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Two-Particle correlations based on the interference of identical particles have provided the chief
means for determining the shape and lifetime of sources in relativistic heavy ion collisions. Here,
Strong and Coulomb induced correlations are shown to provide similar information.

In the collision of highly relativistic heavy ions, an ex-
cited region of matter is created where novel states of
matter are expected to be exist. These transient states,
which occupy thousands of fm3, are expected to dissolve
on a time scale of 10 fm/c. Only the momenta of the
collision debris are experimentally accessible. However,
space-time information is crucial for understanding the
reaction [1]. Most importantly, a latent heat associ-
ated with a phase transition would be accompanied by
a significant enhancement to the duration of the emit-
ting phase[2–5]. The most direct means for determining
the spatial and temporal characteristics of the reaction
is through the experimental measure of the two-particle
correlation function which describes the ratio of the two-
particle probability to the product of the single-particle
probabilities for emitting species a and b with momenta
pa and pb.

The correlation of two particles with outgoing mo-
menta, pa and pb, is determined by g(v, r), the normal-
ized probability of two particles being emitted with the
same velocity v, and being separated by a distance r, as
measured in the two-particle center-of-mass frame.

C(v,q) =

∫

d3rg(v, r)|ψ(q, r)|2 . (1)

Here, q = p
′
a = −p

′
b is the relative momentum in the

center-of mass frame and v is the velocity of the pair’s
center of mass. If the particles are distinguishable and do
not interact with one another, the wave function, ψ(q, r),
would be eiq·r, and the resulting correlation would be
unity. Since the correlation function can be analyzed
for any total momentum and for any choice of species a
and b, a wealth of information regarding the space-time
characteristics of the source is available.

A measurement of C(v,q) represents three dimensions
of information for particles of a given velocity v, and can,
at best, lead to a unique extraction of g(v, r). Unfortu-
nately, complete knowledge of g(v, r) does not uniquely
provide all spatial and temporal information about the
source which would require four dimensions of informa-
tion for each velocity. Nonetheless, one can infer the
emission time scale if the source is long lived. To demon-
strate this, we consider a Gaussian source characterized
by a transverse spatial size R⊥ and a lifetime τ . The
source is defined in a frame moving along the beam axis

such that the longitudinal (along the beam axis) compo-
nent of the pair’s momentum is zero, i.e., the velocity v

is perpendicular to the beam. This is referred to as the
longitudinally co-moving frame, which we delineate with
primes.

S(v, x′) =
dN

d4xd3v
(2)

∝ exp

{

−−x′2out

2R2
⊥

− −x′2side

2R2
⊥

−
−x′2long

2R2
long

− −x′20
2τ2

}

.

Consistent with the usual convention used in the field,
the three dimensions are referred to as the longitudinal
(along the beam axis), outwards (parallel to v) and the
sidewards direction (perpendicular to both the beam axis
and v). The correlation function depends only on g(v, r),
the distribution of relative coordinates of particles mov-
ing with the same velocity.

g(v, r) =

∫

d4xad
4xbSa(v, xa)Sb(v, xb)δ

3(xa − xb − r),

(3)
where r, xa and xb are all measured in the rest frame of
the pair. For the Gaussian source described above, this
results in

g(v, r) ∝ exp

{

− −r2out

4γ2
v(R2

⊥ + v2τ2)
− −r2side

4R2
⊥

−
−r2long

4R2
long

,

}

,

Rside = R⊥, Rout = γv

√

R2
⊥ + v2τ2. (4)

Given the fact that τ can depend on the velocity, one can
not determine τ directly, but must instead extract Rside

and Rout from a direct fit to experimental correlation
functions, then rely on the assumption that any differ-
ence between Rout and Rside (aside from that due to the
Lorentz contraction factor) is the result of a non-zero life-
time. This assumption becomes questionable when the
lifetimes are short. In the convention above, which will
be used throughout the paper, Rout refers to the size
measured by an observer moving with the pair. This dif-
fers from standard practice where Rout usually refers to
the size measured by an observer in the longitudinally
co-moving frame, which is shorter by a factor 1/γv due
to Lorentz contraction.

Dynamical models that incorporate a phase transition
with a latent heat predict longer emission times than
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models with no latent heat [2–5]. These models predict
continuous emission over times which can be in excess of
20 fm/c. Remarkably, analyses of two-pion interferom-
etry at RHIC show equal outwards and sidewards sizes
when viewed in the longitudinally co-moving frame, i.e.,
Rout/γv ∼ Rside [7–9]. This suggests that the emission
is sudden rather than continuous. Furthermore, the ex-
perimental values of Rlong are shorter than what was ex-
pected from the dynamical models, suggesting that the
time of this sudden disintegration is relatively short, ∼
10 fm/c after the beginning of the collision. The two-
pion analyses are based on the interference associated
with symmetrizing same-sign pions. As the existence or
non-existence of a latent heat with the QCD deconfine-
ment transition represents a central issues of the RHIC
program, it is imperative to explore alternative means for
measuring the size and shape of the emission sources.

For non-interacting identical particles the wave func-
tion has a simple form,

|ψ(q, r)|2 = 1 ± cos(2q · r). (5)

By performing an inverse Fourier transform of C(v,q)−1
in Eq. (1), one can obtain g(v, r) . Even though the
pions are charged, experimental analyses have tried to
ignore the Coulomb interaction as much as possible, and
in fact try to “correct” their data as to best eliminate
the effects of Coulomb from the correlation function so
that comparison with simple forms for g(v, r) is easily
accommodated. The aim of this paper is to demonstrate
that Coulomb and strong interactions between the pair
should not only be included in correlation analyses, but
that they provide tremendous leverage for determining
both the size and shape of g(v, r).

First, we consider two particles which interact only via
the Coulomb interaction. Correlations for pK+ from a
Gaussian source,

g(v, r) =
1

(4π)3/2RoutR2
⊥

exp

{

− r2out

4R2
out

−
r2side + r2long

4R2
⊥

}

,

(6)
are displayed in Fig. 1 as a function of Qinv = 2q =
√

−(pa − pb)2 + (m2
a −m2

b)
2/P 2. The source sizes are

chosen Rout = 8 fm and R⊥ = 4 fm. The integra-
tion described in Eq. (1) was performed with Monte
Carlo methods. The Coulomb plane waves are solution
to Schrödinger’s equation for a wave where the outgoing
wave has momentum q.

−∇2ψ(q, r) + q
2η

r
ψ(q, r) = q2ψ(q, r), (7)

where η is the Sommerfeld parameter,

η =
ZaZbµe

2

q
, µ =

E′
aE

′
b

(E′
a + E′

b)
. (8)

The usual definition of the reduced mass µ, involving
ma and mb, has been altered to achieve consistency with
relativistic treatments for small e2.

FIG. 1: pK+ correlations are shown for a Gaussian source
(Rlong = Rside = 4 fm, Rout = 8 fm). The classical approx-
imation well explains Coulomb correlations at large relative
momentum. The strong interaction only moderately affects
the correlation function.

In order to understand the form of the squared wave
function, it it insightful to compare to the classical ap-
proximation where the squared wave function in Eq. (1)
is replaced by the ratio of the initial and final phase space
[10].

|ψ(q, r)|2 → d3q0
d3q

=
1 + cos θqr − η/(qr)

√

(1 + cos θqr)2 − 2(1 + cos θqr)η/(qr)

· Θ(1 + cos θqr − 2η/(qr)),

(9)

where θqr is the angle between q and r. Integrating over
cos θqr, one finds the angle-averaged correlation weight,

q20dq0
q2dq

=

√

1 − 2η

qr
≈ 1 − η

qr
. (10)

In the non-relativistic limit η ∝ 1/q and C(q) approaches
unity as 1/q2. Thus, the tail of the correlation function
provides a measure of the expectation, 〈1/r〉.

Convoluting the phase-space focusing factor in Eq. (9)
with the Gaussian source function gives a classical result
for the correlation function,

Cclassical(q) =

∫

d3r
1

(4π)3/2RoutRsideRlong

· exp

(

− r2out

4R2
out

− r2side

4R2
side

−
r2long

4R2
long

)

· 1 + cos θqr − η/(qr)
√

(1 + cos θqr)2 − 2(1 + cos θqr)η/(qr)

· Θ(1 + cos θqr − 2η/(qr)).

Performing the integral with Monte-Carlo techniques is
non-trivial due to the non-analytic behavior of d3q0/d

3q
which has an integrable singularity. The singularity can
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be overcome by choosing the direction of q as the po-
lar axis in spherical coordinates, then making a variable
substitution,

u =
√

(1 + cos θqr − γ)2 − γ2, (11)

γ ≡ η/(qr).

The integral can then be expressed in terms of u,

Cclassical(q) =

∫ 2π

0

dφ

∫ 2
√

1−γ

0

du

∫

r2dr (12)

· 1

(4π)3/2R3
max

exp

(

− r2

4R2
max

)

1√
1 − γ

w(r, u, φ),

w(r, u, φ) =
R3

max

RoutRsideRlong

Θ(1 − γ)
√

1 − γ (13)

· exp

(

r2

4R2
max

− r2out

4R2
out

− r2side

4R2
side

−
r2long

4R2
long

)

.

Monte Carlo methods can then be used to calculate the
integral as Cclassical = 〈w〉, when u is sampled uniformly
and r is sampled according to a Gaussian distribution
governed by Rmax, which is the largest of the three di-
mensions.

The classical and quantum results are remarkably sim-
ilar for large q as can be seen in Fig. 1. Extract-
ing the shape of the source requires measuring C(v,q)
as a function of the direction of q. Since the correla-
tion approaches unity as 1/q2, we recommended plotting
q2[C(q) − 1] rather than C(q) so that the main q depen-
dence can be ignored, allowing the use of larger bins in
q.

As a function of the direction of q, correlations are
shown in Fig. 2 for Qinv = 30 and 150 MeV/c alongside
analogous results calculated with the classical form de-
scribed in Eq. (9). The negative correlation at cos θ =
±1 derives from the fact that the relative momentum of
the two positive particles are deflected away from the di-
rection defined by their relative position by the repulsive
Coulomb force. Careful analysis of the classical expres-
sion, Eq. (9), shows that for small η, the negative correla-
tion is confined to angles where q and r are anti-parallel.
Since this angular range is small, the angular dependence
can be approximated by a delta function that integrates
to the same net strength.

d3q0
d3q

≈ 1 − (2η/qr)δ(1 + cos θqr). (14)

For an elliptical source, the fraction of the ellipse’s vol-
ume confined to a small cone of solid angle ∆Ω along
the direction of Rout is ∆ΩR3

out/(RoutRsideRlong). The
prefactor, (η/qr), in Eq. (14) also contributes a factor
of 1/Rout, so the net strength of the correlation func-
tion for q pointing in the outwards direction scales as
R2

out/(RoutRsideRlong). This means that the correlation

FIG. 2: pK+ correlations are shown as a function of the angle
of the relative momentum relative to the outwards direction
for the Gaussian source (Rlong = Rside = 4 fm, Rout = 8 fm).
The classical approximation becomes reasonable for large Qinv

where the ratio of the suppression at cos θ = 1 to the suppres-
sion at cos θ = 0 approaches (Rout/Rside)

2.

is stronger in the outward direction than in the sideward
direction by a factor of R2

out/R
2
side. Thus, the negative

correlation in Fig. 2 is four times deeper for cos θ = 1
than it is for cos θ = 0 for the classical calculation. The
same calculation with Rout/Rside = 3 indeed resulted in
a correlation that was nine times deeper for cos θ = 1.
Since the θ dependence in the correlation behaves as the
square of the asymmetry, these measurements provide
an excellent means to extract all three dimensions of the
source. This allows one to infer both the duration of
the emission from the Rout/Rside ratio and the time of
the emission for the Rlong measurement. The sensitiv-
ity to the asymmetry in the quantum calculations was
only slightly muted relative to the classical calculations
for Qinv > 100 MeV/c.

It should not be particularly difficult to obtain the re-
quired statistics even though the correlation is of the or-
der of 1%. Although the correlation falls as 1/Q2

inv, phase
space rises as Q2

inv. Unlike identical-particle correlations
at small relative momentum, there are no issues with
two-track resolution. However, one has to consider large-
scale correlations, e.g., collective flow, jets and charge
conservation. Correlation from charge conservation can
be neglected by considering only same-sign pairs. Col-
lective flow can be eliminated by carefully constructing
the correlation denominator with pairs from events with
the same reaction plane. Such competing correlations
ultimately limit the range in Qinv that is useful for the
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analysis. For instance, if the uncertainty of the com-
peting correlations for pK+ is of the order of 1%, the
analysis should be restricted to Qinv < 150 MeV/c so
that Coulomb remains the dominant factor.

The angular sensitivity of Coulomb-induced corre-
lations have been investigated in intermediate-energy
heavy-ion collisions. These studies involved light frag-
ments, e.g. Carbon-Carbon, which can be treated with
classical trajectories [10]. The Coulomb mean field from
the remainder of the source was found to distort the the
shape information. However, the residual Coulomb inter-
action is expected to play a much smaller role at RHIC
where the hadrons move much faster and spend less time
interacting with the mean field. Furthermore, analyses
can be performed with both positive and negative pairs,
e.g., both pK+ and p̄K−. Averaging the two correlation
functions should largely cancel the effects of the residual
interaction.

The angular dependence of Coulomb correlations of
non-identical particles have been used to determine the
degree to which one species is displaced relative to an-
other [11–15]. These studies involved comparing corre-
lations for cos θ < 0 with correlations with cos θ > 0.
This comparison effectively provides a measure of the
dipole moment of the the source function, whereas the
comparison of the correlation function for cos θ = 0 and
cos θ = ±1 is sensitive to the quadrupole moment, i.e.,
Rout/Rside.

Finally, we make some comments concerning the va-
lidity of using classical rather than quantum formalism
to calculate correlations. The validity of classical forms
depends on the source size, the value of the relative mo-
mentum, and the charges and masses of the particles. For
a source of characteristic size R, classical forms work well
whenever qR >> 1. For source sizes at RHIC, this im-
plies that classical calculations should begin to be valid
for Qinv greater than 100 MeV/c, which is indeed seen
in Fig.s 1 and 2. Unfortunately, this range of validity
is outside the low q region where most of the investi-
gations into two-particle correlations have been focused.
The momentum scale of the Coulomb hole is determined
by the classical turning point, q2/(2µ) = e2/R. If one
adds the constraint qR ≥ 1, one finds that classical con-
siderations would be valid deep into the Coulomb hole if
R > 1/(2me2), or one half the Bohr radius. Since the two
pion Bohr radius, 387 fm, is much larger than character-
istic sources sizes, classical considerations are applicable
only in the tail of the correlation function for hadron-
hadron correlations. In reference [16] classical ideas were
applied for hadron-hadron correlations. As can be seen
from the comparison of quantum results and classical re-
sults for the angular correlations in Fig. 2, classical mod-
els should not be applied except at high q. Our motiva-
tion in performing classical calculations derives from the
fact that they are more physically intuitive and analyti-
cally simpler. They provide insight into how the angular

correlations are related to the size and spatial anisotropy
of the source. As the quantum calculations are not chal-
lenging numerically, there is little reason to forgo the full
quantum treatments.

Incorporating the strong interaction into the wave
function in Eq. (1) is straight-forward if the the strong in-
teraction can be expressed as a non-relativistic potential.
One must simply solve the Schrödinger equation. How-
ever, many interactions can not be expressed in terms of
such potentials. For instance, the interaction of a π+ and
proton through the delta resonance involves a quantum
rearrangement of the participating quarks. Thus, a wave
function is not a meaningful quantity for separations be-
low ǫ ∼ 1 fm, but it is certainly a well defined object for
r > ǫ, and can be expressed in terms of a Coulomb wave
with the incoming partial waves are modified by phase
shifts.

ψ(q, r) = ψ0(q, r) +
∑

ℓ

√

4π(2ℓ+ 1)
iℓ

2qr
e−iσℓ

· (Fℓ(η, qr) − iGℓ(η, qr))
(

e−2iδℓ − 1
)

Yℓ,m=0,

σℓ ≡ arg (Γ(1 + ℓ+ iη)) .

(15)

Here, Fℓ and Gℓ are the regular and irregular partial
Coulomb waves and the second term describes the dis-
tortion of the incoming partial wave, Fℓ − iGℓ.

For the pπ+ and pK+ examples discussed in this study,
the plane wave also has a spin index, ms = ±1/2, which
is not conserved for partial waves with ℓ > 0. The states
of a givenms must be decomposed in terms of eigenstates
of total angular momentum which are phase shifted by
eigen-phases, δℓ,j. After applying angular momentum
algebra, Eq. (15) can be modified to include flipping the
spin. For ℓ = 1,

(e−2iδℓ=1 − 1)Yℓ=1,m=0 →

e−2iδℓ=1,j=3/2

√

2

3
|j = 3/2,mj = 1/2〉

+ e−2iδℓ=1,j=1/2

√

1

3
|j = 1/2,mj = 1/2〉 − Yℓ=1,m=0| ↑〉

=e−2iδℓ=1,j=3/2

(

2

3
Yℓ=1,m=0| ↑〉 +

√
2

3
Yℓ=1,m=1| ↓〉

)

+ e−2iδℓ=1,j=1/2

(

1

3
Yℓ=1,m=0| ↑〉 −

√
2

3
Yℓ=1,m=1| ↓〉

)

− Yℓ=1,m=0| ↑〉

=

(

2

3
e−2iδℓ=1,j=3/2 +

1

3
e−2iδℓ=1,j=1/2 − 1

)

Yℓ=1,m=0| ↑〉

+

√
2

3

(

e−2iδℓ=1,j=3/2 − e−2iδℓ=1,j=1/2

)

Yℓ=1,m=1| ↓〉.
(16)

Only the first term interferes with the original partial
wave when calculating |ψ(q, r)|2. In principle, the dis-
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torted incoming wave can be calculated from the eigen-
phases if one knows the basis, e.g., total angular momen-
tum for this case. In this example the sum of the intrinsic
spins was 1/2. For higher spins, one would have to con-
sider the mixing of different orbital angular momenta,
e.g., the mixing of the ℓ = 0 and ℓ = 2 states for proton
neutron interactions. For such problems, one must know
the mixing factors in addition to the eigen-phases. Thus,
if one understands the S-matrix elements in the partial
wave basis, one can always construct the ψ(q, r) for r
greater than the interaction range.

For r < ǫ, one must use an effective form for |ψ(q, r)|2.
Since ǫ is much smaller than any characteristic dimension
of the source, only the integral of ψ2 matters in the region
less than ǫ, and one can safely choose,

|ψ(q, r < ǫ)|2 = |ψ0(q, r)|2 +W (ǫ, q), (17)

where ψ0 is the Coulomb wave and W is independent of
r. The change in the density of states can be expressed
both in terms of phase shifts and wave functions [17],

∆
dN

dq
=

4πq2

(2π)3

∫

d3r
(

|ψ(q, r)|2 − |ψ0(q, r)|2
)

(18)

=
∑

ℓ

(2ℓ+ 1)

π

dδℓ
dq

=
2q2ǫ3

3π
W (ǫ, q)

+2
∑

ℓ

(2ℓ+ 1)

π

∫ ∞

ǫ

dr
(

|φℓ(η, qr)|2 − |Fℓ(η, qr)|2
)

,

φℓ = Fℓ +
1

2
(e−2iδℓ − 1) (Fℓ − iGℓ) .

Thus, W can be expressed in terms of derivatives of the
phase shifts and integrals of the type,

Iℓ(ǫ, q, δℓ) ≡
∫ ∞

ǫ

dr|φℓ(η, qr, δℓ)|2, (19)

Since φℓ is a solution to the Schrödinger equation, one
can rewrite Iℓ, assuming that φ and φ′ are solutions with
energy eigenvalues q2/2µ and q′2/2µ with q ∼ q′,

(q′2 − q2)Iℓ(ǫ, q, δℓ) = ℜ
∫ ∞

ǫ

dr
(

∂2
rφ

′∗
ℓ φℓ − φ′∗ℓ ∂

2
rφℓ

)

Iℓ(ǫ, q, δℓ) = − 1

2q
ℜ (∂rφ

∗
ℓ∂qφℓ − φ∗ℓ∂r∂qφℓ)

∣

∣

∣

∣

∞

ǫ

.

(20)

Transforming the derivatives to the variables η and
x = qr facilitates use of the recursion relations for the

FIG. 3: pπ+ angular correlations for a Gaussian source
(Rout = Rside = 4 fm, Rlong = 8 fm) with Qinv = 450 MeV/c.
At this Qinv the correlation is dominated by the ∆++ reso-
nance. The behavior at cos θ = 1 is due to interference be-
tween the scattered partial wave and the initial plane wave.

Coulomb wave functions [18],

Iℓ 6=0(ǫ, q, δℓ) =
(

φ∗ℓφℓ + φ∗ℓ−1φℓ−1

) x

2qℓ2
(ℓ2 + η2)

−ℜ(φ∗ℓ−1φℓ)
(2ℓ+ 1)(ℓ2 + η2)ℓ+ 2ηx(ℓ2 + η2) + ℓη2

2qℓ2
√

ℓ2 + η2

+ ℜ
(

φℓ∂ηφ
∗
ℓ−1 − φℓ−1∂ηφℓ

) η
√

ℓ2 + η2

2qℓ

∣

∣

∣

∣

∣

x=qǫ

,

Iℓ=0(ǫ, q, δℓ) = (φ∗0φ0 + φ∗1φ1)
x(1 + η2)

2q

−ℜ(φ∗0φ1)
(1 + η2)(1 + 2ηx) + η2)

2q
√

1 + η2

+ ℜ(φ∗1∂ηφ0 − φ∗0∂ηφ1)η

√

1 + η2

2q

∣

∣

∣

∣

∣

x=qǫ

.

(21)

The upper limit, x = ∞, need not be evaluated since
it would be canceled by an equal and opposite contribu-
tion from the non-phaseshifted term in Eq. (18). For the
case with no Coulomb interactions, one can derive a sim-
pler form involving spherical Bessel functions rather than
Coulomb wave functions. For the no-Coulomb example,
one can show that W = 0 as q → 0.

Using experimentally tabulated phase shifts [19], and
the arbitrary choice of ǫ = 1 fm, wave functions were
numerically generated and convoluted with the source
function through Eq. (1) to generate correlation func-
tions. Correlations for pK+ were only slightly affected
by the strong interaction as can be seen in Fig.s 1 and 2.
For this example, there are no resonant channels and the
correlation is dominated by Coulomb.
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Figure 3 shows results for pπ+ correlations which are
dominated by the ∆++ resonance for Qinv near the res-
onant momentum, Qinv = 450 MeV. The correlation
has a significant dip for cos θ ∼ ±1. A flat correlation
would have signaled an insensitivity to the shape of the
source. The strong sensitivity stems from the cos θqr de-
pendence of |ψ(q, r)|2 which is then convoluted with the
shape dependence in g(v, r) to provide shape informa-
tion in C(v,q). The angular behavior of |ψ(q, r)|2 can
be understood by viewing the partial wave expansion for
a scattered wave. For large qr,

ψ(q, r) =eiq·r − e−iqr

2iqr

∑

ℓ

(−1)ℓPℓ(cos θqr)
(

e−2iδℓ − 1
)

+ O 1/(qr)2.

(22)

The angular sensitivity has two sources. Squaring the
second term provides a contribution proportional to the
square of the scattering amplitude, |f(Ω)|2. This con-
tribution has the same angular behavior as a scattered
plane wave. For the pπ example this would have led to
maxima for cos θ ∼ ±1 rather than the minima which
are seen in Fig. 3. The second source of angular de-
pendence stems from the interference between the initial
plane wave and the partial wave corrections. This in-
terference will be strongest in the direction cos θqr = −1
since the phases then share the same r dependence, e−iqr.
The source points in this direction are those from which
the trajectories must pass directly over the origin. For
cos θqr = −1, the wave function can be written as

ψ(q, r)|cos θqr=−1

= e−iqr

(

1 +
∑

ℓ

(2ℓ+ 1)e−iδℓ sin δℓ
1

2qr
+ O1/(qr)2

)

.

(23)

For small phase shifts cos δℓ > 0, and the interference is
positive for attractive interactions (positive phase shifts)
and is negative for repulsive interactions. This corre-
sponds to the focusing or de-focusing effect of the po-
tential in the direction of the interaction. For repulsive
interactions this can be thought of as shadowing. At a
resonance the phase shift is π/2 and there is no interfer-
ence unless one includes higher order terms in the (1/qr)
expansion of the Hankel waves. For p waves this next
term results in a negative interference which is responsi-
ble for the dip in the angular correlation shown in Fig. 3.
In fact, when this calculation was repeated keeping only
the lowest order term in the 1/(qr) expansion of the ℓ = 1
partial wave, the dip at cos θ = ±1 in Fig. 3 disappeared.

Thus, the ability to determine the angular shape of
a source through strong-interaction induced correlations
is complex. Since the interference between the scattered
partial wave and the initial plane wave in Eq. (23) is pro-
portional to cos δ sin δ, one may wish to view the angular

correlation both above and below the resonance as cos δ
switches from positive to negative. Furthermore, an an-
gular sensitivity might stem from higher order terms in
the Hankel functions as was the case above. Understand-
ing results with simple classical arguments can clearly be
misleading, but fortunately, quantum calculations can be
modeled in a straight-forward fashion if one has a good
understanding of the phase shifts.

Strong and Coulomb induced correlations had been
previously studied for their ability to unfold the angle-
averaged source function, g, for both high-energy and
low-energy collisions [20–22]. Our findings show that
such correlations also have tremendous potential to dis-
cern shape characteristics and thus provide an estimate
of source lifetimes. Determining shape and lifetime
characteristics had been previously confined to anal-
yses of identical-particle correlations. As strong and
Coulomb correlations are of a manifestly different charac-
ter than correlations from identical-particle interference,
the analyses described here represent a truly indepen-
dent strategy for determining space-time characteristics
of hadronic sources.
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