CHAPTER 5

2. A very light cart holding a $300-\mathrm{N}$ box is moved at constant velocity across a $15-\mathrm{m}$ level surface. What is the net work done in the process?
a. zero
b. $1 / 20 \mathrm{~J}$
c. 20 J
d. 2000 J
3. An rock is thrown straight up with an initial velocity of $15.0 \mathrm{~m} / \mathrm{s}$. Ignore energy lost to air friction. How high will the rock rise?
a. 1.53 m
b. 22.9 m
c. 6.50 m
d. 11.5 m
4. A professional skier reaches a speed of $56 \mathrm{~m} / \mathrm{s}$ on a 30° ski slope. Ignoring friction, what was the minimum distance along the slope the skier would have had to travel, starting from rest?
a. 110 m
b. 160 m
c. 320 m
d. 640 m
5. A $50-\mathrm{N}$ crate is pulled up a $5-\mathrm{m}$ inclined plane by a worker at constant velocity. If the plane is inclined at an angle of 37° to the horizontal and there exists a constant frictional force of 10 N between the crate and the surface, what is the force applied by the worker?
a. zero
b. 20 N
c. 30 N
d. 40 N
6. Adisa pulls a $40-\mathrm{N}$ crate up a $5.0-\mathrm{m}$ long inclined plane at a constant velocity. If the plane is inclined at an angle of 37° to the horizontal and there is a constant force of friction of 10 N between the crate and the surface, what is the net change in potential energy of the crate?
a. 120 J
b. -120 J
c. 200 J
d. -200 J
7. A $20-\mathrm{N}$ crate starting at rest slides down a rough $5.0-\mathrm{m}$ long ramp, inclined at 25° with the horizontal. 20 J of energy is lost to friction. What will be the speed of the crate at the bottom of the incline?
a. $0.98 \mathrm{~m} / \mathrm{s}$
b. $1.9 \mathrm{~m} / \mathrm{s}$
c. $3.2 \mathrm{~m} / \mathrm{s}$
d. $4.7 \mathrm{~m} / \mathrm{s}$
8. The rate at which work is done is equivalent to which of the following?
a. increase in potential energy
b. thermal energy
c. potential energy
d. power
9. A worker pushes a sled with a force of 40 N over a level distance of 6.0 m . If a frictional force of 24 N acts on the wheelbarrow in a direction opposite to that of the worker, what net work is done on the wheelbarrow?
a. 240 J
b. 216 J
c. 144 J
d. 96 J
10. Preston pushes a wheelbarrow weighing 500 N to the top of a $50.0-\mathrm{m}$ ramp, inclined at 20.0° with the horizontal, and leaves it. Tamara accidentally bumps the wheelbarrow. It slides back down the ramp, during which an $80.0-\mathrm{N}$ frictional force acts on it over the 50.0 m . What is the wheelbarrow's kinetic energy at the bottom at of the ramp? $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
a. 4550 J
b. 6550 J
c. 8150 J
d. 13100 J
11. A $10.0-\mathrm{kg}$ box starts at rest and slides 3.5 m down a ramp inclined at an angle of 10° with the horizontal. If there is no friction between the ramp surface and crate, what is the velocity of the crate at the bottom of the ramp? $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
a. $6.1 \mathrm{~m} / \mathrm{s}$
b. $3.5 \mathrm{~m} / \mathrm{s}$
c. $10.7 \mathrm{~m} / \mathrm{s}$
d. $8.3 \mathrm{~m} / \mathrm{s}$
12. A pile driver drives a post into the ground. The mass of the pile driver is 2500 kg and it is dropped through a height of 8.0 m on each stroke. If the resisting force of the ground is $4.0 \times$ $10^{6} \mathrm{~N}$, how far is the post driven in on each stroke?
a. 4.9 cm
b. 9.8 cm
c. 16 cm
d. 49 cm
13. A $2000-\mathrm{kg}$ ore car rolls 50.0 m down a frictionless 10.0° incline. If there is a horizontal spring at the end of the incline, what spring constant is required to stop the ore car in a distance of 1.00 m ?
a. $340 \mathrm{kN} / \mathrm{m}$
b. $681 \mathrm{kN} / \mathrm{m}$
c. $980 \mathrm{kN} / \mathrm{m}$
d. $1960 \mathrm{kN} / \mathrm{m}$
14. An amount of work equal to 1.5 J is required to compress the spring in a spring-gun. What is the "launch speed" of a $15-\mathrm{g}$ marble?
a. $14 \mathrm{~m} / \mathrm{s}$
b. $15 \mathrm{~m} / \mathrm{s}$
c. $18 \mathrm{~m} / \mathrm{s}$
d. $21 \mathrm{~m} / \mathrm{s}$
15. A horizontal force of 200 N is applied to a $55-\mathrm{kg}$ cart across a $10-\mathrm{m}$ level surface. If the cart accelerates at $2.0 \mathrm{~m} / \mathrm{s}^{2}$, then what force of friction acts to retard the motion of the cart?
a. 110 N
b. 90 N
c. 80 N
d. 70 N
16. A baseball catcher puts on an exhibition by catching a $0.15-\mathrm{kg}$ ball dropped from a helicopter at a height of 101 m . What is the speed of the ball just before it hits the catcher's glove 1.0 m above the ground? $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right.$ and ignore air resistance. $)$
a. $44 \mathrm{~m} / \mathrm{s}$
b. $38 \mathrm{~m} / \mathrm{s}$
c. $31 \mathrm{~m} / \mathrm{s}$
d. $22 \mathrm{~m} / \mathrm{s}$
17. A baseball catcher puts on an exhibition by catching a $0.150-\mathrm{kg}$ ball dropped from a helicopter at a height of 100 m above the catcher. If the catcher "gives" with the ball for a distance of 0.750 m while catching it, what average force is exerted on the mitt by the ball? ($g=9.80 \mathrm{~m} / \mathrm{s}^{2}$)
a. 78 N
b. 119 N
c. 196 N
d. 392 N
18. A simple pendulum, 1.00 m in length, is released from rest when the support string is at an angle of 35.0° from the vertical. What is the speed of the suspended mass at the bottom of the swing? (Ignore air resistance, $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$)
a. $0.67 \mathrm{~m} / \mathrm{s}$
b. $0.94 \mathrm{~m} / \mathrm{s}$
c. $1.33 \mathrm{~m} / \mathrm{s}$
d. $1.88 \mathrm{~m} / \mathrm{s}$
19. A simple pendulum, 2.0 m in length, is released with a push when the support string is at an angle of 25° from the vertical. If the initial speed of the suspended mass is $1.2 \mathrm{~m} / \mathrm{s}$ when at the release point, what is its speed at the bottom of the swing? $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
a. $2.3 \mathrm{~m} / \mathrm{s}$
b. $2.6 \mathrm{~m} / \mathrm{s}$
c. $2.0 \mathrm{~m} / \mathrm{s}$
d. $0.5 \mathrm{~m} / \mathrm{s}$
20. A simple pendulum, 2.0 m in length, is released by a push when the support string is at an angle of 25° from the vertical. If the initial speed of the suspended mass is $1.2 \mathrm{~m} / \mathrm{s}$ when at the release point, to what maximum angle will it move in the second half of its swing?
a. 37°
b. 30°
c. 27°
d. 21°
21. A golf ball hits a wall and bounces back at $3 / 4$ the original speed. What part of the original kinetic energy of the ball did it lose in the collision?
a. $1 / 4$
b. $3 / 8$
c. $7 / 16$
d. 9/16
22. If both mass and velocity of a ball are tripled, the kinetic energy is increased by a factor of:
a. 3
b. 6
c. 9
d. 27
23. A girl and her bicycle have a total mass of 40.0 kg . At the top of the hill her speed is $5.0 \mathrm{~m} / \mathrm{s}$ and her speed doubles as she rides down the hill. The hill is 10.0 m high and 100 m long. How much kinetic energy and potential energy is lost to friction?
a. 2420 J
b. 1500 J
c. 2000 J
d. 3920 J
24. A girl and her bicycle have a total mass of 40 kg . At the top of the hill her speed is $5.0 \mathrm{~m} / \mathrm{s}$. The hill is 10 m high and 100 m long. If the force of friction as she rides down the hill is 20 N , what is her speed at the bottom?
a. $5.0 \mathrm{~m} / \mathrm{s}$
b. $10 \mathrm{~m} / \mathrm{s}$
c. $11 \mathrm{~m} / \mathrm{s}$
d. She stops before she reaches the bottom.
25. Old Faithful geyser in Yellowstone Park shoots water hourly to a height of 40 m . With what velocity does the water leave the ground?
a. $7.0 \mathrm{~m} / \mathrm{s}$
b. $14 \mathrm{~m} / \mathrm{s}$
c. $20 \mathrm{~m} / \mathrm{s}$
d. $28 \mathrm{~m} / \mathrm{s}$
26. A $1200-\mathrm{kg}$ automobile moving at $25 \mathrm{~m} / \mathrm{s}$ has the brakes applied with a deceleration of 8.0 $\mathrm{m} / \mathrm{s}^{2}$. How far does the car travel before it stops?
a. 39 m
b. 47 m
c. 55 m
d. 63 m
27. A speed boat requires 80 kW to move at a constant speed of $15 \mathrm{~m} / \mathrm{s}$. What is the resistive force of the water at this speed?
a. 2700 N
b. 5300 N
c. 6500 N
d. 7700 N
28. A pole vaulter clears 6.00 m . With what speed does he strike the mat in the landing area?
a. $2.70 \mathrm{~m} / \mathrm{s}$
b. $5.40 \mathrm{~m} / \mathrm{s}$
c. $10.8 \mathrm{~m} / \mathrm{s}$
d. $21.6 \mathrm{~m} / \mathrm{s}$
29. A parachutist of mass 50.0 kg jumps out of an airplane at a height of 1000 m . The parachute deploys, and she lands on the ground with a speed of $5.0 \mathrm{~m} / \mathrm{s}$. How much energy was lost to air friction during this jump?
a. 49400 J
b. 98700 J
c. 198000 J
d. 489000 J
30. A satellite is held in orbit by a $2000-\mathrm{N}$ gravitational force. Each time the satellite completes an orbit of circumference 80000 km , the work done on it by gravity is
a. $1.6 \times 10^{8} \mathrm{~J}$
b. $1.6 \times 10^{11} \mathrm{~J}$
c. $6.4 \times 10^{11} \mathrm{~J}$
d. 0
31. A $100-\mathrm{W}$ light bulb is left on for 10.0 hours. Over this period of time, how much energy was used by the bulb?
a. 1000 J
b. 3600 J
c. 3600000 J
d. 1.34 hp

Chapter 5 - Answers

\#	Ans	Difficulty	\#	Ans	Difficulty
1.	C	1	34.	D	2
2.	A	1	35.	A	2
3.	D	1	36.	B	2
4.	D	2	37.	C	2
5.	A	2	38.	D	2
6.	C	2	39.	D	2
7.	D	2	40.	C	1
8.	A	2	41.	C	1
9.	D	2	42.	D	1
10.	C	1	43.	A	1
11.	D	1	44.	C	2
12.	A	1	45.	C	1
13.	D	1	46.	A	2
14.	D	1	47.	C	2
15.	B	1	48.	D	3
16.	D	1	49.	D	2
17.	D	1	50.	A	2
18.	B	1	51.	A	2
19.	C	1	52.	B	2
20.	D	1	53.	C	2
21.	D	1	54.	B	2
22.	A	2	55.	C	2
23.	C	1	56.	D	2
24.	D	1	57.	A	3
25.	B	2	58.	C	3
26.	A	2	59.	D	2
27.	A	1	60.	C	2
28.	A	2	61.	D	2
29.	B	2	62.	C	2
30.	C	1	63.	A	3
31.	B	2	64.	B	2
32.	A	2	65.	C	2
33.	C	2	66.	C	1

