NTs.
Following the analysis of Ref. [20], the corresponding decoherence rate is

γc

ω
=

3π

4~
kBT

σ0A

y3
0

(µ0µB

2π

)2 χ

~ω
, (3.27)



3.4 Number of trapped atoms and size of atom cloud 69

where σ0 is the NT conductivity and A the cross-sectional area through which the
current runs in the NT. For the corresponding parameters we find γc/ω < 10−8.

(v) Another potential source of atom loss could be the attractive Casimir-Polder
force between the atoms and the NT surface. The Casimir-Polder interaction poten-
tial between an infinite plane and a neutral atom is given by VCP = −C4/r

4 [19,106].
For a metallic surface and 87Rb atoms, C4 = 1.8 × 10−55 Jm4, implying that at a
distance of 1µm from the surface, the characteristic frequency associated with the
Casimir-Polder interaction is VCP/~ = 2π × 0.29 kHz. This represents a fundamen-
tal decoherence limit in the kHz regime for conventional on-chip traps with typical
current-carrying wire widths ≈ 10µm. Instead, for our particular design in the
nanometer scale, the surface of a NT with a diameter of a few nm covers only a
small portion of an infinite plane for distances above 100 nm. Hence, the impact
of the Casimir-Polder interaction should be strongly reduced in our setup. A more
detailed estimate, however, goes beyond the scope of this work.

(vi) A further possible mechanism modifying the shape of the confining potential
is the influence of the electric field E between the two contacts of the nanowire
and the macroscopic leads which is created by the transport voltage V . This field
depends strongly on the detailed geometry of the contacts. However, the electric
field can in general be reduced if the total length Ltot of the NT is increased. (Note
that Ltot can be different from the length L over which the NT is suspended). Due
to the small intrinsic NT resistivity, the influence of the contact resistance then
decreases for longer NTs.

3.4 Number of trapped atoms and size of atom cloud

Next we address the important issue of how many atoms can be loaded in such a
nanotrap. This question strongly depends on the underlying many-body physics
which determines for instance the density profile of the atom cloud. Since the trap
frequencies given in Table 3.2 exceed typical thermal energies of the cloud, we will
consider the 1D situation. Within the framework of two-particle s-wave scattering in
a parabolic trap, the effective 1D interaction strength g1D = −2~

2/(ma1D) is related
to the 3D scattering length a according to [28]

a1D = − l
2
0

a

(

1 − C a√
2l0

)

, (3.28)

where C ≃ 1.4603. Interestingly, g1D shows a confinement-induced resonance (CIR)
for a =

√
2l0/C [28]. For nearly parabolic traps respecting parity symmetry, this

CIR is split into three resonances as will be detailed in Chapter 4. However, for the
typical trap frequencies displayed in Table 3.2, corresponding to non-resonant atom-
atom scattering, the parabolic confinement represents a very good approximation.
For free bosons in 1D, the full many-body problem can be solved analytically [107].
It turns out that the governing parameter is given by n|a1D|, where n is the atom
density in the cloud. For weak interactions (large n|a1D|), a Thomas-Fermi (TF) gas
results, while in the opposite regime, the Tonks-Girardeau (TG) gas is obtained.
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ω(kHz) a1D(nm) N η ℓ(µm)
2π×460 -26.65 30 0.11 7.7
2π×460 -26.65 50 0.15 10
2π×73.8 -223 30 0.67 7.3
2π×73.8 -223 50 0.94 8.7
2π×73.8 -223 100 1.49 11

2π×28.76 -603 30 2.55 5.3
2π×28.76 -603 50 3.58 6.3
2π×28.76 -603 100 5.72 7.9

Table 3.3:: Typical results for the longitudinal size ℓ of the 87Rb cloud for realistic
values of the transversal trap frequency ω and the atom number N , where ωz =
2π × 0.1 kHz. For η, see text.

For realistic traps with an additional longitudinal confining potential with fre-
quency ωz ≪ ω, the problem has been addressed in Ref. [108]. The corresponding
governing parameter is η = nTF|a1D| where nTF = [(9/64)N2(mωz/~)2|a1D|]1/3 is the
cloud density in the center of the trap in the TF approximation. Small η character-
izes a TG gas whereas large η corresponds to the TF gas. The longitudinal size ℓ of
the atom cloud in terms of the atom number N and the longitudinal (transversal)
trap frequencies ωz (ω) has been computed in Ref. [108], with the result

ℓ =

[

3N(~/mωz)
2

|a1D|

]1/3

(3.29)

in the TF regime and
ℓ = [2N(~/mωz)]

1/2 (3.30)

in the TG regime. In order to determine the cloud size ℓ, we first calculate η for
fixed N,ωz and ω, and then use the respective formula, Eq. (3.29) or (3.30). In
the crossover region, both expressions yield similar results that also match the full
numerical solution [108]. Typical results for realistic parameters are listed in Table
3.3 for ωz = 2π × 0.1 kHz. From these results, we conclude that the length of the
suspended NT should be in the µm-regime in order to trap a few tens of 87Rb atoms.

To summarize the discussion of the monostable trap, we emphasize that the
proposed nanotrap is realistic, with currents of a few 100 µA and lengths of few µm
of the suspended parts of NT. No serious decoherence, heating or loss mechanisms
are expected for reasonable parameters of this nanotrap.

3.5 Double-well potential with two carbon nanotubes

In order to illustrate the advantages of the miniaturization to the nanoscale, let us
consider a setup which allows two stable minima separated by a tunnelling barrier.



3.5 Double-well potential with two carbon nanotubes 71

The simplest setup consists of two parallel NTs carrying co-propagating currents I,
a (small) longitudinal bias field Bz and a transverse bias field Bx. Such a double-well
potential for 1D ultracold atom gases would permit a rich variety of possible appli-
cations. Experiments to study Macroscopic Quantum Tunnelling and Macroscopic
Quantum Coherence phenomena [63] between strongly correlated 1D quantum gases
could then be performed. In addition, qubits forming the building blocks for a quan-
tum information processor could be realized. The rich tunability of the potential
shape, including tuning the height of the potential barrier as well as the tunnelling
distance, is a particularly promising feature.

To realize this potential, we propose to place a second current-carrying NT at
(+x0, 0, z), where the condition x0 > y0 guarantees the existence of two minima
located at y0(±

√

x2
0/y

2
0 − 1, 1). By tuning the transversal magnetic field Bx and the

current I, y0 and thus the location of the minima can be modified. Around these
minima, the potential is parabolic with frequency

ω =

[

µ2χ

m~

(

µ0I

2π

)2
1

y2
0

(

1

y2
0

− 1

x2
0

)

]1/3

. (3.31)

Similar to the considerations above, we obtain the potential in units of ~ω, which
depends only on dx = x0/l0, dy = y0/l0 and χ,

χV =

(

1 +
χd4

y

1 − d2
y/d

2
x

{

[ −y
(x+ dx)2 + y2

+
−y

(x− dx)2 + y2
+

1

dy

]2

+

[

x+ dx

(x+ dx)2 + y2
+

x− dx

(x− dx)2 + y2

]2
})1/2

.

(3.32)

Figure 3.3 b) shows the corresponding bistable potential for the particular case of
χ = 0.067, I = 200µA, y0 = 100 nm and x0 = 200 nm. The two minima are clearly
discerned. To see how the frequency in the single well develops if the current in the
second wire is turned on, we introduce the reference frequency ω0 in the single-well
case with a fixed current I and a fixed transverse field Bx, such that y0 = x0/2.
Then we obtain the ratio

ω

ω0

=

[

1

16

(

x0

y0

)4(

1 − y2
0

x2
0

)

]1/3

. (3.33)

For decreasing Bx and keeping I constant, we find that ω decreases as shown in
Fig. 3.4 (black solid line and left scale), while the distance y0 of the atom cloud
increases. In the limit x0 = y0, the two minima merge and the potential becomes
quartic and monostable, implying that ω → 0. For the above parameter set, we find
ω0 = 2π × 291 kHz. Since one could obtain the same ω0 for a larger current I and
a correspondingly larger distance x0, one gets the same trap frequency for a fixed
ratio of y0/x0. However, dx and dy themselves would change and since the parabolic
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Figure 3.4:: Trap frequency ω in the bistable potential (left scale) and tunnelling
rate Γ within the WKB-approximation (right scale) as a function of the ratio y0/x0 =
dy/dx. For the definition of ω0, see text. The tunnelling rate Γ is computed for 87Rb
atoms with χ = 0.067 and x0 = 200 nm for two values of the current I given in the
figure.

frequency ω is fixed, only the non-linear corrections to the parabolic potential will
be modified. This in turn influences the height of the potential barrier and the
tunnelling rate between the two wells. Next we study the influence of the length
scale x0 on these two quantities.

Taking the full potential into account, we calculate the barrier height and the
tunnelling rate in WKB approximation. The barrier height D separating the two
stable wells,

D

~ω
= χ−1

(

1 + χd2
y

1 − dy/dx

1 + dy/dx

)1/2

− χ−1 , (3.34)

is shown as a function of y0/x0 for two values of I in the inset of Fig. 3.4. Note
that the barrier height is of the order of a few multiples of the energy gap in the
wells, implying that the potential is in the deep quantum regime, favoring quantum-
mechanical tunnelling between the two wells. The corresponding tunnelling rate Γ
for the lowest-lying pair of energy eigenstates follows in WKB approximation as

Γ

ω
= e−

R xb
xa

dx
√

2[V (x,dy)−1] , (3.35)

where xa/b are the (dimensionless) classical turning points in the inverted potential
at energy E = ~ω, which is approximately the ground-state energy of a single well.
The integral in Eq. (3.35) is calculated along the line connecting the two minima
corresponding to y = y0. Results for Γ are shown in Fig. 3.4 (red solid lines and right
scale) as a function of y0/x0 for two different values of the current I and the distance
x0 yielding the same ω0. Note that for the smaller current, I = 200 µA, Γ assumes
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large values already for large frequencies ω. This also implies that the detrimental
effects discussed above are less efficient. On the other hand, for large currents, the
tunnelling regime is entered only for much smaller trap frequencies. For the above
parameters, we find ω0 = 2π × 291 kHz. For the smaller current, the tunnelling
regime starts at frequencies of around ω = 0.37ω0 = 2π × 108 kHz, corresponding
to a temperature of T = 32 µK, while for the larger current, the tunnelling regime
is entered at ω = 0.18ω0 = 2π × 52 kHz corresponding to T = 16 µK.

A potential drawback of the double wire configuration could be the transverse
NT deflection due to their mutual magnetic repulsion. For an estimate, note that
the NT displacement field φ(z, t) obeys the equation of motion ρLφ̈ = −YMIφ

′′′′ +
µ0I

2/(4πx0). The static solution under the boundary conditions φ(0, L) = φ′(0, L) =
0 is φ(z) = µ0[Iz(z − L)]2/(96πYMIx0). Using again parameters from Ref. [22],
we find the maximum displacement φ(L/2) ≈ 0.03 nm for L = 10µm. Hence
the mutual magnetic repulsion of the NTs is very weak. Finally, we note that a
potential misalignment of the two NT wires is no serious impediment for the design.
Experimentally available techniques could be combined which allow on one hand to
move a NT on a substrate by an atomic force microscope [109], while on the other
hand, the NTs can be suspended and contacted after being positioned [110].

3.6 Conclusions

To conclude, we propose a nanoscale waveguide for ultracold atoms based on dou-
bly clamped suspended nanotubes. All common sources of imperfection can be
made sufficiently small to enable stable operation of the setup. Two suspended
NTs can be combined to create a bistable potential in the deep quantum regime.
When compared to conventional atom-chip traps employed in present experiments,
such nanotraps offer several new and exciting perspectives that hopefully motivate
experimentalists to realize this proposal.

First, higher trap frequencies can be achieved while at the same time using
smaller wire currents. This becomes possible here because both the spatial size of
the atom cloud and its distance to the current-carrying wire(s) would be reduced to
the nanometer scale, and because NTs allow typical current densities of 10µA/nm2,
which should be compared to the corresponding densities of 10 nA/nm2 in noble
metals. For the case of a single-well trap, the resulting trap frequencies go beyond
standard chip traps [15]. Large trap frequencies at low currents are generally de-
sirable, since detrimental effects like decoherence, Majorana spin flips, or atom loss
will then be significantly reduced.

Second, regarding our proposal of a bistable potential with strong tunnelling,
the miniaturization towards the nanoscale represents a novel opportunity to study
coherent and incoherent tunnelling of a macroscopic number of cold atoms. The
proposed bistable nanotrap is characterized by considerably reduced tunnelling dis-
tances, thus allowing for large tunnelling rates at large trap frequencies. Note that
the energy scale associated with tunnelling is larger than thermal energies for real-
istic temperatures. Such a bistable device could then switch between the two stable
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states on very short time scales. Within our proposal the parameters of the bistable
potential can be tuned over a wide range by modifying experimentally accessible
quantities like the current or magnetic fields.

A third advantage of this proposal results from the homogeneity of the currents
flowing through the NTs. As NTs are characterized by long mean free paths, they
often constitute (quasi-)ballistic conductors, where extremely large yet homogeneous
current densities are possible. This distinguishes NTs from the conventionally used
wires and could allow to overcome the fragmentation problem [15]. Fragmentation
of the atom cloud is presently one of the main impediments to progress in the field
of atom-chip traps.

Detection certainly constitutes an experimental challenge in this truly 1D limit.
However, we note that single-atom detection schemes are currently being developed,
which would also allow to probe the tight 1D cloud here, e.g., by combining cavity
quantum electrodynamics with chip technology [16], or by using additional perpen-
dicular wires/tubes ‘partitioning’ the atom cloud [111]. This may then allow to
study interesting many-body physics in 1D in an unprecedented manner.



4 Confinement-induced resonances in

arbitrary quasi-one-dimensional traps

In the previous section, we illustrated the proposal for a nanodevice, which would
allow the manipulation of a 1D degenerate quantum gas of alkali atoms. In or-
der to reach the quantum regime, it is necessary to cool the atoms in the cloud
down to the nano-Kelvin regime, below the temperature associated to the recoil
energy. The only means to achieve such low temperature is the evaporative cooling
method. This technique requires a large ratio of two-body elastic scattering, which
permits the thermalization between two subsequent rf sweeps, over three-body in-
elastic events, which cause loss of atoms and recombination into molecules (at such
low temperatures the stable phase is the solid phase). For this reason, the ultracold
cloud are usually extremely diluted with average inter-particle distances being an
order of magnitude larger than the Van der Waals particle-particle interaction.

In this regime, the low-energy two-body scattering dominates the dynamics. The
cloud can be modeled as an ensemble of 1D particles interacting via a two-body zero-
range potential. The strength of the potential is determined by the solution of the
two-body problem in presence of a tight transversal confinement.

In the focus of this chapter is the latter problem. We develop a formalism to
solve it in the most general case of a two-component ultracold atom gas experienc-
ing an arbitrary transverse confining potential. The key feature is that, except for
the special case of a one-componenet gas in a parabolic trap, the COM and the
relative degrees of freedom do not decouple. For this reason, the problem is much
more involved than a normal scattering problem. Nevertheless, it is possible to for-
mally derive the bound state and the low-energy scattering solutions. In particular,
it is shown that for certain values of the s-wave scattering length a confinement-
induced-resonance (CIR) of the 1D interaction strength results. These resonances
are formally analogous to the well-known Feshbach resonances. In order to evaluate
their locations for experimentally relevant cases, it is necessary to rely on partially
numerical treatments.

The chapter is organized as follows: The introductory Section 4.1 is devoted to
the scattering in free space. In Sec. 4.2, we develop the formalism to address the
scattering in a confined geometry. Section 4.3 presents the bound-state solution,
while Sec. 4.4 contains the analysis for the scattering solutions, including the anal-
ogy to Feshbach resonances. In Sec. 4.5 we discuss the special case of harmonic
confinement, and in Sec. 4.6 a particular example of a non-parabolic confinement is
illustrated. Finally, we conclude in Sec. 4.7. Technical details have been delegated
to Appendix E. We set ~ = 1 throughout this part again.
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4.1 Introduction: Scattering in free space

Before considering the main subject in the focus of this chapter, i.e. the scatter-
ing of two particles experiencing a tight transversal confinement, we give a short
overview to the theory of quantum elastic scattering in free space. In particular,
we will concentrate on the low-energy s-wave scattering relevant for ultracold atom
collisions.

We first consider the more general problem of two particle elastic scattering, i.e.,
energy-conserving processes that do not alter the internal state of the particles, and
we will assume that two distinguishable particles interact through a central potential
U(r). This problem is equivalent to the scattering of a single particle of reduced
mass µ = m1m2/(m1 + m2) by a static potential, since the center-of-mass (COM)
degrees of freedom are decoupled from the relative ones. For an extensive review on
this topic, see standard quantum mechanics text-books, for example [113].

The wave function for the relative coordinate in a state of definite energy E =
k2/2µ is the sum of an incoming plane wave and an outgoing scattered wave:

ψ(r) = eik·r + ψsc(r). (4.1)

The plane wave is normalized so that the current density is equal to the plane wave
velocity v = k/m. At large distances the outgoing scattered wave becomes spherical,
and the wave function assumes the asymptotic form

ψ(r) ≃ eik·r + fe(k, θ, ϕ)
eikr

r
. (4.2)

Due to the spherical symmetry of the potential, the solution has rotational symmetry
with respect to the direction of the incident plane wave (which we take to be the
z direction) and the scattering amplitude fe depends only on the angle θ between
the incoming and the outgoing relative momenta and on the energy of the incoming
wave. The latter property allows to expand the wave function for the relative motion
on the basis of Legendre polynomials Pl(cos θ),

ψ(r) =
∞
∑

l=0

AlPl(cos θ)Rl(r). (4.3)

The radial wave functions Rl(r) satisfy the equation

R′′l (r) +
2

r
R′l(r) +

[

k2 − l(l + 1)

r2
− 2µU(r)

]

Rl(r) = 0, (4.4)

and at large interparticle separations, where we can neglect both the centrifugal
barrier and the potential, they have the asymptotic form

Rl(r) ≃
1

kr
sin
(

kr − π

2
l + δl

)

(4.5)
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expressed for each angular momentum component in terms of an appropriate phase
shift δl. The coefficients Al are fixed by comparing Eq. (4.3) with Eq. (4.2). Using
the asymptotic expansion for a plane wave (valid at large distances)

eikz ≃ 1

kr

∞
∑

l=0

il(2l + 1)Pl(cos θ) sin
(

kr − π

2
l
)

(4.6)

and imposing that the solution contains only outgoing spherical components, one
finds

Al = il(2l + 1)eiδl (4.7)

and

fe(k, θ) =

∞
∑

l=0

(2l + 1)fl(k)Pl(cos θ), (4.8)

fl(k) is defined as

fl(k) ≡
1

k cot δl − ik
. (4.9)

The probability per unit time that the scattered particle will pass through a
surface element dS = r2dΩ is v dS |fe|2/r2, and its ratio to the current density in
the incoming wave and to the solid angle dΩ is the differential cross section

dσ

dΩ
= |fe(k, θ)|2. (4.10)

The total scattering cross-section is obtained by integrating the former expression
over the whole solid angle:

σ = 2π

∫ +1

−1

d(cos θ)|fe(k, θ)|2. (4.11)

Using the explicit expression (4.8) for the scattering amplitude and the orthogonality
relation for the Legendre polynomials,

∫ +1

−1

d(cos θ)Pm(cos θ)Pn(cos θ) =
2

2m+ 1
if m = n, 0 otherwise , (4.12)

the total scattering cross-section can be expressed in terms of the phase shifts as

σ =
4π

k2

∞
∑

l=0

(2l + 1) sin2 δl. (4.13)

In the case of indistinguishable boson (fermion), we have to consider the sym-
metric (antisymmetric) incoming wave

ψin(z) =
1√
2

(

eikz ± e−ikz
)

. (4.14)
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The corresponding differential and total scattering cross sections are

dσ

dΩ
=

1

2
|fe(k, θ) ± fe(k, π − θ)|2, (4.15)

and

σ =
8π

k2

∑

l±

(2l + 1) sin2 δl , (4.16)

respectively. The + (−) sign applies to bosons (fermions) and l+ (l−) indicates that
the sum is over the even (odd) integers.

4.1.1 Low energy scattering

If an interaction decreasing asymptotically with a power-law dependence U(r) ≃ r−n

n > 3 is considered, it is shown [113], that in the limit k → 0 we have

fl ∝
{

k2l if l < (n− 3)/2 ,
kn−3 else.

(4.17)

From this equation we can read off that, for low energies, fl ≪ f0 for any l > 0, and
that the scattering amplitude tends to a constant value

lim
k→0

fe(k, θ) = lim
k→0

f0(k) = −a . (4.18)

yielding the asymptotic solution

ψ(r) = eik·r − a
eikr

r
. (4.19)

Since the scattered wave (the second term of the left side of the above equation)
decays over the length a, this constant can be interpreted as the correlation length
associated to the particle-particle interaction. However, in the literature, one com-
monly refers to it as scattering length.

The total cross section for distinguishable particles follows from Eqs. (4.13) and
(4.18) as

σ = 4πa2 (4.20)

On the other side, in the case of indistinguishable bosons, Eqs. (4.14) and (4.18)
yield

σ = 8πa2 . (4.21)

The total cross section for identical fermions vanishes, since it contains no s−wave
contribution due to symmetry reasons.

We can conclude that, for any potential decreasing faster than 1/r3, the low
energy scattering is isotropic and is described in terms of the scattering length a
only.

The scattering length a can be determined accurately from a variety of experi-
ments, e. g. photoassociative spectroscopy or analysis of Feshbach resonances, and
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plays a central role in the theory of cold collisions. When only low energy states
are involved in a collision process, we will see that the scattering length is the only
parameter entering an effective interaction that can be substituted for the full two-
body potential. This is very appealing, since the original potential is deep and has
a complicated structure, that cannot generally be calculated analytically.

The above results has been derived starting from the formula in Eq. (4.17), valid
when the wavelength of the incoming wave 2π/k is the longest length scale in the
problem. In particular, 1/k should be larger than the scattering length a. In the
following, we study in detail the the s−wave Schrödinger equation, corresponding
to Eq. (4.4) with l = 0. We will show that the scattering is described in terms of
the scattering length a only even for 1/k < a provided that it is still larger than
the microscopic range of the potential α 1. In this limit the cross section is energy
dependent. Moreover, by solving Eq. (4.4) for small negative energy, we will explore
the connection between the low energy scattering and the bound states near the
threshold of the continuum spectrum.

We start by substituting χ(r) = rR0(r) in Eq. (4.4) with l = 0 yielding

χ′′(r) + 2µ[E − U(r)]χ(r) = 0 . (4.22)

In the above equation, we have also substituted k2 with 2µE, in this way pointing
out that also negative energies are considered here. Note that, on one hand, one can
neglect the term 2µEχ(r) for r ≪ 1/

√

2µ|E| ≡ 1/k . On the other hand, the term
2µU(r)χ(r) is negligible in the region r ≫ α. Hence, in the low energy limit 1/k ≫
α, one can solve Eq. (4.22) separately in the regions r ≪ 1/k and r ≫ α by neglecting
the terms 2µEχ(r) and 2µU(r)χ(r), respectively. One can then connect the two
solutions in the region α ≪ r ≪ 1/k, where both of them are valid. We denote
these two approximate solutions as χU(r) and χE(r), respectively. The solutions
of Eq. (4.22), which correspond to a physical state, obey the boundary condition
χ(0) = 0. Each acceptable solution satisfy a different normalization condition, but
the ratio χ′(r)/χ(r) is determined by the boundary condition at the origin. Thus,
one can impose the matching condition

χ′U(r)

χU(r)
=
χ′E(r)

χE(r)
= ̟ for α≪ r ≪ 1/k (4.23)

to connect the two solutions. ̟ is a constant, which depends only on the shape of
the confining potential. In fact, it does not depend on the exact position r where
the matching condition in Eq. (4.23) is imposed, as it follows from χ′′(r) ≃ 0, valid
in the whole region α ≪ r ≪ 1/k. Moreover, it must be independent from the
energy since χU(r) does not depend on this quantity. We can thus apply the same
matching condition to different asymptotic solutions χE(r) corresponding either to
a low energy scattering solution or to a spherical symmetric bound state near the
threshold of the continuum limit, when E is positive or negative, respectively.

1a reasonable quantitative definition of α is 1/(2µα2) = |U(α)| (the length above which the
kinetic energy exceeds the potential energy).
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s−wave low energy scattering

We first consider the case E > 0. The function χE(r) is the s−wave asymptotic
solution

χE(r) = A sin(kr + δ0) . (4.24)

The multiplicative factor A in the above equation is fixed by the normalization
condition and does not influence ̟. By applying the matching condition Eq. (4.23)
to χE(r) we find

cot δ0 =
̟

k
. (4.25)

Note that the s−wave frequency shift δ0 is not supposed to be small. In fact,
the validity of this result is restricted only by the condition k ≪ 1/α and not by
k ≪ ̟. The above equation together with Eq. (4.9) and the assumption that the
contributions of the higher angular momentum modes are negligible for k ≪ 1/α,
yields the scattering amplitude

fe(k) = f0(k) =
1

̟ − ik
, (4.26)

and the energy dependent cross section

σ =
2π

̟2 + k2
. (4.27)

When k ≪ |̟|, we find
fe(k) = ̟−1 (4.28)

and

σ =
2π

̟2
, (4.29)

thereby identifying
̟ = −a−1 . (4.30)

In the opposite limit |a| is much larger than k−1 and the cross section saturates to
the value σ = 4π/k2 and is said to be “unitarity limited”.

Shape resonances

Let us now consider the case E < 0. The asymptotic solution for a spherical
symmetric bound state is

χE(r) = A exp
(

−
√

−2µEr
)

. (4.31)

By applying the matching condition Eq. (4.23) we get

a−1 =
√

−2µE . (4.32)

Such equation has been derived under the assumption k =
√−2µE ≪ 1/α. We can

thus conclude that:
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(i) On one hand, in presence of a scattering length a, which is positive and much
larger than the range of the potential a ≫ α, there is a bound state with binding
energy

EB =
(

2µa2
)−1

(4.33)

and size a.
(ii) Vice versa, if a potential has a bound state near the threshold of the continuum
limit, meaning its binding energy fullfills the condition EB ≪ (2µα2)−1, the scat-
tering length a is very large in comparison to the microscopic length scale α that
characterizes the potential, resulting in a very large low-energy cross section.

In the literature, such a phenomenon is referred to as shape resonance, indicating
that the scattering amplitude is resonant, when, due to the shape of the potential,
a bound state close to the continuum threshold is present. By slightly changing the
potential, the constant ̟ changes continuously. With an appropriate change, it can
vanish and then assume a small negative value. The scattering length a changes
accordingly from a large positive value to a large negative value. In the latter case,
we say that the potential has a virtual bound state, having in mind that a small
modification of the shape of the interaction could generate a real bound state.

The Fermi pseudopotential

The total number of alkali atoms in an ultracold cloud is typically N ≈ 104−107 (up
to 1010 in BEC). A many-body description is appropriate for such a large ensemble
of interacting particles. However, a many-body theory for particles interacting via
the rather complicated Van der Waals potential would be hard to handle. For this
reason, it is useful to consider few-body problems, in particular the two-body one,
whose solutions can be employed as building blocks for a simplified effective many-
body description.

Since the gas is very diluted, typical interparticle distances being an order of
magnitude larger than the potential range, the three-body recombination is neg-
ligible. Moreover, the cloud is in the nano-Kelvin regime. Hence, an effective
many-body theory of the metastable gas phase should include a two-body inter-
action term, which describes correctly the low-energy scattering. The bound state
near the threshold of the continuum spectrum could be relevant if one is interested
in studying the phase transition to a gas of diatomic molecules.

The main result of this section is that both the low-energy s−wave scattering
and the bound state near the threshold of the continuum for a potential decreasing
faster than 1/r3 are described in terms of a single parameter, the scattering length
a.

An effective interaction yielding the scattering amplitude

fe(k) = − 1

a−1 + ik
(4.34)

and whose range α is much smaller than the modulus of the scattering length a,
would reproduce the asymptotic scattering and shallow bound state (if present)
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solutions of the original potential. The most convenient choice would be a zero-
range interaction.

The potential, which responds to these requirements is the well known Fermi
pseudopotential [112]

U(r) =
2πa

µ
δ(r)

∂

∂r
r . (4.35)

The derivative term has been introduced to regularize the contact potential at the
origin, i.e. to give a definite meaning to the combination U(0)ψ(0) (remember that
the asymptotic solution diverge like 1/r). In Appendix D we solve explicitly the
two-body problem in free space using the pseudopotential to model the two-body
interaction, in order to show explicitly that one recovers the scattering amplitude
and the binding energy for the shallow bound state given in Eqs. (4.34) and (4.33),
respectively.

In the following section we return to the main topic in the focus of this chapter:
the scattering in presence of transversal confinement. In this different framework,
the pseudopotential method has proved to be a reliable and powerful tool of in-
vestigation, and we, too, will adopt it. Since the derivation of the pseudopotential
method as been carried out in free space, few comments on the extension of this
method to a confined geometry are in order.

Note that the main assumption on which the pseudopotential method is based,
is that there is a separation of length scales in the problem.

On one hand for short distances, one has to take into account the particle-
particle interaction but the solution is not energy dependent. On the other hand, for
large distances one can disregard the interaction term and recovers the asymptotic
scattering or bound state solution. For intermediate distances, both solutions are
valid and they can be connected by means of the matching condition given in Eq.
(4.23), which depends on the shape of the potential only.

This is the only relevant information one needs to know in order to construct
an effective low-energy theory. The pseudopotential is just the most convenient
potential, which encodes such a matching condition.

In a confined geometry, very little changes: if the characteristic length associated
with the confinement is much larger than the range of the potential α, there is a
separation of length scales. One is supposed to connect the short-distance solution
with an asymptotic solution which depends on the confining potential and on the
energy, but the matching condition remains the one in Eq. (4.23). It is thus clear,
that the pseudopotential method is still valid.

4.2 The two-body problem in presence of transverse con-
finement

Let us consider the general case of two different atomic species with mass m1 and
m2. We denote the particle coordinates by xi = (x⊥,i, zi) and their momenta by
pi = (p⊥,i, p‖,i). Different atoms may experience a different transversal confinement
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potential Vi(x⊥,i). For ultracold atoms, only low-energy s-wave scattering is relevant,
and the interaction between unlike atoms (and similarly, also the interaction between
the same atoms) can be described by a Fermi pseudopotential U(|x1 − x2|). Then
the relevant Hamiltonian for two different atoms is given by

H =
p2

1

2m1
+

p2
2

2m2
+ V1(x⊥,1) + V2(x⊥,2) + U(|x1 − x2|) . (4.36)

For further convenience, we transform to the relative/COM coordinates and mo-
menta given by r = (r⊥, z), R = (R⊥, Z) and p = (p⊥, p‖), P = (P⊥, P‖), respec-
tively. This can be done by the canonical transformation
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r
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=
1

M









m1 m2 0 0
M −M 0 0
0 0 M M
0 0 m2 −m1

















x1

x2

p1

p2









, (4.37)

where M = m1 + m2. Since the confinement is assumed to be purely transversal,
the longitudinal COM coordinate Z is free and decouples from the other degrees of
freedom. Hence, we eliminate it by transforming into the longitudinal COM rest
frame, where the state |Ψ〉 of the system is determined by the set of coordinates
(x⊥,1,x⊥,2, z) or, alternatively, by (R⊥, r) = (R⊥, r⊥, z). The transformed Hamilto-
nian takes the form

H = H‖ +H⊥,1 +H⊥,2 + U , (4.38)

where

H‖ =
p2
‖

2µ
, H⊥,i =

p2
⊥,i

2mi
+ Vi(x⊥,i) . (4.39)

For a more compact notation, we introduce the non-interacting Hamiltonian H0 =
H − U and denote its eigenstates by

|k, λ1, λ2〉 = e−ikzψ
(1)
λ1

(x⊥,1)ψ
(2)
λ2

(x⊥,2) , (4.40)

where ψ
(i)
λi

are single-particle eigenstates ofH⊥,i for eigenvalue E
(i)
λi

. Correspondingly,
the two-particle Schrödinger equation is given by

(H0 −E) Ψ(R⊥, r) = −U(r)Ψ(R⊥, r) . (4.41)

The pseudopotential (4.35) can be enforced by the Bethe-Peierls boundary condition

Ψ(R⊥, r → 0) ≃ f(R⊥)

4πr

(

1 − r

a

)

, (4.42)

leading to the inhomogeneous Schrödinger equation

(H0 − E)Ψ(R⊥, r) =
f(R⊥)

2µ
δ(r). (4.43)
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The solution of this equation can be formally obtained in terms of a solution of
the homogeneous Schrödinger equation, (H0 − E)Ψ0 = 0, and the Green’s function
GE = (H0 − E)−1,

Ψ(R⊥, r) = Ψ0(R⊥, r) +

∫

dR′⊥GE(R⊥, r;R
′
⊥, 0)

f(R′⊥)

2µ
. (4.44)

To determine f(R⊥), we substitute Eq. (4.44) into Eq. (4.42) and find the integral
equation

−f(R⊥)

4πa
= Ψ0(R⊥, 0) +

∫

dR′⊥ζE(R⊥,R
′
⊥)f(R′⊥), (4.45)

where we have defined the regularized integral kernel

ζE(R⊥,R
′
⊥) = lim

r→0

1

2µ

(

GE(R⊥, r;R
′
⊥, 0) − δ(R⊥ −R′⊥)

µ

2πr

)

. (4.46)

In Eqs. (4.44) and (4.45), Ψ0 can be expressed as a superposition of single-particle
eigenstates |k, λ1, λ2〉 with

k2

2µ
+ E

(1)
λ1

+ E
(2)
λ2

= E . (4.47)

We refer to the set of states with the same transverse occupation numbers λi but ar-
bitrary longitudinal relative momentum as a scattering channel or, simply, channel .
Each channel has a minimum energy given by E

(1)
λ1

+ E
(2)
λ2

. Since the interaction is
short-ranged, only states fulfilling Eq. (4.47) appear in the asymptotic solution. For

each open channel, E > E
(1)
λ1

+ E
(2)
λ2

, such that there are (at least) two such states

having opposite momenta. For E just above E
(1)
0 +E

(2)
0 , there exists one open chan-

nel only. The corresponding solution given by Eq. (4.44) describes the scattering of
two particles initially occupying the transverse ground-state. During the scattering
process, the particles populate closed channels, but afterwards return into the single
available open channel (quasi-1D picture). For E < E

(1)
0 + E

(2)
0 , all channels are

closed and only bound-state solutions are possible. These are given by Eq. (4.44)
with Ψ0(R⊥, r) = 0. In the following, we consider both classes of solutions in more
detail.

4.3 Bound-state solutions

Let us consider the situation when all channels are closed and only bound states
may occur. We define the binding energy of the bound states as

EB = E0 − E > 0 , (4.48)

where E0 = E
(1)
0 + E

(2)
0 is the ground-state energy of H0. To find bound states, we

diagonalize the operator ζE(R⊥,R
′
⊥) defined in Eq. (4.46), where Eq. (4.45) yields

the condition

−f(R⊥)

4πa
=

∫

dR′⊥ζE(R⊥,R
′
⊥)f(R′⊥) . (4.49)
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For given a, bound states with binding energy EB = E0 − E follow as solution of
this eigenvalue problem. The bound-state wave function follows by inserting the
corresponding eigenvector f(R⊥) into Eq. (4.44) with Ψ0(R⊥, r) = 0. In order
to find a representation of ζE(R⊥,R

′
⊥) allowing for straightforward analytical or

numerical diagonalization, we use

GE(R⊥, r;R
′
⊥, 0) =

∫ ∞

0

dt eEtGt(R⊥, r;R
′
⊥, 0) , (4.50)

with the imaginary-time evolution operator

Gt(R⊥, r;R
′
⊥, 0) = 〈R⊥, r| exp[−H0t]|R′⊥, 0〉 (4.51)

for H0. The time evolution operator exp[−H0t] can be factorized into the product
exp[−H‖t] exp[−H1,⊥t] exp[−H2,⊥t]. The corresponding factors in Gt are

〈z| exp[−H‖t]|z′〉 =
( µ

2πt

)1/2

e−(z−z′)2µ/2t (4.52)

for the relative longitudinal coordinates and

〈xi,⊥| exp[−Hi,⊥t]|x′i,⊥〉 =
∑

λ

e−E
(i)
λ

tψ
(i)
λ (xi,⊥)ψ̄

(i)
λ (x′i,⊥) (4.53)

for the transverse coordinates (the bar denotes complex conjugation). Thus Gt can
be expressed in terms of the set of coordinates (x⊥,1,x⊥,2, z) as

Gt(R⊥, r;R
′
⊥, 0) =

√

µ

2πt
e−z2µ/2t

∏

i=1,2

∑

λ

e−E
(i)
λ

tψ
(i)
λ (x⊥,i)ψ̄

(i)
λ (x′⊥,i) . (4.54)

This equation illustrates that for large imaginary times the integrand in Eq. (4.50)
decays as exp[−EBt]. Notice that this representation is valid for EB > 0. By using

µ

2πr
=

∫ ∞

0

dt
( µ

2πt

)3/2

e−r2µ/2t (4.55)

we find

ζE(R⊥,R
′
⊥) =

∫ ∞

0

dt

2µ

[

eEtGt(R⊥, 0;R′⊥, 0) −
( µ

2πt

)3/2

δ(R⊥ − R′⊥)
]

. (4.56)

To show that the integral in Eq. (4.56) converges also for small t, we expand
Gt(R⊥, 0;R′⊥, 0) with respect to t, see Appendix E. We find

lim
t→0

Gt(R⊥, 0;R′⊥, 0) =
( µ

2πt

)3/2

δ(R⊥ − R′⊥) − t−1/2
( µ

2π

)3/2

×
[

P2
⊥

2M
+ V1(R⊥) + V2(R⊥)

]

. (4.57)
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Thus, ζE can be regarded as a regular operator acting on the space L2 of square-
integrable functions. We note in passing that if the two single-particle transverse
Hamiltonians H⊥,i commute with the angular momentum operators Lz, then also
ζE commutes with Lz. This follows by observing that in this case we can choose for
the eigenbasis {ψ(i)

λ } a set of eigenvectors of Lz, and the product of two eigenvectors
of Lz is still an eigenvector of Lz. Hence ζE(R⊥,R

′
⊥) can be written as a sum of

projectors onto states with definite angular momentum. A similar conclusion can
be drawn regarding parity symmetry, when considering non-cylindrical confining
potentials that obey this symmetry.

From Eq. (4.54) it is clear that the integrand in Eq. (4.50) decays as exp[−EBt]
for large imaginary times and as exp[−z2µ/(2t)] for short imaginary times, yield-
ing the condition z < 1/

√
µEB. We can conclude that the longitudinal size of

the bound state is aB = 1/
√
µEB provided that the overlap integral in Eq. (4.44)

∫

dR′⊥ψ̄0(R
′
⊥, 0)f(R′⊥) 6= 0, with

ψ0(R⊥, r⊥) = ψ
(1)
0

(

R⊥ +
µ

m1
r⊥

)

ψ
(2)
0

(

R⊥ − µ

m2
r⊥

)

(4.58)

being the transverse non-interacting ground-state. For large EB, aB is small and
we have very tight pairs. This constitutes the dimer limit . On the other hand, for
small EB, atom pairs are very elongated. This regime is termed BCS limit. In the
following, we investigate both limits in greater detail.

4.3.1 Dimer limit

For large binding energies, the atom-atom interaction dominates over the confine-
ment. Due to the exponential factors in Eq. (4.56), only small imaginary times
contribute significantly to the integral, and we can substitute Gt with the short-
time expansion (4.57) as derived in the Appendix E, yielding

ζE(R⊥,R
′
⊥) ≃

( µ

2π

)3/2
∫ ∞

0

dt

2µ

(

t−3/2
(

eEt − 1
)

δ(R⊥ − R′⊥)

−eEtt−1/2〈R⊥|H⊥|R′⊥〉
)

. (4.59)

Hence, the operator ζE now shares eigenfunctions with H⊥ = P2
⊥/2M + V1(R⊥) +

V2(R⊥). For (identical) parabolic confinement potentials, H⊥ is exactly the decou-
pled COM Hamiltonian. Let us denote the eigenfunctions and eigenenergies of H⊥
as φλ(R⊥) and E

(φ)
λ , respectively. Substituting φλ(R⊥) into Eq. (4.49) yields after

some algebra

− 1

4πa
= −

√

2µ|E|
4π

(

1 +
E

(φ)
λ

2|E|

)

≃ −
√

2µEB

4π
. (4.60)

In the second relation, we have used Eq. (4.48). From this, we directly obtain the
binding energy in the dimer limit a→ 0+ as

EB ≈ 1

2µa2
, (4.61)

which coincides with the result obtained in free (3D) space without confinement.
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4.3.2 BCS limit

The scattering channel with lowest energy, corresponding to the transverse non-
interacting ground-state ψ0, opens at the energy threshold E = E0. For EB → 0+,
as the energy approaches this threshold, the term with λ1 = λ2 = 0 dominates in
Eq. (4.54), and yields in Eq. (4.56) the contribution

√

1

8µEB
ψ0(R⊥, 0)ψ̄0(R

′
⊥, 0) , (4.62)

which diverges for EB → 0+. All other channels are still closed at E = E0 and
give finite contributions in Eq. (4.54). This observation suggests a useful separation
of the total Hilbert space into a part Ho corresponding to the open channel (or
lowest-energy scattering channel) and a part He perpendicular to that. With this
separation, terms yielding a finite contribution at EB → 0+ can be summarized in
the Green’s function

G̃t(R⊥, r;R
′
⊥, 0) = 〈R⊥, r| exp[−H̃0t]|R′⊥, 0〉 , (4.63)

where H̃0 is the projection of H0 onto the Hilbert subspace He. We then define a
new integral kernel,

ζ̃E(R⊥,R
′
⊥) =

∫ ∞

0

dt

2µ

[

eEtG̃t(R⊥, 0;R′⊥, 0) −
( µ

2πt

)3/2

δ(R⊥ − R′⊥)
]

, (4.64)

which is also well-defined for energies above the threshold E = E0.
For small EB, Eq. (4.49) is most conveniently solved by expanding f(R⊥) in an

orthonormal basis |j 〉 according to

| f 〉 =
∑

j

fj | j 〉, fj =

∫

dR⊥〈 j |R⊥〉f(R⊥), (4.65)

where the basis state | 0 〉 corresponds to

〈R⊥| 0 〉 = cψ0(R⊥, 0), (4.66)

with normalization constant c. Although ψ0(R⊥, r) is a normalized element of the
two-particle Hilbert space, this does not imply that ψ0(R⊥, 0) is an element of the
COM Hilbert space with norm unity. In fact, the normalization constant c has to
be computed explicitly and generally depends on the particular confinement. In this
basis, Eq. (4.49) assumes the compact form

− |f〉
4πa

= ζE|f〉 =

(
√

1

8µEB

|0〉〈0|
c2

+ ζ̃E

)

|f〉. (4.67)

|0〉 is an approximate eigenstate for small EB, since all the matrix elements are finite
apart from 〈0|ζE|0〉 which diverges according to

〈0|ζE|0〉 ≃
√

1

8µEB

1

c2
+ 〈0|ζ̃E|0〉 . (4.68)
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Substituting this in Eq. (4.67) yields

− 1

4πa
≃
√

1

8µEB

1

c2
+ 〈0|ζ̃E|0〉 . (4.69)

Neglecting the last term, the relation for the binding energy EB is solved in the BCS
limit a→ 0−,

EB ≈ 2a2π2

µc4
. (4.70)

4.4 Scattering solutions

In this section, we focus on scattering solutions at low energies E slightly above E0,
where exactly one transverse channel is open. Then, the incoming state is given by

Ψ0 = eikzψ
(1)
0 (x1,⊥)ψ

(2)
0 (x2,⊥) , (4.71)

which describes two incoming atoms with (small) relative longitudinal momentum

k =
√

2m(E − E0) in the (transverse) single-particle ground-states ψ
(1)
0 and ψ

(2)
0 ,

respectively.

4.4.1 One-dimensional scattering length a1D

As done in Sec. 4.3, we split off the contribution from the open channel,

GE(R⊥, r;R
′
⊥, 0) = ψ0(R⊥, r⊥)ψ̄0(R

′
⊥, 0)

iµ

k
eik|z| +

∫ ∞

0

dt eEtG̃t(R⊥, r;R
′
⊥, 0) ,

(4.72)
where G̃t(R⊥, z;R

′
⊥, 0) is the Green’s function restricted to He, which is well-defined

also above E0. Inserting Eq. (4.72) into Eq. (4.44) yields for |z| → ∞ the standard
scattering solution,

Ψ(R, r) = ψ0(R⊥, r⊥)
(

eikz + fe(k)e
ik|z|
)

, (4.73)

with scattering amplitude

fe(k) =
i

2k

∫

dR′⊥ψ̄0(R
′
⊥, 0)f(R′⊥) , (4.74)

whereas for short distances, also the term
∫

dR′⊥
∫∞

0
dt eEtG̃t(R⊥, r;R

′
⊥, 0)f(R′⊥)

appears in the scattering solution. Since the energy is well below the continuum
threshold for the closed channels, this must be regarded as a sum over localized
states. Enforcing the boundary condition (4.42) then leads to an integral equation
for f(R⊥),

−f(R⊥)

4πa
=

∫

dR′⊥ζ̃E(R⊥,R
′
⊥)f(R′⊥)

+ψ0(R⊥, 0) +
iψ0(R⊥, 0)

2k

∫

dR′⊥ψ̄0(R
′
⊥, 0)f(R′⊥) . (4.75)
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This integral equation is most conveniently solved by again expanding f(R⊥) in the
orthonormal basis {|j〉} introduced in the previous section. Thereby, we can express
Eq. (4.75) in compact notation,

− |f〉
4πa

=
|0〉
c

+
i

2k

|0〉
c2

〈0|f〉+ ζ̃E|f〉, (4.76)

which is formally solved by

|f〉 =
−1/c

1 − i/(ka1D)

(

ζ̃E +
1

4πa

)−1

|0〉. (4.77)

The parameter a1D follows in the form

a1D = − 2c2

〈0|[ζ̃E + 1/(4πa)]−1|0〉
. (4.78)

From Eq. (4.74), fe(k) = −1/(1 + ika1D), which allows to identify a1D with the 1D
scattering length. Having introduced this parameter, the 1D atom-atom interaction
potential can then be written in an effective form according to

V1D(z, z′) = g1Dδ(z − z′) , (4.79)

with interaction strength g1D = −1/(µa1D) [28]. For very low energies, k → 0, we
can now formally set E = E0 in Eq. (4.78). For a confining trap, ζ̃E0 is an Hermitian
operator with discrete spectrum {λn} and eigenvectors |en〉, which eventually have
to be determined for the particular Hamiltonian. Thus we find

g1D =
1

2µc2

∑

n

|〈0|en〉|2
λn + 1/(4πa)

. (4.80)

This result has interesting consequences for the two-body interaction. The denom-
inator can become singular for particular values of a, thereby generating a CIR.
Every eigenvalue λn corresponds to a different CIR, unless the overlap 〈0|en〉 van-
ishes due to some underlying symmetry of the Hamiltonian. We anticipate that for
identical parabolic confinement potentials, the decoupling of the COM motion im-
plies that only one resonance is permitted. For confining potentials with cylindrical
symmetry, there is a resonance for each eigenvector of ζ̃E0 with zero angular momen-
tum. For confining potentials obeying parity symmetry, the eigenstates |en〉 must
be even. These two symmetries allow in principle for infinitely many resonances. In
practice, however, only few of them can be resolved because the resonances become
increasingly sharper when |〈0|en〉|2 → 0, making them difficult to detect.

4.4.2 Interpretation of the CIR as Feshbach resonances

A very simple and illuminating analysis, similar to that for standard Feshbach res-
onances [39], is also possible for the CIR. The two-particle Schrödinger equation
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can be rewritten as an effective Schrödinger equation for the scattering states in the
open channel, (E −Heff)P|Ψ〉 = 0, with the effective Hamiltonian

Heff = Hopen + PHM 1

E −Hclosed
MHP . (4.81)

Here, Hopen = PHP and Hclosed = MHM, where P and M are projectors to open
and closed channels, respectively. This equation can be expressed in terms of the
closed-channel eigenstates |Φn〉,

Heff = Hopen + PH
∑

n

|Φn〉〈Φn|
E − En

HP , (4.82)

with Hclosed|Φn〉 = En|Φn〉. This implies that a Feshbach-like resonance is possible
at zero momentum if two conditions are fulfilled. First, there exists a solution of
(E0 − Hclosed)|Φ〉 = 0, i.e., |Φ〉 is a bound state of Hclosed with energy E = E0.
Second, |Φ〉 must be coupled to the open channel, PH|Φ〉 6= 0.

Within the pseudopotential approximation, the equation (E0 − Hclosed)|Φ〉 = 0
is solved in terms of the Green’s function

MGE0(R⊥, r;R
′
⊥, 0)M =

∫ ∞

0

dt eE0tG̃t(R⊥, r;R
′
⊥, 0) (4.83)

by the state

Φ(R⊥, r) =

∫

dR′⊥MGE0(R⊥, r;R
′
⊥, 0)Mf(R′⊥)

2µ
, (4.84)

together with the boundary condition

Φ(R⊥, r → 0) ≃ f(R⊥)

4πr

(

1 − r

a

)

. (4.85)

This leads to the eigenvalue equation

− |f〉
4πa

= ζ̃E0 |f〉 , (4.86)

which is solved by the eigenvectors |en〉 introduced above. This yields a =
−1/(4πλn), implying that there is a bound state |Φ〉 of Hclosed with energy equal
to the energy of the incoming wave, corresponding to the resonances found in the
previous subsection. The CIR is then in complete analogy to a zero-momentum
Feshbach resonance. Due to the small but finite coupling to the closed channels,
two incoming particles initially in the open channel visit the closed channels during
the scattering process. This process is strongly intensified when a bound-state exists
whose energy is close to the continuum threshold. Then, a scattering resonance re-
sults. Note that such a bound state can be occupied only virtually by two particles
during the scattering process. Hence from now on we will refer to such a bound
state as a virtual bound state.
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It is also possible to recover the overlap condition 〈0|en〉 6= 0 in this framework.
In fact,

PHΦ(R⊥, r) = PU(r)Φ(R⊥, r) = −P 〈R⊥|en〉
2µ

δ(r) = −ψ0(R⊥, r⊥)δ(z)
〈0|en〉
2µc

,

(4.87)
since |Φ〉 fulfills Eq. (4.85) with f(R) = 〈R⊥|en〉. Hence, the two overlap conditions

PH|Φ〉 6= 0 ⇔ 〈0|en〉 6= 0 (4.88)

are equivalent. When they are not fulfilled, there exists a virtual bound state with
energy E0, but it is not coupled to the incoming wave.

4.5 Special case of harmonic confinement

In the previous sections, we have formulated the theory for a general confining
potential and for two different atomic species. As a simple illustration, we now
consider the case of harmonic confinement, Vi(xi) = miω

2
i x

2
i⊥/2. In COM and

relative coordinates,

Vconf(R⊥, r⊥) =
1

2

(

m1ω
2
1 +m2ω

2
2

)

|R⊥|2 +
1

2

(

µ2

m1
ω2

1 +
µ2

m2
ω2

2

)

|r⊥|2

+µ
(

ω2
1 − ω2

2

)

r⊥ · R⊥ . (4.89)

In general, the COM and the relative coordinates do not decouple, and in order
to find the scattering and bound-state solutions, we have to follow the procedure
outlined in the previous sections. To that end, we label the single-particle transverse
states by quantum numbers λ = {m,n}, where m is the integer angular momentum
and n the integer radial quantum number. The eigenenergies and -states of the 2D
harmonic oscillator

E
(i)
λ = ωiǫn,m, ψ

(i)
λ =

1

ai

ψn,m

(

x⊥
ai

)

, (4.90)

with the oscillator lengths ai = (miωi)
−1/2, i = 1, 2, can be expressed in terms of the

quantities

ǫn,m = 2n + |m| + 1 and ψn,m(x⊥) = eimφRn,m(|x⊥|), (4.91)

where

Rn,m(ρ) =
1√
π

(

n!

(n + |m|)!

)1/2

e−ρ/2ρ|m|L|m|n (ρ2), (4.92)

with L
|m|
n (x) being the standard Laguerre polynomials. A convenient choice for the

orthonormal basis |j〉 introduced in Eq. (4.65) is then given by

〈R⊥|j〉 = 〈R⊥|m,n〉 =
1

aM
ψn,m

( |R⊥|
aM

)

, (4.93)
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with the length scale aM = (m1ω1 +m2ω2)
−1/2. In particular, we find for |0〉 = |0, 0〉

that 〈R⊥|0〉 fulfills Eq. (4.66) with c =
√
πa1a2/aM .

The single-particle imaginary-time propagator for a 2D harmonic oscillator with
length scale a0 and frequency ω is given by

∑

λ

e−ωǫλt 1

a2
0

ψλ

(

x⊥
a0

)

ψ̄λ

(

x′⊥
a0

)

=
1

πa2
0

e−ωt

1 − e−2ωt
exp

[

−x2
⊥ + x′2⊥
2a2

0

coth(ωt) +
x⊥ · x′⊥

a2
0 sinh(ωt)

]

. (4.94)

Inserting this into Eq. (4.54) with x⊥,i = R⊥, x′⊥,i = R′⊥ and z = 0, we find

Gt(R⊥, 0;R′⊥, 0) =

√

µ

2πt

β(1 − β)

π2a4
M

e−ω1t

1 − e−2ω1t

e−ω2t

1 − e−2ω2t

× exp

[

−R2
⊥ + R′2⊥
2a2

M

f(t) +
R⊥ · R′⊥
a2

M

g(t)

]

, (4.95)

where we have introduced β = a2
M/a

2
1 and

f(t) = β coth(ω1t) + (1 − β) coth(ω2t) ,

g(t) = β sinh−1(ω1t) + (1 − β) sinh−1(ω2t) . (4.96)

In order to compute explicitly the operators ζE and ζ̃E, we still have to project onto
the discrete basis {|j〉} and to perform the imaginary-time integral for each matrix
element. In general, this cannot be achieved analytically, and one has to resort to a
numerical evaluation. Only for ω1 = ω2, a complete analytical solution is possible.
Since the COM degrees of freedom separate, this solution is a trivial extension of
Ref. [28]. Nonetheless, along with the general analysis of the previous section, it
provides a physical picture for weak interaction between the COM and the relative
degrees of freedom.

4.5.1 Identical frequencies

For ω1 = ω2 = ω, the COM and relative coordinates separate, H = Hrel + HCOM,
with

Hrel =
p2

2µ
+

1

2
µω2r2

⊥ + V (r) , HCOM =
P2

2M
+

1

2
Mω2R2

⊥ . (4.97)

In this case, we can consider the two-particle system being (asymptotically) in the
ground-state of the decoupled COM Hamiltonian, and just solve the relative problem
[28,29]. Moreover, with f(t) = coth(ωt) and g(t) = sinh−1(ωt), the Green’s function
(4.95) simplifies to

Gt(R⊥, 0;R′⊥, 0) =

√

µ

2πt

β(1 − β)

πa2
M

e−ωt

1 − e−2ωt

∑

n,m

e−ωǫn,mt 1

a2
M

ψn,m

(

R⊥
aM

)

ψ̄n,m

(

R′⊥
aM

)

.

(4.98)
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In this case, |n,m〉 is an eigenstate of the decoupled Hamiltonian HCOM, and
describes the COM motion also for finite r. Moreover, aM = (Mω)−1/2 and
aµ = aM/(β(1−β)) = (µω)−1/2 are the characteristic lengths associated with HCOM

and Hrel, respectively. Inserting Eq. (4.98) into Eq. (4.56) and rescaling t by 2ω, we
obtain

ζE =
∑

n,m

|n,m〉〈n,m|
4πaµ

∫ ∞

0

dt

(πt)1/2

(

e−Ωn,m(E)t

1 − e−t
− 1

t

)

, (4.99)

with Ωn,m(E) = (1 + ǫn,m −E/ω)/2. The integral on the rhs of Eq. (4.99) is related
to the integral representation of the Hurvitz zeta function ζ(1/2,Ωn,m) [27, 114].

Bound states

The condition given in Eq. (4.49) for a bound state with transverse configuration
|n,m〉 translates into

ζ

(

1

2
,Ωn,m

)

= −aµ

a
. (4.100)

The zeta function is monotonic, and has the asymptotic scaling behavior

ζ

(

1

2
,Ω ≪ 1

)

≈ Ω−1/2, ζ

(

1

2
,Ω ≫ 1

)

≈ −2
√

Ω . (4.101)

Inverting Eq. (4.100), we recover the bound-state energy found in Ref. [29]. The
corresponding result is plotted in Fig. 4.1. As an immediate consequence of the
decoupling of the COM degrees of freedom, the ǫλ-fold degenerate energies cor-
responding to excited transverse configurations follow from the COM transverse
ground-state by a shift along the ordinate in steps of ω. This is indicated by the
dotted curves in Fig. 4.1. Notice that for energies above E0 = 2ω, corresponding to
EB = 2ωΩ0,0(E) < 0, there exists an open channel, but the solutions associated with
COM excited states are orthogonal to it. For this reason, the relevant condition for
a bound state to exist with transverse configuration |n,m〉 is Ωn,m(E) > 0. From
the scaling behaviors in Eq. (4.101), we find the limiting behaviors of the energy of
the bound state at |aµ/a| ≫ 1 as

EB,n,m ≈ 1

2µa2
for a > 0 ,

EB,n,m ≈ 2a2

µa4
µ

for a < 0 , (4.102)

see Eqs. (4.61) and (4.70), with c =
√
πaµ and EB,n,m = ωΩn,m. Hence, in this highly

degenerate case, there is exactly one bound state for each transverse configuration
and each scattering length a.

Scattering states

In order to identify resonant bound states of the closed channel, and the corre-
sponding zero-momentum CIR, we subtract the contribution of the lowest-energy
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scattering channel in Eq. (4.99), and obtain

ζ̃E = ζE − |0, 0〉〈0, 0|
4πaµ

∫ ∞

0

dt

(πt)1/2
e−Ω0(E)t

=
∑

n,m

|n,m〉〈n,m|
4πaµ

ζ(1/2, Ω̃n,m(E)), (4.103)

with Ω̃0,0(E) = Ω0,0(E)+1 and Ω̃n,m(E) = Ωn,m(E) for n+|m| > 0. Hence the curve
corresponding to the COM ground-state is shifted vertically by 2ω and coincides with
the curve corresponding to the excited states |1, 0〉, |0, 2〉 and |0,−2〉. Moreover, the
coupling condition in Eq. (4.88) becomes 〈0, 0|n,m〉 6= 0, and is fulfilled only for
n = m = 0. Though there are in principle infinitely many closed-channel bound
states with energy 2ω (one for each curve), only one scattering resonance exists,
since only one of them is coupled to the incoming scattering wave. Inserting Eq.
(4.103) into Eq. (4.80) we recover for the 1D interaction strength g1D the well known
result [28]

g1D = 2ωaµ

(aµ

a
− C

)−1

. (4.104)

Physical picture for the weakly interacting case

When ω1 6= ω2 but ω1 ≈ ω2, a weak coupling to the COM degrees of freedom is
generated, with two important consequences: (i) the degeneracies of the bound-
state energies are lifted, and (ii) the coupling to the other higher-lying bound states
is non-zero. Since the operators ζ̃E and ζE commute with the z-component Lz of
the angular momentum, the bound states are still labeled by the quantum numbers
{n,m}. As far as the scattering solutions are concerned, the incoming wave is
coupled only to states with angular momentum quantum number m = 0. Since
〈0, 0|ζ̃E|0, 0〉 ≈ 〈1, 0|ζ̃E|1, 0〉, a small off-diagonal element 〈0, 0|ζ̃E|1, 0〉 is sufficient
to couple the bound state with {n,m} = {1, 0} to the incoming wave, yielding an
additional CIR. As far as bound states are concerned, solutions with E > E0 and
m = 0 leak into the open channel, and cannot be regarded as localized bound states.
Hence, for |aµ/a| ≫ 1 and a < 0, there is only one bound state with zero angular
momentum. In the opposite dimer limit, however, we encounter many dimer bound
states.

4.5.2 The case ω1 6= ω2: Relation to experiments

The case ω1 6= ω2 is relevant for experiments involving two different atom species
trapped in magnetic or optical traps [115–117]. For instance, in optical traps the
confining potential depends on the detuning ∆ = ωlas − hc/λ of the laser frequency
ωlas from the characteristic frequency hc/λ associated with the optical transition
ns → np, and is therefore different for two different atom species. This conclusion
also applies to magnetic traps if the atoms are confined in hyperfine states with
different projection of the magnetic moment along the magnetic field. As a concrete
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Figure 4.1:: Bound state energies E as a function of aµ/a for harmonic confine-
ment with equal frequency ω for both atoms. The dashed red curve indicates the
bound state energy of the ground-state |0, 0〉. Its binding energy EB is given by the
distance to the horizontal dashed line indicating the continuum threshold for the
open channel. The blue curve marks the bound state energy of the virtual bound
state relevant for the low-energy scattering. It is obtained by a vertical shift of the
ground-state energy by 2ω, and coincides with the three-fold degenerate bound-state
energy indicated as solid curve. The black dotted curves give the bound-state ener-
gies of the excited transverse states, obtained by a vertical shift of the ground-state
result.

example, let us consider a mixture of bosonic 87Rb atoms and fermionic 40K atoms.
Sympathetic cooling has allowed to create an ultracold mixture of these two ele-
ments. By loading such a gas into a dipole trap and sweeping an external magnetic
field, it has been possible [117] to identify three heteronuclear Feshbach resonances
and to measure the 3D interspecies scattering length a = −14 nm. It seems feasible
to tune the magnetic field near a Feshbach resonance and to observe the interspecies
CIR. It is hence very interesting to know how many of them can be expected and
to study their locations.

The confining potential for a neutral atom in a standing optical wave E(r, t) =
E0(r)Re[exp (−iωlast)] is Vconf(r) = −(ε0/4)α′E2

0(r), where α′ = −e2/(2meωlasε0∆)
is the real part of the polarizability [101]. Let us consider a red-detuned laser
field corresponding to ∆ < 0 and α′ > 0. In this configuration, the atoms are
trapped around the maximum of the electric field. For a mixture of two species,
each species experiences its own detuning ∆K (∆Rb) given by the two transition
wavelengths λK = 767 nm and λRb = 780 nm. Within a parabolic approximation
for the potential around its minimum, the ratio ωK/ωRb of trap frequencies for K
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Figure 4.2:: Upper viewgraph: CIR in the effective interspecies 1D interaction
constant g1D as a function of aµ/a. We consider a two-component atom gas of 40K
and 87Rb, with average detuning ∆ = −0.1ωlas (solid line). For comparison, we also
show the result for the case when the two species experience the same trap frequency
(dashed line). Lower viewgraph: Dimensionless binding energy Ω for the two states
|0, 0〉 and |1, 0〉.

and Rb atoms becomes
ωK

ωRb

=

(

∆Rb

∆K

mRb

mK

)1/2

. (4.105)

Let us estimate this ratio for typical parameters. In order to suppress spontaneous
emission, we assume an average detuning of ∆ = (∆K +∆Rb)/2 = −0.1ωlas, yielding
ωlas = 5hc(λ−1

K + λ−1
Rb)/11 and ∆Rb/∆k = (5λ−1

K − 6λ−1
Rb)/(5λ

−1
Rb − 6λ−1

K ) = 0.84.
Taking also into account the mass ratio mRb/mK = 87/40, we have ωK/ωRb = 1.35,
indicating a substantial coupling of COM and relative degrees of freedom.

Using Eq. (4.95), we can project the Green’s function Gt(R⊥, 0;R′⊥, 0) on the
appropriate basis defined in Eq. (4.65) and then compute numerically ζ̃E by perform-
ing the imaginary-time integration, see Appendix E. Then ζ̃E0 can be diagonalized,
and the effective interspecies 1D interaction constant g1D follows according to Eq.
(4.80). The results are shown in the upper viewgraph of Fig. 4.2 in terms of the char-
acteristic length aµ =

√

2/(µ(ωK + ωRb)). We find two resonances, indicating that
the discussion of Sec. 4.5.1 applies to this particular case. In order to illustrate the
interpretation of the CIR in terms of Feshbach-type resonances with bound states of
the closed channels, we also plot in the lower viewgraph of Fig. 4.2 the dimensionless
binding energy Ω = 2(E − ωK +ωRb)/(ωK +ωRb) of the corresponding bound state.
As expected, the resonances occur at those values of aµ/a for which the energy of
the bound state of the closed channels coincides with the continuum threshold of
the open channel.
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4.6 Non-parabolic confining potentials

Describing the potential created by an optical or a magnetic guide as parabolic is to
some extent a simplification which has to be verified. In fact, even though the lower-
energy transverse states can rather well be approximated by the eigenfunctions of
a 2D harmonic oscillator, in every real trap the confinement is to some degree non-
parabolic. For resonant scattering, we expect to have a virtual occupation of many
non-parabolic transverse states. As a consequence, the location of the CIR will be
slightly moved, and new resonances could be created. This can already be seen from
an analysis similar to the one in Sec. 4.5.1 for small non-parabolic corrections. In
order to tackle the problem quantitatively, a full numerical treatment is required
since no analytical expression for the Green’s function is in general available, in
contrast to Sec. 4.5.

As an example, we consider the small non-parabolicity due to the presence of
a longitudinal magnetic bias field Bz in a magnetic waveguide containing a single-
species gas. This is necessary to avoid Majorana spin flips [103] and the subsequent
escape of atoms out of the trap. A magnetic trapping potential is formed according
to Vconf(x) = µm|B(x)|, where B(x) is the applied magnetic field and µm = mF gFµB,
with mF being the magnetic quantum number of the atom in the hyperfine state
|F,mF 〉, gF the Landé factor and µB the Bohr magneton. Assuming that apart
from the longitudinal bias field, the remaining magnetic fields create a parabolic
and isotropic confinement in the transverse direction, the total confinement is given
by

χVconf(x) =
√

1 + 2χ(x2 + y2) , (4.106)

where we have scaled energy in units of the parabolic trapping frequency ω and
length in units of aµ = (µω)−1/2. The parameter χ = ω/(µmBz) is related to the
Majorana spin flip rate Γloss [103]. The 1D effective interaction strength g1D can be
calculated following our general approach. We compute ζ̃E0 numerically as outlined
in Appendix E. The results are shown in Fig. 4.3 for χ = 0.067, which corresponds
to Γloss = 10−6ω. We find two resonances reflecting the cylindrical symmetry of the
potential (4.106) and the weakness of non-parabolic corrections. The degeneracy of
the parabolic case (shown in Fig. 4.3) is lifted and the original CIR is split into two
nearby resonances. As expected, the effect of the non-parabolic transverse states
shows up only in the deep resonant region, making the parabolic solution a very
good approximation away from the resonant region. In turn, this requires a good
experimental resolution in order to observe the two CIR.

4.7 Conclusions

To conclude, we have presented the general solution for two-body s-wave scattering
in a two-component ultracold atom gas longitudinally confined to one dimension by
an arbitrary trapping potential. The underlying key property is that the center-of-
mass and the relative degrees of freedom of the two-particle problem do not decouple,
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Figure 4.3:: 1D effective interaction strength g1D for the non-parabolic potential
of Eq. (4.106) (black solid line) for χ = 0.067 corresponding to Γloss = 10−6ω. For
comparison, the parabolic case is also shown (red dashed line).

as it is the case for a one-component gas and a pure parabolic confinement. Thus,
no reduction to an effective single-particle problem is possible and the full coupled
system has to be solved. In the framework of the pseudopotential approach, we
derive the energy of the bound state when all transverse channels are closed. Simple
analytical results were obtained in the limiting cases of the dimer as well as the BCS
limit. Moreover, scattering solutions have been obtained when just one transverse
channel is open. The effective 1D interaction constant g1D can be calculated after
diagonalizing a reduced Green’s function. This can be achieved analytically for the
special case of parabolic confinement, where the well-known confinement-induced
resonance is recovered. For a two-component gas, as well as for a non-parabolic
confinement, more than one CIR occur, which reflect the symmetry properties of
the confining potential. These findings were illustrated by applying our formalism
to experimentally relevant questions. We are confident that once the CIR has been
verified experimentally, also the effects of a non-parabolic trapping potential will be
discerned.



A Model for the driven suspended

nanoresonator

In this Appendix, we show how one can derive from the model for a freely suspended
nanomechanical beam the effective Hamiltonian for a single degree of freedom, given
in Eq. (2.6), which is the focus of chapter 2.

For this, we consider a freely suspended nanomechanical beam of total length
L and mass density σ = m/L which is clamped at both ends (doubly clamped
boundary conditions) and which is characterized by its bending rigidity µ = Y I
being the product of Young’s elasticity modulus Y and the moment of inertia I.
In addition, we allow for a mechanical force F0 > 0 which compresses the beam in
longitudinal direction. Moreover, the beam is excited to transverse vibrations by
a time-dependent driving field F (t) = f cos(ωext). In a classical description, the
transverse deflection φ(s, t) characterizes the beam completely, where 0 ≤ s ≤ L.
Then, the Lagrangian of the vibrating beam follows from elasticity theory as [68]

L(φ, φ̇, t) =

∫ L

0

ds

[

σ

2
φ̇2 − µ

2

φ′′2

1 − φ′2
− F0

(

√

1 − φ′2 − 1
)

+ F (t)φ

]

. (A.1)

Before we study the dynamics of the driven beam, we consider first the undriven
system with F (t) ≡ 0.

For the case of small deflections |φ′(s)| ≪ 1, the Lagrangian can be linearized and
the time-dependent Euler-Lagrange equations can be solved by the eigenfunctions
φ(s, t) =

∑

n φn(s, t) =
∑

n An(t)gn(s), where gn(s) are the normal modes which
follow as the solution of the characteristic equation. For the doubly clamped nano-
beam, we have φ(0) = φ(L) = 0 and φ′(0) = φ′(L) = 0. However, it turns out that
this situation is closely related to the simpler case that the nano-beam is also fixed
at both ends but its ends can move such that the bending moments at the ends
vanish, i.e., φ(0) = φ(L) = 0 and φ′′(0) = φ′′(L) = 0 (free boundary conditions). For
the case of free boundary conditions, the characteristic equation yields the normal
modes gfree

n (s) = sin(nπs/L) and the corresponding frequency of the n−th mode
follows as

ωfree
n =

(

µ(nπ/L)2 − F0

σ

)1/2
nπ

L
. (A.2)

At the critical force Fc = µ(π/L)2, the fundamental frequency ωfree
1 (F0 → Fc) van-

ishes as
√
ǫ, where ǫ = (Fc − F0)/Fc is the distance to the critical force, and the

well-known Euler instability occurs.
For the case of doubly clamped boundary conditions, the characteristic equa-

tion yields a transcendental equation for the normal modes which cannot be
solved analytically. However, close to the Euler instability F0 → Fc, the situa-
tion simplifies again. After expanding, one finds for the fundamental frequency
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ω1(F0 → Fc) =
√
ǫω0, with the frequency scale ω0 = (4/

√
3)
√

µ/σ(π/L)2. Ap-
proaching the Euler instability, the frequencies of the higher modes ωn≥2 remain
finite, while the fundamental frequency ω1(F0 → Fc) vanishes again like

√
ǫ. Hence,

the dynamics at low energies close to the Euler instability will be dominated by
the fundamental mode alone which simplifies the treatment of the nonlinear case,
see below. The fundamental mode g1(s) can also be expanded close to the Euler
instability and one obtains in zero-th order in ǫ

g1(s) ≃ sin2
(πs

L

)

. (A.3)

Since the fundamental mode vanishes when F0 → Fc, one has to include the
contributions beyond the quadratic terms ∝ φ′2, φ′′2 of the transverse deflections
in the Lagrangian. The next higher order is quartic and yields terms ∝ φ′4, φ′2φ′′2.
Inserting again the normal mode expansion in the Lagrangian generates self-coupled
modes

∑

k A4
k as well as couplings terms

∑

k,l A2
kA2

l between the modes. This in-
teracting field-theoretic problem cannot be solved any longer. However, since the
normal mode dominates the dynamics at low energies closed to the Euler instabil-
ity, one can neglect the higher modes in this regime. Hence, we choose the ansatz
φ(s, t) = A1(t)g1(s) in the regime F0 → Fc and restrict the discussion in the rest
of our work to this regime. The so-far classical field theory can be quantized by
introducing the canonically conjugate momentum P ≡ −i~∂/∂A1 and the time-
dependent driving force can straightforwardly be included. Note that when the
driving frequency is close to the fundamental frequency of the beam, the fundamen-
tal mode will dominate also in absence of a static longitudinal compression force.
However, a compression force helps to enhance the nonlinear effect which are in
the focus of this work. After all, an effective quantum mechanical time-dependent
Hamiltonian results which describes the dynamics of a single quantum particle with
“coordinate” X ≡ A1 in a time-dependent anharmonic potential. It reads

H(t) =
P2

2meff

+
meffω

2
1

2
X 2 +

α

4
X 4 + XF (t) (A.4)

with the effective mass meff = 3σL/8 and the nonlinearity parameter α =
(π/L)4FcL(1 + 3ǫ).



B Van Vleck perturbation theory

This Appendix has a double purpose: on one hand, to briefly introduce the per-
turbative Van Vleck formalism for quasidegenerate Hamiltonians, and, on the other
hand, to outline the derivation of the effective Hamiltonian in Eq. (2.22).

In the literature, several different formulations of the Van Vleck formalism are
available. In this Appendix, we follow the approach of Ref. [75]. Here, a single
set of quasidegenerate eigenvalues is considered. The corresponding unperturbed
eigenvectors define the model space HM . The Hilbert space is divided into the
model space and its orthogonal space HM ⊕H⊥M . A transformation is then defined,
which transforms the Hamiltonian into a two-block diagonal form. An alternative
approach would be to consider several sets of quasidegenerate eigenvalues, thereby
obtaining a many-block diagonal effective Hamiltonian [74]. However, the former
approach leads to much more compact formulae when high order corrections are
considered. Moreover, it implies no loss of generality. In fact, when many sets of
quasidegenerate eigenvalues are present, one can focus on one set only at a time,
thereby computing the different blocks of the effective Hamiltonian one after the
other.

In the present context the model space is defined by a pair of harmonic oscillator
states: HM = |n〉⊕|N−n〉. Any operator A can be partitioned into a block diagonal
part AD and a block off-diagonal part AX

A = AD + AX , AD = PAP +QAQ , AX = PAQ+QAP . (B.1)

Here, P and Q are the projectors onto HM and H⊥M respectively. For a product of
two operators we have

(AB)D = ADBD + AXBX , (AB)X = AXBD + ADBX (B.2)

The effective Hamiltonian can be written as

H ′ = eiSHe−iS , (B.3)

where S is an hermitian matrix and its block diagonal part vanish SD = 0. We can
then use the Baker-Campbell-Hausdorff formula in Eq. (B.3) which reads

H ′ = H + [iS,H ] +
1

2!
[iS, [iS,H ]] + . . . , (B.4)

substitute the expansions S =
∑∞

n=1 ε
nSn and H ′ = H0 +

∑∞
n=1 ε

nH ′n and compute
order by order H ′ and S. At first order, we have

[iS1, H0] = −VX (B.5)
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and
H ′1 = VD (B.6)

for the block diagonal and the block off-diagonal parts, respectively. Here, by using
SD = 0, we get

〈α|S1|β〉 = −i 〈α|V |β〉
Eα − Eβ

(B.7)

for α and β belonging to different subspaces, 〈α|S1|β〉 = 0 otherwise, and

H ′1 = PV P +QPQ. (B.8)

To second order, we have

〈α1|H ′2|α2〉 =
ε2

2

∑

β

(

1

Eα1 −Eβ

+
1

Eα2 − Eβ

)

〈α1|V |β〉〈β|V |α2〉 , (B.9)

with |α1〉, |α2〉 = HM, |β〉 6= H⊥M.
In general, higher order corrections are rather cumbersome [75]. However, the

situation simplify once one observes that finite corrections to the diagonal elements
of order εm to the effective 2 × 2 Hamiltonian matrix would yield only a resonance
shift of the same order. Hence, at the true resonant frequency, the only finite
contributions to the effective Hamiltonian are the off-diagonal one 〈n|H ′m|N − n〉.
With this simplification in mind, one can straightforwardly check that the lowest
order correction is

〈n|H ′n|N − n〉 = εN−2n〈n|V |n+ 1〉
N−2n−1
∏

i=1

〈n + i|V |n+ i+ 1〉
En − En+i

. (B.10)

with Ei being the eigenvalues of H0. By plugging into the above equation

En − En+i =
ν

2
i(N − 2n− i) , (B.11)

〈n+ i|V |n+ i+ 1〉 =
ν(N + 1)

2

√
n+ i+ 1 , (B.12)

we get the same off-diagonal elements as in the Hamiltonian matrix in Eq. (2.22).



C A Floquet master equation for a

bichromatically driven system

In this Appendix, we derive a master equation describing a bichromatically driven
anharmonic oscillator coupled to a smooth thermal bath by combining the RWA
together with Floquet theory.

We first consider the isolated system; its coherent dynamics is governed by the
Hamiltonian

HS =
P2

2m
+

1

2
ω2X 2 +

α

4
X 4 + f1X cos (ω1t) + f2X cos (ω2t+ θ) . (C.1)

For weak anharmonicity α ≪ ω, weak driving f1,2 ≪ α and a small detuning from
the characteristic frequency of the anharmonic oscillator |ω1,2 − ω| ≪ ω, a RWA is
meaningful. As usual, we switch to the rotating frame by means of the canonical
transformation R = exp [iΩ1a

†at]. Then, we disregard all the fast oscillating terms
from the transformed Hamiltonian. This yields the Schrödinger equation

[

−i d
dt

+ H̃(t)

]

|ψ̃α(t)〉 = 0 , (C.2)

with the RWA Hamiltonian

H̃(t) = ω̃n̂ +
ν

2
n̂(n̂ + 1) + µ1

(

a+ a†
)

+ µ2

(

aei(δt+θ) + a†e−i(δt+θ)
)

. (C.3)

Here, we have introduced the detunings ω̃ = ω − ω1 and δ = ω2 − ω1, the driv-
ing strengths µ1/2 = (x0/2

3/2)f1/2 and the nonlinearity parameter ν = 3~α/(4ω2
1).

Within this approximation, the Hamiltonian in the rotating frame H̃(t) is time-
periodic with period Tδ = 2π/δ. We can thus use the Floquet theory, introduced in
Section 2.3.1, to compute the solutions of the Schrödinger equation in the rotating
frame.

The Floquet theorem, given in Eq. (2.7), assures us that the solutions in the
rotating frame have the form

|ψ̃α(t)〉 = e−iεαt|φα(t)〉

where |φα(t)〉 is a set of Tδ-periodic states solving the eigenvalue problem in Eq.
(2.8) with H̃(t) instead of HS(t). From the Floquet states |φα(t)〉, we can extract a
set of equal times orthonormal (approximate) solutions of the original problem by
transforming back to the static frame

|ψα(t)〉 = e−iεαte−iω1a†at|φα(t)〉 . (C.4)

We can now include the weak coupling to a smooth thermal bath and proceed in
the derivation of the master equation. Since this derivation is analogous to the one
for monochromatic driving detailed in Section 2.4.3, we will be more sketchy here.
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We select all the Floquet solutions {|φα(t)〉} from a single Brillouin zone. We
perform a transformation to the static frame, thereby obtaining the complete set
{e−iω1a†at|φα(t)〉} in the static frame. We then project the density matrix onto this
set, such that the matrix elements read

̺αβ(t) = 〈φα(t)|eiω1a†at̺(t)e−iω1a†at|φβ(t)〉 . (C.5)

Performing the derivative one obtains

˙̺αβ(t) = −i(εα − εβ)̺αβ(t) + 〈φα(t)|eiω1a†atL̺e−iω1a†at|φβ(t)〉 . (C.6)

For the dissipative term, we need to compute

Xαβ(t) = 〈φα(t)|eiω1a†atX e−iω1a†at|φβ(t)〉
=

x0√
2
e−iω1t〈φα(t)|a|φβ(t)〉 +

x0√
2
eiω1t〈φα(t)|a†|φβ(t)〉

=
x0√
2
e−iω1t

∑

n

e−inδtAαβ,n +
x0√

2
eiω1t

∑

n

e−inδtA∗βα,−n , . (C.7)

The Fourier transform of the mean value of the destruction operator Aαβ,n can be
expressed in terms of the Fourier transform of the Floquet states as

Aαβ,n =
∑

j

〈φ̂α j |a|φ̂β j+n〉 . (C.8)

We can now compute the matrix elements of the operators involved in the dissipative
part in Eq. (C.6) and find for the terms in Eq. (2.61)

(P +Q)αβ =
x0√

2

∑

n

(

e−iω1te−inδtN−αβ,−nAαβ,n + eiω1te−inδtN+
αβ,−nA

∗
βα,−n

)

(C.9)

and

(P −Q)αβ = − x0√
2

∑

n

(

e−iω1te−inδtN+
βα,nAαβ,n + eiω1te−inδtN−βα,nA

∗
βα,−n

)

. (C.10)

Here, N±αβ,n are defined as

N±αβ,n = N(εα − εβ ± ω1 + nδ) N(ε) = J(|ε|)[nth(|ε|) + Θ(−ε)] , (C.11)

in terms of the bath density of states J(|ε|) and the bosonic thermal occupation
number nth(|ε|).

As discussed in Section 2.3.1, N(ε) diverges for s < 1 at low energies indicating
that the perturbative approach adopted here is not appropriate for sub-Ohmic but
only for (super-)Ohmic baths. Moreover, in the calculation, we have neglected the
quasienergy Lamb shifts, whose order of magnitude is γs.

We have now the matrix elements in the RWA Floquet basis for all the operators
appearing in the Markovian master equation. We avoid writing down its complete
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expression because it would be too cumbersome. Instead, we perform a moderate
rotating-wave approximation consisting in averaging the time-dependent terms in
the bath part over the driving period Tδ. In this way, we obtain

˙̺αβ(t) =
∑

α′β′

[−i(εα − εβ)δαα′δββ′ + Lαβ,α′β′)]̺α′β′(t) , (C.12)

with the dissipative transition rates

Lαβ,α′β′ =
x2

0

2

∑

n

(N−αα′,−n +N−ββ′,−n)Aαα′,nA
∗
ββ′,n + (N+

ββ′,n +N+
αα′,n)A

∗
α′α,nAβ′β,n

−δαα′

x2
0

2

∑

nα′′

N+
α′′β′,nAβ′α′′,nA

∗
βα′′,n +N−α′′β′,−nA

∗
α′′β′,nAα′′β,n

−δββ′

x2
0

2

∑

nβ′′

N+
β′′α′,nAα,β′′,nA

∗
α′β′′,n +N−β′′α′,−nA

∗
β′′α,nAβ′′α′,n . (C.13)

A discussion about the validity of the rotating-wave approximation in the context
of this master equation for bichromatically driven systems would change very little
with respect to the one at the end of Section 2.4.3 for mochromatically driven
systems.

In that case, we have concluded that this approximation is reliable provided that
one defines carefully the borders of the Brillouin zone and that its width, given by
the driving frequency ωex, is much smaller than the coupling to the bath γs. The
latter condition sets the limits of validity for the Markovian approximation as well.
Hence in that context, the rotating-wave approximation is not more restrictive than
the ordinary Markovian approximation.

In the actual context, the width of the Brillouin zone is given by the difference
δ between the two driving frequencies. The limit of validity of the rotating-wave
approximation is thus set by the condition γs ≪ δ, which is more restrictive than
the condition γs ≪ ω1, ω2 for the ordinary Markovian approximation.

Let us now check that, in the limit f2 → 0, we correctly recover the RWA
master equation derived in Section 2.4.4. For f2 = 0, the Floquet solutions {|φα〉}
are time independent. As a consequence, only those matrix elements are finite,
whose Fourier index is zero. Moreover, we can identify the matrix elements Xαβ,1 =
x0/(

√
2)Aαβ,0, Xαβ,−1 = x0/(

√
2)A∗βα,0 and Nαβ,±1 = N±αβ,0. Keeping this in mind,

direct comparison shows that, in this limit, the dissipative transition rates in Eqs.
(2.83) and (C.13) coincide.
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D Pseudopotential method for the two-body

problem in free space

In this Appendix, we want to show that to model the interaction with the Fermi
pseudopotential, given in Eq. (4.35), leads to the scattering amplitude and the bind-
ing energy for the shallow bound state given in Eqs. (4.34) and (4.33), respectively.

The pseudopotential is enforced by requiring the boundary condition as r → 0:

ψ(r → 0) ≃ f

4πr
(1 − r/a), (D.1)

leading to the inhomogeneous Schrödinger equation

(

− 1

2µ
∆ − E

)

ψ(r) =
f

2µ
δ(r) (D.2)

The outgoing (retarded) solutions are given by

ψ(r) = ψ0(r) +

∫

dr′GE(r, r′)(f/2µ)δ(r′) = ψ0(r) +
f

2µ
GE(r, 0), (D.3)

where ψ0 is a solution to the homogeneous (f = 0) problem, and the two-body
Green’s function admits the integral representation

GE(r, r′) =

∫

d3k

(2π)3

eik′·(r−r′)

k′2 −E − i0+
(D.4)

with k =
√

2µE. Now we must enforce the boundary condition (D.1), which gives
from (D.3) the equation

ψ0(0) +
f

2µ

(

GE(r, 0) − µ

2πr

)

r→0
= − f

4πa
. (D.5)

For E > 0, ψ0(r) is the incoming wave eikz. Moreover Eq. (D.4) yields

GE(r, 0) =
µ

2πr
eikr . (D.6)

Hence, we immediately get from Eq. (D.5)

f(k) = − 4πa

1 + ika
, (D.7)

corresponding to the scattering solution

ψ(r) = eikz +
f(k)

4πr
eikr . (D.8)
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We can thus identify fe(k) with f(k)/(4π), thereby recovering the expected result
Eq. (4.34).

For a bound state, E < 0, we need to choose ψ0 = 0 and f drops out from Eq.
(D.5). Moreover Eq. (D.4) yields

GE(r, 0) =
µ

2πr
exp

(

−
√

−2µEr
)

. (D.9)

By plugging into Eq. (D.5), we get

a−1 =
√

−2µE . (D.10)

This boundary condition can be regarded as an equation for the binding energy
of the pseudopotential bound states in terms of the scattering length a. There is
just one bound state for any positive value of the scattering length. As expected, its
binding energy is equal to the one of a shallow bound state for an arbitrary potential
given in Eq. (4.33).



E Short time Green’s function and the

operators ζE and ζ̃E

This appendix is divided into two sections. In the first section we derive the short-
time expansion of the Tokatly Green’s function. In the second section, we detail the
evaluation of the operators ζE and ζ̃E for the inter-species scattering in a parabolic
confinement, and for the more general case of a a non-parabolic confinement.

E.1 Short-time expansion of the Tokatly Green’s function

In this section, we illustrate how to expand the Green’s function

Gt(X;X′) = 〈X| exp [−(K(Π) + U(X))t]|X′〉 (E.1)

with respect to t yielding the expression in Eq. (4.57) for Gt(R⊥, 0;R′⊥, 0). In
order to simplify the notation, we have introduced the five-dimensional vectors X =
{R⊥, r} and Π = {P⊥,p} and the functions K(Π) = P2

⊥/2M +p2/2µ and U(X) =
V1(R⊥ + µr⊥/m1) + V2(R⊥ − µr⊥/m2) for the kinetic and the potential energy,
respectively. First, we expand the Green’s function around the free solution given
by

〈X| exp [−K(Π)t]|X′〉 =
M

2πt
exp

[

−(R⊥ − R′⊥)2M

2t

]

( µ

2πt

)3/2

exp

[

−(r − r′)2µ

2t

]

.

(E.2)
In order to justify such an expansion, note that for t→ 0+

〈X|K(Π) exp [−K(Π)t]|X′〉 = − d

dt
〈X| exp [−K(Π)t]|X′〉 ∝ δ(X −X′)

1

t
, (E.3)

whereas

〈X|U(X) exp [−K(Π)t]|X′〉 = U(X)〈X| exp [−K(Π)t]|X′〉 ∝ U(X)δ(X − X′) .(E.4)

Since the kinetic energy in Eq. (E.3) diverges whereas the potential energy in Eq.
(E.4) remains finite, the latter can be regarded as a small perturbation. This ex-
pansion yields

Gt(X;X′) ≃ (1 − tU(X))〈X| exp [−K(Π)t]|X′〉 . (E.5)
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Let us now set X0 = {R′⊥, 0} in Eq. (E.2) and expand with respect to t:

〈R⊥, 0| exp [−K(Π)t]|R′⊥, 0〉

=
( µ

2πt

)3/2 M

2πt
exp

[

−(R⊥ − R′⊥)2M

2t

]

=
( µ

2πt

)3/2
∫

d2P⊥
(2π)2

exp [iP⊥ · (R⊥ − R′⊥) −
P2
⊥

2M
t]

≃
( µ

2πt

)3/2
∫

d2P⊥
(2π)2

(

1 − P2
⊥

2M
t

)

exp [iP⊥ · (R⊥ −R′⊥)]

=
( µ

2πt

)3/2
(

δ (R⊥ − R′⊥) − t
P2
⊥

2M

)

. (E.6)

In the last line, the operator P2
⊥ stands for (2π)−2

∫

d2P⊥〈R⊥|P⊥〉P2
⊥〈P⊥|R′⊥〉.

Inserting X0 into Eq. (E.5), we finally obtain Eq. (4.57).

E.2 Evaluation of the operators ζE and ζ̃E

In this section, we outline the evaluation of the kernels ζE and ζ̃E given in Eqs.
(4.56) and (4.64), respectively.

Parabolic confinement, ω1 6= ω2

First, let us consider the special case of parabolic confinement, but the two species
may experience different trap frequencies. For this confinement, the Green’s func-
tion Gt(R⊥, 0;R′⊥, 0) is given in Eq. (4.95). The first step is to project this operator
onto the appropriate orthonormal basis {|j〉} defined in Eq. (4.65). Note that this
definition allows an arbitrary choice of the basis, apart from properly fixing the vec-
tor |0〉. One possibility is introduced in Eq. (4.93). This is a natural option because
it reflects the cylindrical symmetry of the problem. However, this choice would not
permit further analytical progress. For this reason, we employ an alternative basis
defined by

〈R⊥|j〉 = 〈R⊥|nx, ny〉 =
1

aM

ψnx

(

x

aM

)

ψny

(

y

aM

)

, (E.7)

where ψn(x) is the eigenfunction for the 1D oscillator in dimensionless units,
ψn(x) = (

√
π2nxn!)−1/2 exp(−x2/2)Hn (x), with Hn (x) being Hermite polynomials.

Note that the x and y directions factorize in the Green’s function (4.95), allowing
to perform the x and y integrals separately. For convenience, we introduce dimen-
sionless coordinates x→ x/aM and find

[G(t)]n,m = 〈nx, ny|Gt(R⊥, 0;R′⊥, 0)|mx, my〉

=

√

µ

2πt

β(1 − β)

π2a2
M

e−ω1t

1 − e−2ω1t

e−ω2t

1 − e−2ω2t
[F (t)]nx,mx

[F (t)]ny,my
(E.8)
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with

[F (t)]n,m =

∫

dxdx′ψ̄n (x) exp

[

−x
2 + x′2

2
f(t) + xx′g(t)

]

ψm (x′) . (E.9)

The functions f(t) and g(t) are defined in Eq. (4.96). We perform the first integration
by using the identity [114]

∫

dz e−(z−z′)2Hn(αz) = π1/2(1 − α2)n/2Hn

(

αz′

(1 − α2)1/2

)

, (E.10)

with α = α(t) = [(1 + f(t))/2]−1/2, z = x/α(t) and z′ = g(t)α(t)x′/2, yielding

[F (t)]n,m = (2n+mm!n!)−1/2α(t)(1 − α(t)2)n/2

×
∫

dx′ exp

[

−x′2
(

α−2(t) − g2(t)α2(t)

4

)]

Hn

(

g(t)α2(t)

2(1 − α2(t))1/2
x′
)

Hm(x′) . (E.11)

By substituting Eq. (E.8) together with Eq. (E.11) into ζE defined in Eq. (4.56),
and by introducing the dimensionless time t′ =

√

t(ω1 + ω2), we get

[ζE]n,m =
1

4πaµ

∫ ∞

0

dt′

{

AhE(t′)

[

F

(

t′2

ω1 + ω2

)]

mx,nx

×
[

F

(

t′2

ω1 + ω2

)]

my ,ny

− 2

π1/2t′2
δn,m

}

, (E.12)

with the dimensionless parameter A = 2π−3/2β(1 − β)a2
µ/a

2
M and

hE(t′) = exp

[

−(ω1 + ω2 − E)t′2

ω1 + ω2

](

1 − exp

[

− 2ω1t
′2

ω1 + ω2

])−1

×
(

1 − exp

[

− 2ω2t
′2

ω1 + ω2

])−1

.

(E.13)

It is now possible to evaluate the matrix elements of [ζE ]n,m by numerically com-
puting the double integrals in Eq. (E.12). Note that the integrand does not suffer
from any singularity due to the rescaling of the integration variable. Moreover, the
convergence of the x′ integral (E.11) is exponentially fast. The first term in the in-
tegrand of the t′ integral decays exponentially at large times. Hence for large times,
only the second term yields a contribution, where the integration can be performed
analytically in this region. For the case of interspecies scattering of Rb and K in an
optical trap, all the parameters entering in A, hE(t) and [F (t)]n,m can be expressed
in terms of the ratios mRb/mK and ∆Rb/∆K. The generalization to determine ζ̃E is
straightforward and not detailed further.
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Non-parabolic confinement

A numerical evaluation of the operator ζE and ζ̃E is less straightforward when the
Green’s function Gt(R⊥, 0;R′⊥, 0) cannot be computed analytically. In this case,
Gt(R⊥, 0;R′⊥, 0) should be computed by numerical diagonalization of the H⊥,i and
inserting their eigenvalues and eigenfunctions into Eq. (4.54). For large t, this is fea-
sible because only a small number of eigenfunctions contribute to the sum. However,
for t→ 0, the number of eigenvectors required to cancel the divergence in Eq. (4.56)
quickly proliferates. This practical limitation can fortunately be circumvented by
the following trick. Let us formally rewrite Eq. (4.56) as

ζE(R⊥,R
′
⊥) =

∫ ∞

0

dt

2µ

{

eEt[Gt(R⊥, 0;R′⊥, 0) −G0
t (R⊥, 0;R′⊥, 0)]

+eEtG0
t (R⊥, 0;R′⊥, 0) −

( µ

2πt

)3/2

δ(R⊥ − R′⊥)
}

=

∫ ∞

0

dt

2µ
eEt[Gt(R⊥, 0;R′⊥, 0) −G0

t (R⊥, 0;R′⊥, 0)]

+ζ0
E(R⊥,R

′
⊥) , (E.14)

where G0
t (R⊥, 0;R′⊥, 0) and ζ0

E(R⊥,R
′
⊥) are the Green’s function and the inte-

gral kernel, respectively, for an arbitrary reference confining potential V0(x⊥). If
G0

t (R⊥, 0;R′⊥, 0) is known analytically, we can deal with ζ0
E(R⊥,R

′
⊥) as in the pre-

vious section. For confining potentials close to the parabolic case, we choose a
parabolic V0(x⊥).

Regarding Eq. (E.14), we proceed as follows. We restrict the infinite-dimensional
Hilbert space to the N lowest eigenstates of the potential V0(x⊥), and diagonalize
the original Hamiltonian in this N -dimensional Hilbert space. With the eigenfunc-
tions at hand, the Green’s function can be computed using Eq. (4.54). Then, the
sum in Eq. (4.54) is exchanged with the t-integration and the latter is performed.
Next, we project the Green’s function onto a known single-particle basis {|m〉}. To
achieve numerical convergence, we increase the Hilbert space dimension N until the
result does not change anymore. We emphasize that the overall result converges to
the exact result although obviously not all the single-particle states used in com-
puting the Green’s function are reliable on very long distances (comparable to the
numerical system size) because higher-lying energy states are increasingly inaccu-
rate. Nevertheless, the central part (in position space) of the eigenfunctions – which
corresponds to the kinetic energy and does not feel the confinement – is accurate
enough to cancel the divergence stemming from the kinetic part. In order to compute
the scattering solution, we compute ζ̃E0 with an analogous procedure, diagonalize
ζ̃E0 numerically, and insert the result into Eq. (4.80). For the non-parabolic confine-
ment in Sec. 4.6, a parabolic V0(x⊥) is appropriate. In this case, we use for {|m〉}
the orthonormal basis defined in Eq. (4.93). Then ζ0

E is diagonal and given by Eq.
(4.103).
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