
CorALPHA
ALPHA version of the Correlations Analysis Library ∗

May 21, 2006

David Brown and Mike Heffner
Lawrence Livermore National Laboratory

brown170@llnl.gov, mheffner@llnl.gov

Scott Pratt
Dept. of Physics & Astronomy, Michigan State University

prattsc@msu.edu

Contents

1 Introduction 2

2 Directory Structure 3

3 Data Arrays 3

3.1 Cartesian Meshes . 3

3.2 Cartesian Harmonics Data Arrays . 5

3.3 Arrays for Expansions in Spherical Harmonics . 7

3.4 Array Operations Involving Multiple Arrays . 7

4 Wave Functions 9

5 Kernels and Convolutions 10

6 Calculating Source Functions 11

7 Utilities 14

8 Compiling and Running CorALPHA 16

9 Known Issues 17

∗Supported by the U.S. Department of Energy, Grant No. DE-FG02-03ER41259.

1

1 Introduction

CorALPHA is a code base for analysis of 2-particle correlations at small relative momentum. CorALPHA
includes routines for reading, storing and manipulating three-dimensional correlation functions and source
functions. Three-dimensional data can be stored in a Cartesian mesh or in terms of expansion coefficients
using either Cartesian Harmonics or spherical harmonics as a basis. Routines are provided to translate
between different three-dimensional realizations.

Classes for wave functions and the associated kernels in CorALPHA allow one to easily generate correlation
functions from source functions. Kernels are provided for numerous pairs, such as π+π−, pp, pK · · ·. In the
upcoming full version CorAL, support will also be provided for imaging, i.e., generating source functions in
terms of spline parameters so that they fit correlation functions. Generalized routines for fitting correlation
functions to determine source parameters, e.g., Gaussians, will also be provided in the full version.

CorALPHA is designed to exploit the simple equation linking three-dimensional source functions to three-
dimensional correlation functions:

R(q) ≡ C(q)− 1 =
∫

d3r
{
|φ(q, r)|2 − 1

}
S(r), (1)

by providing the obtain numerical arrays describing C(q) from numerical representations of S(r) for a variety
of relative wave functions. A more detailed description of theory can be found in [1], and is included in the
doc/papers/ directory. Eq. (1) can be re-expressed with Correlation and source functions represented by
expansion coefficients in either the spherical-harmonic or Cartesian-harmonic basis. In these bases, an
angular function F (Ω) can be reproduced from coefficients via the expressions:

F (Ω) =
∑

`x,`y,`z

(`x + `y + `z)!
`x!`y!`z!

F`x,`y,`z
n`x

x n`y
y n`z

z (2)

F (Ω) = (4π)1/2
∑
`,m

F`,mY`,m(Ω), (3)

where F~̀ and F`,m are defined

F~̀ =
(2` + 1)!

`!

∫
dΩ
4π

F (Ω)A~̀(Ω), (4)

F`,m = (4π)−1/2

∫
dΩF (Ω)Y`,m(Ω). (5)

Here A~̀=`x,`y,`z
and Y`,m(Ω) are angular functions and are referred to as Cartesian and Spherical Harmon-

ics. Forms and properties of Cartesian Harmonics can be found in the doc directory. Forms and properties
for Spherical Harmonics can be found in standard texts, such as J.D. Jackson, Classical Electrodynamics.

The expansion coefficients for the correlation and source functions are related on a one-to-one basis.

R`,m(q) =
∫

4πr2dr K`(q, r) S`,m(r), (6)

R~̀(q) =
∫

4πr2dr K`(q, r) S~̀(r). (7)

For equations the kernel K` plays the role of the wave function in Eq. (1) linking the correlation and source
functions:

K`(q, r) ≡
1
2

∫
d cos θqr

[
|φ(q, r, cos θqr)|2 − 1

]
P`(cos θqr). (8)

The functions of CorALPHA are to :

• Derive source functions from output of theoretical models or parameterizations. Source functions
would then be stored numerically in arrays. The arrays could either be three dimensional cartesian
arrays or arrays of expansion coefficients for either basis mentioned above.

2

• Calculate wave functions and kernels for a variety of interaction types. Kernels could then be dis-
cretized and stored.

• Provide simple convolutions to generate correlation functions from source functions.

• Perform deconvolutions to generate source functions from experimentally determined source func-
tions. This will done either through parameter fitting or through imaging which involves fitting to source
functions whose radial dependences are defined by splines. Imaging and fitting routines are not
yet implemented in this alpha version of CorALPHA.

2 Directory Structure

The base directory of CorALPHA has four directories:
doc/ include/ lib src/ samples/ codetests/
The doc directory includes this document, plus some related papers along with a sub-directory printAY
which has codes used to generate printouts showing the relationship between Y`,ms and Cartesian har-
monics.

The include directory is empty, but will be used to store copies of header and source files once one ”makes”
the code. The lib directory contains the makefile used to compile the project and will store the static library
libcoral.a.

The src directory stores all source codes in the following sub-directories:
Arrays/ Kernel/ Source2CF/ SourceCalc/ Utilities/ WaveFunctions/
Also included are two catch-all files, coral.h and coral.cc which allow the programmer to include all
CorALPHA files with simple commands like #include "coral.h. These two files are themselves simply
#include statements.

Codes related to arrays and array calculations are kept in src/Arrays/. This includes the classes: CCHArray,
C3DArray, CYlmArray, and the namespace ArrayCalc.

The routines for generating CWaveFunction objects are in src/WaveFunctions/, code related to kernels
are in src/Source2CF/ and src/SourceCalc/ contains code used for filling arrays with information about
source functions and src/Utilities holds a panoply of useful codes which are described below.

Sample codes are kept in samples. These codes are meant to provide examples which can be useful
in getting started with CorALPHA. The directory codetests stores codes used by the authors for testing
various algorithms and bits of the code, and is not intended to be useful to the outside world.

3 Data Arrays

Data are stored in several classes of arrays, including three-dimensional Cartesian meshes, Spherical
Harmonic expansions, Cartesian Harmonic expansions and in the future, basis splines. In the next section
we will discuss a namespace for operations involving multiple arrays, such as those used to translate into
different array types, or multiply and divide arrays.

3.1 Cartesian Meshes

Cartesian meshes are described by a three dimensional array of size NXMAX, NYMAX, NZMAX and granu-
larities DELX, DELY, DELZ. The mesh is further defined by three parameters XSYM, YSYM, ZSYM which are
booleans set to true for the corresponding reflection symmetries. When set to false the program assigns
additional memory to describe data for negative values of x, y, z. The `x, `y, `z components refer to a
range `x∆x < x < (`x + 1)∆x, `y∆y < y < (`y + 1)∆y · · ·.

The capabilities of the class are best explained by viewing the public members of the class:

3

class C3DArray{
public:
C3DArray(char *arrayparsfilename);
C3DArray(int NXYZMAX,double DELXYZ,bool XSYM,bool YSYM,bool ZSYM);
C3DArray(int NXMAX,double DELX,int NYMAX,double DELY,int NZMAX,double DELZ,
bool XSYM,bool YSYM,bool ZSYM);
∼CCHArray();
int GetNXMAX();
int GetNYMAX();
int GetNZMAX();
double GetDELX();
double GetDELY();
double GetDELZ();
double GetElement(double x,double y,double z);
double GetElement Interpolate(double x,double y,double z);
double GetElement(int isx,int ix,int isy,int iy,int isz,int iz);
void SetElement(int isx,int ix,int isy,int iy,int isz,int iz,double value);
double IncrementElement(int isx,int ix,int isy,int iy,int isz,int iz,
double value);
void SetElement(double x,double y,double z,double value);
void IncrementElement(double x,double y,double z,double increment);
void ScaleArray(double scalefactor);
void ZeroArray();
void PrintArray();
double GetBiggest();
bool GetXSYM();
bool GetYSYM();
bool GetZSYM();
void ReadArray(char *dirname);
void WriteArray(char *dirname);
void PrintPars(); void Randomize();

}
The parameters XSYM, YSYM, ZSYM, NXMAX, NYMAX, NZMAX, DELX, DELY, DELZ are printed by calling PrintPars().
Three constructors are used to initialize the arrays. In C3DArray(char *arrayparsfilename) the parame-
ters are read from a file. The format of the file should be of the form:
bool YSYM 1
int NXMAX 36
double DELZ 2.5
...
If any of the parameters are missing, default values will be set which can be found by looking at the source
code. The boolean parameter IDENTICAL can also be set, which is identical to setting the three symmetry
parameters to true. With the other two constructors, parameters are set by the arguments, with false
being the default value for the symmetry parameters.

The functions that set, get and increment elements should probably not need much explanation. They are
over-loaded so that one can access the values either directly by the indices, or through the real coordinates.
If values are accessed outside the range, e.g., x> ∆x·NXMAX, zero is returned. The arguments isx,isy,isz
which appear in several functions refer to the sign of the argument. For x > 0 isx=0, while for x < 0, isx=1.
When XSYM=’true’ memory is not allocated for isx=1.

The functions WriteArray(char *dirname) and ReadArray(char *dirname) will write and read arrays into
the named directory. The same format is used for both reading and writing, so once arrays are written they
can be read in easily.

The function GetBiggest() searches the array and returns the element with the largest absolute value,
while ScaleArray(double scalefactor) multiplies the entire array by scalefactor. ZeroArray() will set
all the elements to zero and Randomize will set all elements to random numbers between 0 and 1.

4

3.2 Cartesian Harmonics Data Arrays

Angular information can also be stored in terms of expansion coefficients describing expansions in terms of
powers of unit vectors. For a given radial bin ir, coefficients F`x,`y,`z can describe the function,

F (Ω) =
∑

`x,`y,`z

(`x + `y + `z)!
`x!`y!`z!

F`x,`y,`z
n`x

x n`y
y n`z

z , (9)

where the arrays satisfy the tracelessness constraint F`x,`y,`z+2 + F`x+2,`y,`z+2 + F`x,`y+2,`z = 0. With this
constraint the elements for a given rank ` = `x + `y + `z are determined by the `x = 0, 1 elements. Thus,
there are (2` + 1) independent coefficients for each `.

The public members of the class are:
class CCHArray{
public:
CCHArray(char *arrayparsfilename);
CCHArray(int LMAXset,int NRADIALset,double RADSTEPset);
CCHArray(int LMAXset,int NRADIALset,double RADSTEPset,
bool XSYMset,bool YSYMset,bool ZSYMset);
∼CCHArray();
int GetLMAX();
int GetNRADIAL();
double GetRADSTEP();
void SetLMAX(int LMAXset);
void SetRADSTEP(double RADSTEPset);
double GetElement(int lx,int ly,int lz,int ir);
double GetElement(int lx,int ly,int lz,double r);
void SetElement(int lx,int ly,int lz,int ir,double Element);
void SetElement(int lx,int ly,int lz,double r,double Element);
void IncrementElement(int lx,int ly,int lz,int ir,double increment);
void IncrementElement(int lx,int ly,int lz,double r,double increment);
void ScaleArray(double scalefactor);
void ScaleArray(double scalefactor,int ir);
void ZeroArray();
void ZeroArray(int ir);
void ZeroArray Partial(int LMAX Partial);
void ZeroArray Partial(int LMAX Partial,int ir);
void PrintArrayFixedIR(int ir);
void PrintArrayFixedIR(int LMAXPrint,int ir);
double GetBiggest(int ir);
bool GetXSYM();
bool GetYSYM();
bool GetZSYM();
void ReadAX(char *dirname);
void WriteAX(char *dirname);
void ReadAllA(char *dirname);
void WriteAllA(char *dirname);
void WriteShort(char *dirname,int WLMAX);
void PrintPars();
void IncrementAExpArray(double x,double y,double z,double weight);
void IncrementAExpArrayFromE(double ex,double ey,double ez,
double weight,int ir);
void AltIncrementAExpArrayFromE(double ex,double ey,double ez,
double weight,int ir);
void AltAltIncrementAExpArrayFromE(double ex,double ey,double ez,
double weight,int ir);
void IncrementMArrayFromE(double ex,double ey,double ez,
double weight,int ir);

5

void IncrementAExpArrayFromThetaPhi(double theta,double phi,
double weight,int ir);
void IncrementMArrayFromThetaPhi(double theta,double phi,
double weight,int ir);
double GetMElementFromAExpArray(int lx,int ly,int lz,int ir);
double GetAExpElementFromMArray(int lx,int ly,int lz,int ir);
void FillRemainderX(int ir);
void FillRemainderY(int ir);
void FillRemainderZ(int ir);
void FillRemainderX();
void FillRemainderY();
void FillRemainderZ();
double AExpand(double ex,double ey,double ez,int ir);
double AExpand(double x,double y,double z);
double AExpand(double theta,double phi,int ir);
void Detrace(int ir);
void Detrace();
void RandomInit(int iseed);
void Randomize(double mag,int ir);
void RandomizeA(double mag,int ir);
void Randomize(double mag);
void RandomizeA(double mag);

}
The parameters describing the size of the array are LMAX, NRADIAL, RADSTEP and XSYM, YSYM, ZSYM and
can be set either with the constructors or in the parameters file as described for the cartesian arrays in the
previous subsection. These parameters are printed by calling PrintPars().

Some of the functions are overloaded with and without dependences on the radial coordinate r or the radial
index ir. The variations without radial dependencies operate on all the radial indices.

Individual elements can be accessed, set or incremented with the functions GetElement(...), SetElement(...)
and IncrementElement(...). The array is set to zero with ZeroArray(...) and Randomize(...) sets the
elements to random values between -1 and 1.

The reading and writing routines ReadAllA and WriteAllA will read and write all elements of the array,
whereas ReadAX and Write AX read and write only those components with `x = 0, 1. This is useful for
traceless arrays since the remaining components are easily generated from those with `x = 0, 1. The
function FillRemainderX() will accomplishes this feat using the tracelessness constraint above, which can
be re-expressed as: F`x+2,`y,`z = −F`x,`y+2,`z − F`x,`y,`z+2. FillRemainderY() and FillRemainderZ() fill
the remainders of the arrays starting with the `y = 0, 1 and `z = 0, 1 components respectively. The function
WriteShort(char *filename,int WLMAX) writes the `x = 0, 1 components (skipping those that are zero
due to symmetry) up to L ≤ WLMAX to a single file in format that is convenient for graphing, but not
sufficiently accurate for re-reading.

The value of the function expanded with Eq. (9) can be found with the functions AExpand.

The detracing operation is used by the array operations which multiply, divide and invert arrays. If one has
an arbitrary non-detraced array M which describes a function

M(Ω) =
∑

`x,`y,`z

`!
`x!`y!`z!

M`x,`y,`ze`x
x e`y

y e`z
z , (10)

The Detrace function returns a detraced array that yields the identical angular function M(Ω).

Moments of unit-vector components 〈e`x
x e

`y
y e`z

z 〉 can be calculated from arrays of Cartesian-Harmonic co-
efficients with the functions GetMElementFromAExpArray. Similarly, if an array stores the moments, the
equivalent element for an array of Cartesian-Harmonic expansion coefficients that gives those moments
can be found with GetAExpElementFromMArray(...).

The IncrementAExpArray(...) and IncrementMexpArray() can be used to generate arrays which will,
when expanded, reproduce functions with the same angular distribution as the sampling of coordinates

6

used to increment the function. For instance, the following set of calls will produce a numerator for a corre-
lation function given a set of relative momenta qx, qy and qz,
CHArray *numerator;
numerator=new CHArray(parfilename);
for(ipair=0;ipair<NPAIRS;ipair++){
numerator->IncrementAExpArray(qx[ipair],qy[ipair],qz[ipair],1.0);

}

Similarly an array of moments 〈e`x
x e

`y
y e`z

z 〉 can also be calculated with by using IncrementMArray(...)
then scaling the array to make into an average.

If the object stores moments, GetAExpElementFromMArray(...) will return the Cartesian-Harmonic ex-
pansion coefficient, and if the object stores expansion coefficients, GetMElementFromAExpArray(...) will
return specific moments.

3.3 Arrays for Expansions in Spherical Harmonics

A class is also provided to accommodate expansions in spherical harmonics. The Y`,m expansion coeffi-
cients are used to define angular functions,

F (Ω) = (4π)1/2
∑
`,m

F`,mY`,m(Ω). (11)

This class is rather incomplete. However, one can do all calculations using the Cartesian Harmonics of
the previous subsection, then use one of the CopyArray functions described in the next section to translate
expansion coefficients stored in a CCHArray arrays to those for a CYlmArray.

class CYlmArray{
public:
CYlmArray(int LMAXset,int NRADIALset);
∼CYlmArray();
int GetLMAX();
complex<double> GetElement(int L,int M,int ir);
void SetElement(int L,int M,int ir,complex<double>);
void IncrementElement(int L,int M,int ir,complex<double> increment);
void ScaleArray(double scalefactor);
void ScaleArray(double scalefactor,int ir);
void ZeroArray();
void ZeroArray(int ir);
void PrintArrayFixedIR(int ir);
void PrintArrayFixedIR(int LMAXPrint,int ir);

};

3.4 Array Operations Involving Multiple Arrays

In addition to the functionality described in the various member functions for the array objects, CorALPHA
also provides functions involving more than one array through the namespace ArrayCalc:

namespace ArrayCalc{
void CopyArray(CCHArray *A,CCHArray *B);
void CopyArray(CCHArray *A,int ira,CCHArray *B,int irb);
void CopyArray(C3DArray *A,C3DArray *B);

void CalcMArrayFromAExpArray(CCHArray *A,CCHArray *M);
void CalcMArrayFromAExpArray(CCHArray *A,int ira,CCHArray *M,int irm);

7

void CalcAExpArrayFromMArray(CCHArray *M,CCHArray *A);
void CalcAExpArrayFromMArray(CCHArray *M,int irm,CCHArray *A,int ira);
void CalcAExpArrayFromXExpArray(CCHArray *X,CCHArray *A);
void CalcAExpArrayFromXExpArray(CCHArray *X,int irx,CCHArray *A,int ira);
void CalcXExpArrayFromAExpArray(CCHArray *A,CCHArray *X);
void CalcXExpArrayFromAExpArray(CCHArray *A,int ira,CCHArray *X,int irx);
void CalcYlmExpArrayFromAExpArray(CCHArray *A,int ir,

CYlmArray *YlmArray,int irlm);
void CalcAExpArrayFromYlmExpArray(CYlmArray *YlmArray,int irlm,

CCHArray *A,int ira);
void CalcAExpArrayFrom3DArray(C3DArray *threedarray,CCHArray *A);
void Calc3DArrayFromAExpArray(CCHArray *A,C3DArray *threed);

void AddArrays(CCHArray *A,CCHArray *B,CCHArray *C);
void AddArrays(CCHArray *A,int ira,CCHArray *B,int irb,CCHArray *C,int irc);
void AddArrays(C3DArray *A,C3DArray *B,C3DArray *C);

// If C(Omega)=A(Omega)*B(Omega), this finds A in terms of A and B
void MultiplyArrays(CCHArray *A,CCHArray *B,CCHArray *C);
void MultiplyArrays(CCHArray *A,int ira,CCHArray *B,

int irb,CCHArray *C,int irc);
void MultiplyArrays(C3DArray *A,C3DArray *B,C3DArray *C);
// If you know array is zero up to given Ls, or don’t care to detrace,
// this can save time
void MultiplyArrays Partial(int LMAXA,CCHArray *A,int ira,

int LMAXB,CCHArray *B,int irb,
int LMAXC,CCHArray *C,int irc);

// If A(Omega)=B(Omega)*C(Omega), this finds C in terms of A and B
void DivideArrays(CCHArray *A,CCHArray *B,CCHArray *C);
void DivideArrays(CCHArray *A,int ira,CCHArray *B,int irb,

CCHArray *C,int irc);
void DivideArrays(C3DArray *A,C3DArray *B,C3DArray *C);

void Detrace(CCHArray *M,CCHArray *A);
void Detrace(CCHArray *M,int irm,CCHArray *A,int ira);

bool CompareArrayParameters(C3DArray *threed,CCHArray *A);
bool CompareArrayParameters(CCHArray *A,C3DArray *threed);
bool CompareArrayParameters(CCHArray *A,CCHArray *B);
bool CompareArrayParameters(C3DArray *threeda,C3DArray *threedb);

};
The CopyArray(...) functions check to make sure that the array parameters are equal before proceeding.

The Calc*ArrayFrom*Array(...) functions translate one type of format into another. The AExp qualifier is
for arrays of Cartesian-Harmonic expansion coefficients, whereas YlmExp refers to expansion coefficients
using spherical harmonics. The 3D is for Cartesian meshes. These three forms of arrays were described
previously.

The AddArrays, MultiplyArrays and DivideArrays functions perform as advertised. For functions F (r)
described by the expansion coefficients in the arrays, the results provide arrays describing the arrays in
r space. For instance, DivideArrays(A,B,C) operates on Cartesian-Harmonic coefficients, the resulting
array C would satisfy C(r) = A(r)/B(r) when expanded. These functions do some checking to make sure
that the symmetries of the resulting arrays are appropriate, but this checking is not yet complete.

The Detrace(A,B) operation provides an array of Cartesian-Harmonic coefficients B that satisfies the trace-

8

lessness condition while expanding identically as A, i.e., A(r) = B(r).

The boolean functions CompareArrayParameters check whether arrays have identical dimensions and sym-
metries (XSYM, YSMY and ZSYM). For comparisons of CCHArray and C3DArray objects, only symmetries are
tested.

4 Wave Functions

One of the basic elements of the code base are objects which derive from the CWaveFunction class. The
main functionality of these classes is to calculate the squared wave function. The public members of the
base class are:

class CWaveFunction{
public:
int GetNQMAX();
double GetQ(int iq);
void PrintCdelta(double Rx,double Ry,double Rz);
double GetPsiSquared(double *pa,double *xa,double *pb,double *xb);
double GetPsiSquared(double q,double r,double ctheta);
virtual double CalcPsiSquared(int iq,double r,double ctheta);
CWaveFunction();
∼CWaveFunction();

}
Calculations for wave functions are based on stored parameters for specific magnitudes of the relative
momentum. Examples of such information might be phase shifts. To view the values of q used for calcula-
tions, one can use the functions GetNQMAX() and Get Q(int iq). The relative momenta are the canonical
momenta as measured in the two-particle frame, i.e., in that frame the momenta are q and -q, and are
measured in MeV/c.

The function printCdelta is not meant to be used often, as it provides a plot of the correlation function for
a Gaussian source in terms of phase shifts, ignoring Coulomb, and assuming that qR >> h̄. It is really only
used for checking certain types of calculations.

The functions GetPsiSquared(...) and CalcPsiSquared(iq,r,ctheta) provide the squared wave func-
tion in terms of the relative momentum, or in terms of the two momenta of the particles. The two GetPsiSquared(...)
functions call CalcPsiSquared by interpolating for different values of iq.

New CWaveFunction objects must be created for each class of interaction, e.g., pp, π+π− or pK+. The func-
tion CalcPsiSquared is virtual as it is different for each class which derives from it, e.g., CWaveFunction pp,
CWaveFunction pipluspiplus, etc.. The constructors are not listed in this class, though they all have the
same form, e.g., CWaveFunction pp(char *parsfilename). The parameters file must have the form:
int NQMAX 20
double DELQ 4.0
double EPSILON 1.0
The momentum mesh is defined by NQMAX and DELQ, and EPSILON refers to a distance within which φ2 is
a constant. As long as the characteristic source size is larger than EPSILON resulting correlation functions
should be independent of EPSILON. To better understand this, one can read the file “corrtail.pdf” and “long-
paper.pdf” in ”doc/papers/”. This method requires good knowledge of experimental phase shifts. Unfortu-
nately, such phase shifts are often provided as if the Coulomb interaction does not exists, so one must then
modify the phase shifts to account for Coulomb which is done with the CoulWave::phaseshifts CoulombCorrect(...)
utilities described in Sec. 7. It should be emphasized that this approximation can significantly affect the an-
swer, and that stable results require that the phaseshifts and their derivatives are consistent to a high level.
To reduce the sensitivity to this approximation, pp phase shifts for the s-wave are calculated by solving the
Schrödinger equation with the Reid soft-core potential.

Classes were defined in such a way to easily accommodate adding additional classes of interactions. Cur-
rently, the classes that inherit from CWaveFunction are:

9

CWaveFunction pp proton-proton†

CWaveFunction pn proton-neutron†

CWaveFunction nn neutron-neutron†

CWaveFunction Xipi Ξ0, π+

CWaveFunction kpluspiminus K+π− (Coulomb and K*)
CWaveFunction lambdalambda ΛΛ (will prompt for scattering length)
CWaveFunction plambda pΛ
CWaveFunction piplusplus π+π+†

CWaveFunction pipluspiminus π+π−†

CWaveFunction pkplus proton-K+†

CWaveFunction ppiplus proton-π+†

†Uses fairly complete set of experimental phase shifts

5 Kernels and Convolutions

Kernels are used to provide a connection between both correlations functions and source functions when
both are expressed in terms of expansion coefficients for either the Cartesian-Harmonic or the Y`,m basis.
Since squared wave functions |φ(q, r, cos θqr)|2 is rotationally invariant (q and r rotate together) there is a
one-to-one correpondence between angular moments of the correlation and source functions with the same
indices:

R`,m(q) =
∫

4πr2drK`(q, r)S`,m(r) (12)

R`x,`y,`z (q) =
∫

4πr2drK`(q, r)S`x,`y,`z (r) (13)

K`(q, r) =
1
2

∫
d cos θqr|φ(q, r, cos θqr)|2 (14)

Thus, the kernel K`(q, r) plays the basic role when linking source properties to correlations when ana-
lyzing with angular correlations and is determined by the wave function. All types of interactions provide
resolving power for kernels, even for values of ` greater than those that matter for the interactions. See
“doc/papers/longpaper.pdf”.

The members of CKernel are:
class CKernel{
public:
CWaveFunction *wf;
double GetValue(int ell,double q, double r);
double GetValue(int ell,int iq,int ir);
void Read(char *datadirname);
void Write(char *datadirname);
void Print();
int GetLMAX();
double GetDELR();
double GetDELQ();
int GetNQMAX();
int GetNRMAX();
void Calc();
void Calc ClassCoul(double ma,double mb,int zazb);
void Calc PureHBT();
CKernel(CWaveFunction *wf,char *kparsfilename);
∼CKernel();
double GetPsiSquared(int iq,int ir,double ctheta);
double GetPsiSquared(int iq,double r,double ctheta);
double GetPsiSquared(double q,double r,double ctheta);

10

}
The constructor sets parameters but does not calculate the kernels. To calculate the kernels, one uses one
of three calls:

Calc Will use the wave function object to generate kernel
Calc ClassCoul Will calculate kernel for classical Coulomb interaction
Calc PureHBT Identical bosons, no Coulomb or strong interaction

Kernels are stored in meshes denoted by the parameters ell, iq and ir with values bounded by LMAX,
NRMAX and NQMAX, and the granularities set by DELR and DELQ. They can be written to files with the Write()
function which needs a character string as an argument to name the directory. The Read() function will
read from the same format. In the named directory files will be written for each (ell,q) combination with
filenames set by the values of q, e.g., ell2 q52.dat would store kernel information for ell=2, q=52. The
first line of the file give NRMAX and DELR, with the subsequent lines giving the kernel values for ir=0,1,....
Thus, one should store information for different kernels in different directories.

Once wave functions or kernels are calculated and a source function is stored in an array, one can calculate
the correlation function with functions in the namespace Source2CF:
namespace CS2CF{
void s2c(C3DArray *s,CWaveFunction *wf,C3DArray *c);
void s2c(CCHArray *s,CKernel *kernel,CCHArray *c);

};
One uses kernels to perform convolutions with angular decompositions, and wave-functions for convolutions
connecting source and correlation functions stored in three-dimensional Cartesian meshes. However, since
the kernels are a fairly efficient way of storing the calculated squared wave functions, you can also reproduce
the squared wave functions with the functions GetPsiSquared().

6 Calculating Source Functions

Source and correlation function information are both stored in the same types of arrays. Calculating the
source from a model, e.g., blast-wave, requires creating a CSourceCalc object, or an object derived from
this class. This objects stores parameters describing the source, e.g., Gaussian radii, but the actual source
information is stored in arrays of the type described in Sec. 3. The arrays are filled with calls of the type
scalc->CalcS(sarray), where scalc would be a pointer to a source object and sarray would be a pointer
to a the array storing the source function. The public members of the class are:

class CSourceCalc{
public:
parameterMap spars;
virtual void CalcS(CCHArray *A);
void ReadSPars(char *sparsfilename);
void NormCheck(CCHArray *A);
void CalcEffGaussPars(CCHArray *A);
CSourceCalc::CSourceCalc();

};

All source parameters are stored as a parameterMap objects which are regular c++ maps of strings:
typedef map<string,string> parameterMap;
The namespace parameter includes a variety of functions which are mostly self explanatory:
namespace parameter {

bool getB(parameterMap ,string ,bool);
int getI(parameterMap ,string ,int);
string getS(parameterMap ,string ,string);
double getD(parameterMap ,string ,double);
vector< double > getV(parameterMap, string, double);
vector< string > getVS(parameterMap, string, string);

11

vector< vector< double > > getM(parameterMap, string, double);
void set(parameterMap&, string, double);
void set(parameterMap&, string, int);
void set(parameterMap&, string, bool);
void set(parameterMap&, string, string);
void set(parameterMap&, string, char*);
void set(parameterMap&, string, vector< double >);
void set(parameterMap&, string, vector< string >);
void set(parameterMap&, string, vector< vector< double > >);
void ReadParsFromFile(parameterMap&, char *filename);
void PrintPars(parameterMap&);

};

The ReadParsFromFile(paramtermap&, char *filename) function will input parameters from a file. For
example, the parameters used for reading in parameters for a CSourceCalc Gaussian object could be spec-
ified in a file with the following lines:
double Pt 400
double DELPT 30
string OSCARfilename /usr/users/johnson/data/oscarfile.dat
int IDa 211
int IDb -211

For specific sources, one must use objects which derive their properties from CSourceCalc. Currently,
there are three such objects, CSource Gaussian, CSource Blast and CSource OSCAR, which can be used
to generate source functions for Gaussian, blast-waves, and from files where phase space points have been
recorded in the OSCAR format. Each type of object has quite different parameters:

12

Source Parameters
type parameter default class/description

CSource Gaussian
double Rx 4.0 One-particle Gaussian source sizes in c.o.m. frame
double Ry 4.0 ρ(r) ∼ e−x2/2R2

double Rz 4.0 R i For non-identicals, R2 = (1/2)(R a2 + R b2)
double Xoff 0.0 For non-identicals
double Yoff 0.0 these are off-sets for separations
double Zoff 0.0 of centroids of two Gaussians
double Euler Phi 0.0 Euler angles for
double Euler Theta 0.0 rotations of principle
double Euler Psi 0.0 axes

Csource Blast∗

double Rx 13 in-plane transverse radius
double Ry 13 out-of plane (sharp cutoff radii)
double Tau 12 Bjorken time (All emission at once, ∆τ = 0)
double BetaX 0.7 Transverse velocities at surface
double BetaY 0.7 for in/out-of-plane
double T 110 Temperature in MeV
double Pt 600 Total pt of particles in MeV/c
double Phi 0.0 Angle of emission relative to x axis
double EtaG 2.0 Gaussian width of source rapidities ∞ for Bjorken
double Ma 938.28 mass of first particle
double Mb 139.58 mass of second particle

int Nsample 1000
of points to sample 1-particle distribution

source sampling ∼Nsample2

CSource OSCAR∗∗

double Pt 600 Total momentum of pair in MeV/c

double DELPT 20
Range for accepting momentum of particles, i.e.,

|pt,a −maPt/(ma + mb)| < ∆Pt

double PHIMIN DEG 0 Range for azimuthal angles, phase space

double PHIMAX DEG 360.0
points pb and rb will be rotated so that

pa and pb are parallel once they pass filter
double YMIN -3.0 Range of rapidities, particles
double YMAX 3.0 boosted to have same rapidity, y − a = yb

int IDa 211 Particle Data Book
int IDb 211 IDs

double Ma 139.58 Masses
double Mb 139.58

bool AEQUALB 0
Set to 1 if particles are non-identical,

but one uses same phase space points
int NMAX 20000 Maximum # of phase space points (array size)

string OSCARfilename UNDEFINED Location of phase space points
int NEVENTSMAX 10000 Maximum # of events to be read from file

*Blast-wave calculations assume u⊥ = γv⊥ rise linearly from origin.

**All events for which one wishes to mix-and-match phase space points should stored in the same OSCAR
file. Data corresponding to different impact parameters should be stored in different files.

13

7 Utilities

The directory src/Utilities contains code used for special functions, random-number generation, param-
eter maps, lorentz boosts, Clebsch Gordan coefficients, Monte-Carlo generation of momenta for boltzmann
distributions and the “triangle function”. We devote space below to describing some of the utilities which we
think might likely be of some interest to a user:

The random number generation routines are fairly self explanatory:
class CRandom{
public:
double ran(void);
unsigned long int iran(unsigned long int imax);
double gauss(void);
void gauss2(double *g1,double *g2);
CRandom(int seed);
void reset(int seed);
void generate boltzmann(double mass,double T,double *p);

}
Here, ran returns a random real number between 0 and 1, iran returns an integer 0 ≤ i < imax, and
gauss returns a gaussian random number consistent with the distribution e−x2/2. The function gauss2
returns a pair of gaussian numbers which is efficient if one is creating more than one gaussian number
since the fundamental algorithm generates pairs of numbers. The function generate boltzmann() returns
momenta consistent with a Boltzmann distribution.These routines use the GSL library with the “ranlxd1”
choice of random number generators. The properties of the various algorithms are documented in the
GSL documentation. By editing the code src/Utilities/Random/gslrandom.cc, one can easily switch to
different classes of random number generators.

Including src/Utilities/Misc/misc.h and src/Utilities/Misc/misc.cc provides a user with several
functions. Clebsch Gordan coefficients can be generated with double cgc(double j1,double m1,double
j2,double m2,double j,double m). A four vector p[4] can be boosted by a four velocity u[4] to pprime[4]
with void lorentz(double *u,double *p,double *pprime). The “triangle function”, double triangle(double
M,double ma,double mb), defined by

√
M4 + m2

a + m2
b − 2M2m2

a − 2M2m2
b − 2m2

am2
b/(4M2), gives the

relative momentum of a object of mass M decaying. The utility bool comparestrings(char *s1,char
*s2) returns true if the strings are identical. Finally, the routine outsidelong(...) can be used to find
the projections of the relative momentum in the pair frame from two four vectors pa and pb. The header file
src/Utilities/Misc/misc.h has the following prototypes:
void lorentz(double *u,double *p1,double *p1prime);
double cgc(double j1,double m1,double j2,double m2,double j,double m);
bool comparestrings(char *s1,char *s2);
double triangle(double m0,double m1,double m2);
void outsidelong(double *pa,double *pb,
double &qinv,double &qout,double &qside,double &qlong);

which are hopefully self-explanatory. Note that outsidelong includes the outwards boost which makes
q2
inv = q2

out + q2
side + q2

long. Thus, the returned value of qout is shorter by a factor γ = (1 − v2
⊥)−1/2 than

what most experimental groups use for their conventions. Also, the canonical relative momentum is used,
q = (1/2)(p′a − p′b) in the pair frame. This also differs from the usual convention for ππ interferometry, but
follows the convention used for most other correlations such as pp analyses.

Special functions include spherical harmonics, Legendre Polynomials, Cartesian Harmonics, Coulomb
wave functions and a variety of Bessel functions, which are all defined in src/Utilities/SpecialFunctions/sf.h.
Many of the special functions are simply GSL routines in disguise.

Legendre polynomials and spherical harmonics are functions of the namespace SpherHarmonics:

namespace SpherHarmonics{
double legendre(int ell,double ctheta);
complex <double> Ylm(int ell,int m,double theta,double phi);

}

14

Bessel functions are incorporated as a namespace, with the function names being self-explanatory:

namespace Bessel{
double J0(double x);
double J1(double x);
double Jn(int n, double x);

double K0(double x);
double K1(double x);
double Kn(int n, double x);

double Y0(double x);
double Y1(double x);
double Yn(int n, double x);

double I0(double x);
double I1(double x);
double In(int n, double x);

double j0(double x);
double j1(double x);
double jn(int n, double x);

double y0(double x);
double y1(double x);
double yn(int n, double x);

complex<double> h0(double x);
complex<double> h1(double x);
complex<double> hn(int n, double x);

complex<double> hstar0(double x);
complex<double> hstar1(double x);
complex<double> hstarn(int n, double x);

};

The namespace CoulWave provides functions for calculating Coulomb partial waves. Here, CWincoming
and CWoutgoing are the incoming/outgoing waves defined in terms of the regular and irregular solutions
FL ± iGL respectively. The gamma function of a complex argument Γ(z) is cgamma().
namespace CoulWave{
void GetFG(int L,double x,double eta,double *FL,double *GL);
void GetFGprime(int L,double x,double eta,double *FL,double *GL,
double *FLprime,double *GLprime);

complex<double> CWincoming(int ell,double x,double eta);
complex<double> CWoutgoing(int ell,double x,double eta);
complex<double> cgamma(complex<double> cx);
void phaseshift CoulombCorrect(int ell,double q,double eta,
double &delta,double &ddeltadq);

};
Here, the function phaseshift CoulombCorrect provides a crude way to scale phase shifts to account
for their distortion due to the Coulomb interaction. In many instances, models or parameterizations pro-
vide phase shifts assuming there is no Coulomb interaction, e.g., δs ∼ qa. This correction assumes that
tan δwithCoul. = tan δnoCoul. · Gamow`(q), where the Gamow factor is F`(q, r = 0)/qr|2 for a Coulomb wave
function.

Cartesian harmonic functions are included as a class rather than as a namespace for the sake of efficiency.

15

Since many of the calculations use binomial and trinomial distributions, and since the overlap function
might be used repeatedly, arrays are strategically stored so that subsequent calls can be performed more
quickly. The public members of the CCHCalc object are:
class CCHCalc{
public:
CCHCalc();
∼CCHCalc();
double GetAFromE(int lx,int ly,int lz,double ex,double ey,double ez);
double GetAFromThetaPhi(int lx,int ly,int lz,double theta,double phi);
double GetMFromE(int lx,int ly,int lz,double ex,double ey,double ez);
double GetMFromThetaPhi(int lx,int ly,int lz,double theta,double phi);

double GetOverlap(int lx,int ly,int lz,int lxprime,int lyprime,int lzprime);
double GetOverlap0(int lx,int ly,int lz,int lxprime,int lyprime,int lzprime);

double Factorial(int n);
double DoubleFactorial(int n);
double Binomial(int lx,int ly);
double Trinomial(int lx,int ly,int lz);

};
Here, the GetA... functions give the Cartesian harmonicsA~̀ as functions of either cos θ and φ or in terms of
unit vector components ex, ey, ez. The GetM functions are simply moments of unit-vector components, M~̀ =
e`x
x e

`y
y e`z

z . Unlike spherical harmonics, Cartesian harmonics are not orthogonal, and GetOverlap0(...) and
GetOverlap(...) return (1/4π)

∫
dΩA~̀(Ω)A~̀′(Ω). The function GetOverlap(...) stores the calculated

values, creating the needed memories as they are calculated. This saves time but can use significant
memory if one is calculating for ` ≥ 50. Thus, if one only plans to calculate a few overlaps, one should use
GetOverlap0(...). Binomial, factorial and trinomial functions also used stored values for increased speed.

8 Compiling and Running CorALPHA

The CorALPHA package includes a samples/ directory. Within that directory are several sample codes,
which have mainly been used to test the code base. The source code wfsample.cc mainly tests the wave-
function routines, while kernelsample.cc additionally provides a test of kernel calculations. The three
codes sourcesample gauss.cc, sourcesample OSCAR.cc and sourcesample blast.cc give examples of
how one can calculate source functions from Gaussians, blast-wave parameterizations or from microscopic-
model output in OSCAR format.

CorALPHAwill not function without the installation of the GSL (Gnu Scientific Library). This can be found by
first dialing into:

http://www.gnu.org/software/gsl
GSL routines are used for random numbers, Bessel functions, Coulomb wave functions, spherical harmon-
ics and Clebsch-Gordan coefficients. The code is only tested for the GNU compiler (g++, version 4.0 or
higher). GSL and g++ are available for Linux, Windows and Mac OS X.

To incorporate CorALPHA functionality into your code, you need only add an include statement to your
code, then compile. If you wish to use the static CorALPHA library (libcoral.a in lib/), you need to add
the line:
#include "coral.h"

to the beginning of your source code, then compile with the command:
g++ -I ${CORALHOME}/include -L ${CORALHOME}/lib -lcoral -lgsl -lgslcblas myprog.cc -o myprog,

where CORALHOME is the root CorALPHA directory. If you would prefer to recompile the source code along
with your main program, you would add the line:
#include "coral.cc"

to your main routine rather than coral.h, and compile with the command:
g++ -I ${CORALHOME}/include -lgsl -lgslcblas myprog.cc -o myprog,

16

The codes in the sample/ directory can be compiled with make (e.g. make wfsample) using the makefile
found in that directory. The source code coral.cc and the header file coral.h simply contain include
statements to

After unpacking CorALPHA, one should compile the code by going to the lib/ directory and typing:
make

Note that the optimization flags are read in from the shell variable CFLAGS. If one wishes to use different
optimization parameters, one should edit the line OPT=${CFLAGS} in the makefile before running make.

The result of the compilation will be a shared library file libcoral.a which will reside in the lib directory.
The make command will also copy all header and source files from the src/ tree into the include/ directory
(unless new versions already exist). If new source files are added to the src directory, the makefile must be
edited. To make a new makefile, simply run the shell script:
makemaker.sh > makefile,

then change the ${OPT} variable in the makefile if needed. In the makefile in the samples/ directory, one
can also recompile the source with command make coral, which changes to the lib/ directory, compiles
CorALPHA and returns to the original directory.

Not all source code found in the src/ tree is compiled into CorALPHA, although any *.cc or *.h file will
be used as a dependency in the makefile. If you add source files, they should be listed with an include
statement in one of the following source and header files which are included in the compilation: coral.cc
coral.h misc.cc, misc.h, arrays.cc, arrays.h, sf.cc, sf.h, parametermap.cc, parametermap.h,
wavefunction.cc, wavefunction.h, source2CF.cc, source2CF.h, kernel.cc, kernel.h. For instance,
if you add a new source file, wf lambdaxi.cc, which is used to calculate wave functions for Λs and Ξs, you
would add a line to the file wavefunction.cc so that it would become:
#include "wavefunction.h"
#include "wfcommon.cc"
#include "planewave.cc"
#include "partwave.cc"
#include "pipi phaseshifts.cc"
#include "wf pp.cc"
#include "wf pkplus.cc"
#include "wf pipluspiplus.cc"
#include "wf pipluspiminus.cc"
#include "wf nn.cc"
#include "wf lambdaxi.cc

In fact, there do exist several wf ... files in the src/ tree which are not included as they are either in
development or are untested.

9 Known Issues

GSL has a bug in the Coulomb partial wave routines for versions 1.7 and earler. The sign of the wave
function for larger (¿3) values of x = qr/h̄ oscillates between the correct and incorrect sign. The authors
have provided a fix to the source code (see below). If you do not have this fix to GSL, you can edit
the file src/Utilities/SpecialFunctions/CoulWave/coulwave.cc and comment away the line #define
NO GSLCOULWAVE BUG. If you want to change the GSL source file, then recompile, a bug fix was provided by
the author and is described in the text file ”gslbugfix.txt” which is included in doc/.

References

[1] M. A. Lisa, S. Pratt, R. Soltz and U. Wiedemann, arXiv:nucl-ex/0505014.

17

