CHAPTER 2

1. A ball is pushed with an initial velocity of $4.0 \mathrm{~m} / \mathrm{s}$. The ball rolls down a hill with a constant acceleration of $1.6 \mathrm{~m} / \mathrm{s}^{2}$. The ball reaches the bottom of the hill in 8.0 s . What is the ball's velocity at the bottom of the hill?
a. $10 \mathrm{~m} / \mathrm{s}$
b. $12 \mathrm{~m} / \mathrm{s}$
c. $16 \mathrm{~m} / \mathrm{s}$
d. $17 \mathrm{~m} / \mathrm{s}$
2. A cart is given an initial velocity of $5.0 \mathrm{~m} / \mathrm{s}$ and experiences a constant acceleration of 2.0 $\mathrm{m} / \mathrm{s}^{2}$. What is the magnitude of the cart's displacement during the first 6.0 s of its motion?
a. 10 m
b. 55 m
c. 66 m
d. 80 m
3. A rock is thrown straight down with an initial velocity of $14.5 \mathrm{~m} / \mathrm{s}$ from a cliff. What is the rock's displacement after 2.0 s ? (Acceleration due to gravity is $9.80 \mathrm{~m} / \mathrm{s}^{2}$.)
a. 28 m
b. 49 m
c. 55 m
d. 64 m
4. A rock is thrown straight up with an initial velocity of $24.5 \mathrm{~m} / \mathrm{s}$. What maximum height will the rock reach before starting to fall downward? (Take acceleration due to gravity as 9.80 $\mathrm{m} / \mathrm{s}^{2}$.)
a. 9.80 m
b. 19.6 m
c. 24.5 m
d. 30.6 m
5. A rock is thrown straight up with an initial velocity of $19.6 \mathrm{~m} / \mathrm{s}$. What time interval elapses between the rock's being thrown and its return to the original launch point? (Acceleration due to gravity is $9.80 \mathrm{~m} / \mathrm{s}^{2}$.)
a. 4.00 s
b. 5.00 s
c. 8.00 s
d. 10.0 s
6. A bird, accelerating from rest at a constant rate, experiences a displacement of 28 m in 11 s . What is the average velocity?
a. $1.7 \mathrm{~m} / \mathrm{s}$
b. $2.5 \mathrm{~m} / \mathrm{s}$
c. $3.4 \mathrm{~m} / \mathrm{s}$
d. zero
7. A bird, accelerating from rest at a constant rate, experiences a displacement of 28 m in 11 s . What is its acceleration?
a. $0.21 \mathrm{~m} / \mathrm{s}^{2}$
b. $0.46 \mathrm{~m} / \mathrm{s}^{2}$
c. $0.64 \mathrm{~m} / \mathrm{s}^{2}$
d. $0.78 \mathrm{~m} / \mathrm{s}^{2}$
8. A European sports car dealer claims that his product will accelerate at a constant rate from rest to a speed of $100 \mathrm{~km} / \mathrm{hr}$ in 8.00 s . What distance will the sports car travel during the 8 -s acceleration period? (Hint: First convert speed to m / s.)
a. 55.5 m
b. 77.7 m
c. 111 m
d. 222 m
9. A European sports car dealer claims that his product will accelerate at a constant rate from rest to a speed of $100 \mathrm{~km} / \mathrm{hr}$ in 8.00 s . What is the speed after the first 5.00 s of acceleration? (First convert the speed to m / s.)
a. $34.7 \mathrm{~m} / \mathrm{s}$
b. $44.4 \mathrm{~m} / \mathrm{s}$
c. $28.7 \mathrm{~m} / \mathrm{s}$
d. $17.4 \mathrm{~m} / \mathrm{s}$
10. Omar throws a rock down with speed $12 \mathrm{~m} / \mathrm{s}$ from the top of a tower. The rock hits the ground after 2.0 s . What is the height of the tower? (air resistance is negligible)
a. 20 m
b. 24 m
c. 44 m
d. 63 m
11. Gwen releases a rock at rest from the top of a $40-\mathrm{m}$ tower. If $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ and air resistance is negligible, what is the speed of the rock as it hits the ground?
a. $28 \mathrm{~m} / \mathrm{s}$
b. $30 \mathrm{~m} / \mathrm{s}$
c. $56 \mathrm{~m} / \mathrm{s}$
d. $784 \mathrm{~m} / \mathrm{s}$
12. John throws a rock down with speed $14 \mathrm{~m} / \mathrm{s}$ from the top of a $30-\mathrm{m}$ tower. If $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ and air resistance is negligible, what is the rock's speed just as it hits the ground?
a. $12 \mathrm{~m} / \mathrm{s}$
b. $28 \mathrm{~m} / \mathrm{s}$
c. $350 \mathrm{~m} / \mathrm{s}$
d. $784 \mathrm{~m} / \mathrm{s}$
13. A cheetah can run at approximately $100 \mathrm{~km} / \mathrm{hr}$ and a gazelle at $80.0 \mathrm{~km} / \mathrm{hr}$. If both animals are running at full speed, with the gazelle 70.0 m ahead, how long before the cheetah catches its prey?
a. 12.6 s
b. 25.2 s
c. 6.30 s
d. 10.7 s
14. A cheetah can maintain its maximum speed of $100 \mathrm{~km} / \mathrm{hr}$ for 30.0 seconds. What minimum distance must a gazelle running $80.0 \mathrm{~km} / \mathrm{hr}$ be ahead of the cheetah to escape?
a. 100 m
b. 167 m
c. 70.0 m
d. 83.0 m
15. At the top of a cliff 100 m high, Raoul throws a rock upward with velocity $15.0 \mathrm{~m} / \mathrm{s}$. How much later should he drop a second rock from rest so both rocks arrive simultaneously at the bottom of the cliff?
a. 5.05 s
b. 3.76 s
c. 2.67 s
d. 1.78 s
16. An x vs. t graph is drawn for a ball moving in one direction. The graph starts at the origin and at $t=5 \mathrm{~s}$ the velocity of the ball is zero. We can be positive that at $t=5 \mathrm{~s}$,
a. the slope of the curve is non-zero.
b. the ball has stopped.
c. the acceleration is constant.
d. the curve is at $x=0, t=0$.
17. A v vs. t graph is drawn for a ball moving in one direction. The graph starts at the origin and at $t=5 \mathrm{~s}$ the acceleration of the ball is zero. We know that at $t=5 \mathrm{~s}$,
a. the slope of the curve is non-zero.
b. the velocity of the ball is not changing.
c. the curve is not crossing the time axis.
d. the curve is at $v=0, t=0$.
18. A railroad train travels forward along a straight track at $80.0 \mathrm{~m} / \mathrm{s}$ for 1000 m and then travels at $50.0 \mathrm{~m} / \mathrm{s}$ for the next 1000 m . What is the average velocity?
a. $65.0 \mathrm{~m} / \mathrm{s}$
b. $61.5 \mathrm{~m} / \mathrm{s}$
c. $63.7 \mathrm{~m} / \mathrm{s}$
d. $70.0 \mathrm{~m} / \mathrm{s}$
19. A $50-\mathrm{g}$ ball traveling at $25.0 \mathrm{~m} / \mathrm{s}$ is bounced off a brick wall and rebounds at $22.0 \mathrm{~m} / \mathrm{s}$. A high-speed camera records this event. If the ball is in contact with the wall for 3.50 ms , what is the average acceleration of the ball during this time interval?
a. $13400 \mathrm{~m} / \mathrm{s}^{2}$
b. $6720 \mathrm{~m} / \mathrm{s}^{2}$
c. $857 \mathrm{~m} / \mathrm{s}^{2}$
d. $20 \mathrm{~m} / \mathrm{s}^{2}$
20. A water rocket, launched from the ground, rises vertically with acceleration of $30 \mathrm{~m} / \mathrm{s}^{2}$ for 1.0 s when it runs out of "fuel." Disregarding air resistance, how high will the rocket rise?
a. 15 m
b. 31 m
c. 61 m
d. 120 m
21. A parachutist jumps out of an airplane and accelerates with gravity to a maximum velocity of $58.8 \mathrm{~m} / \mathrm{s}$ in 6.00 seconds. She then pulls the parachute cord and after a 4.00 -second constant deceleration, descends at $10.0 \mathrm{~m} / \mathrm{s}$ for 60.0 seconds, reaching the ground. From what height did the parachutist jump?
a. 914 m
b. 1130 m
c. 1520 m
d. 1750 m
22. A ball is thrown vertically upwards at $19.6 \mathrm{~m} / \mathrm{s}$. For its complete trip (up and back down to the starting position), its average velocity is
a. $19.6 \mathrm{~m} / \mathrm{s}$
b. $9.80 \mathrm{~m} / \mathrm{s}$
c. $4.90 \mathrm{~m} / \mathrm{s}$
d. not given
23. A ball is thrown vertically upwards at $19.6 \mathrm{~m} / \mathrm{s}$. For its complete trip (up and back down to the starting position), its average speed is
a. $19.6 \mathrm{~m} / \mathrm{s}$
b. $9.80 \mathrm{~m} / \mathrm{s}$
c. $4.90 \mathrm{~m} / \mathrm{s}$
d. not given
24. If the displacement of an object is given in SI units by $\Delta x=-3 t+4 t^{2}$, at $t=2 \mathrm{~s}$ its velocity and acceleration are, respectively
a. positive, positive
b. positive, negative
c. negative, negative
d. negative, positive

CHAPTER 2 - ANSWERS

\# Ans Difficulty \# Ans Difficulty

1. D 1 25. D 3

2.	C	1
3.	B	2
4.	D	2
5.	A	2
6.	C	2
7.	D	2
8.	B	1
9.	C	2
10.	B	2
11.	B	1
12.	B	1
13.	A	1
14.	C	2
15.	D	2
16.	B	2
17.	A	2
18.	C	2
19.	A	2
20.	B	2
21.	A	2
22.	B	2
23.	B	1
24.	D	2

26. B 3
27. B 1
28. B 1
29. A 2
30. D 2
31. B 2
32. D 1
33. A 2
34. B 2
35. A 2
36. B 3
37. D 2
38. A 2
39. C 2
40. A 3
41. D 1
42. B 1
43. D 2
44. B 2
45. A 3
46. C 1
47. C 2
