Chapter 12

1. A system is acted on by its surroundings in such a way that it receives 50 J of heat while simultaneously doing 20 J of work. What is its net change in internal energy?
a. 70 J
b. 30 J
c. zero
d. -30 J
2. The volume of an ideal gas changes from 0.40 to $0.55 \mathrm{~m}^{3}$ although its pressure remains constant at 50000 Pa . What work is done on the system by its environment?
a. -7500 J
b. -200000 J
c. 7500 J
d. 200000 J
3. In an isothermal process for an ideal gas system (where the internal energy doesn't change), which of the following choices best corresponds to the value of the work done on the system?
a. its heat intake
b. twice its heat intake
c. the negative of its heat intake
d. twice the negative of its heat intake
4. A heat engine exhausts 3000 J of heat while performing 1500 J of useful work. What is the efficiency of the engine?
a. 15%
b. 33%
c. 50%
d. 60%
5. A heat engine operating between a pair of hot and cold reservoirs with respective temperatures of 500 K and 200 K will have what maximum efficiency?
a. 60%
b. 50%
c. 40%
d. 30%
6. Which of the following choices best corresponds to what is required by the second law of thermodynamics for any process taking place in an isolated system?
a. entropy decreases
b. entropy remains constant
c. entropy increases
d. entropy equals work done on the system
7. Which of the following choices is an appropriate unit for measuring entropy changes?
a. J.K
b. N•K
c. J/s
d. J/K
8. An electrical power plant manages to send 88% of the heat produced in the burning of fossil fuel into the water-to-steam conversion. Of the heat carried by the steam, 40% is converted to the mechanical energy of the spinning turbine. Which of the following choices best describes the overall efficiency of the heat-to-work conversion in the plant (as a percentage)?
a. greater than 88%
b. 64%
c. less than 40%
d. 40%
9. If one could observe the individual atoms making up a piece of matter and note that during a process of change their motion somehow became more orderly, then one may assume which of the following in regard to the system?
a. increases in entropy
b. decreases in entropy
c. gains in thermal energy
d. positive work done on
10. A $1.0-\mathrm{kg}$ chunk of ice at $0^{\circ} \mathrm{C}$ melts, absorbing 80000 cal of heat in the process. Which of the following best describes what happens to this system?
a. increased entropy
b. lost entropy
c. entropy maintained constant
d. work converted to energy
11. According to the first law of thermodynamics, the sum of the heat gained by a system and the work done on that same system is equivalent to which of the following?
a. entropy change
b. internal energy change
c. temperature change
d. specific heat
12. If an ideal gas does positive work on its surroundings, we may assume, with regard to the gas:
a. temperature increases
b. volume increases
c. pressure increases
d. internal energy decreases
13. In an isovolumetric process by an ideal gas, the system's heat gain is equivalent to a change in:
a. temperature
b. volume
c. pressure
d. internal energy
14. According to the first law of thermodynamics, for any process that may occur within an isolated system, which of the following choices applies?
a. entropy remains constant
b. entropy increases
c. entropy decreases
d. None of the above choices apply.
15. According to the second law of thermodynamics, which of the following applies to the heat received from a high temperature reservoir by a heat engine operating in a complete cycle?
a. must be completely converted to work
b. equals the entropy increase
c. converted completely into internal energy
d. cannot be completely converted to work
16. The maximum theoretical thermodynamic efficiency of a heat engine operating between hot and cold reservoirs is a function of which of the following?
a. hot reservoir temperature only
b. cold reservoir temperature only
c. both hot and cold reservoir temperatures
d. None of the above choices are valid.
17. During an isobaric process which one of the following does not change?
a. volume
b. temperature
c. internal energy
d. pressure
18. A $2.0-\mathrm{mol}$ ideal gas system is maintained at a constant volume of 4.0 L ; if 100 J of heat is added, what is the work done on the system?
a. zero
b. 5.0 J
c. -6.7 J
d. 20 J
19. A closed $2.0-\mathrm{L}$ container holds 3.0 mol of an ideal gas. If 200 J of heat is added, what is the change in internal energy of the system?
a. zero
b. 100 J
c. 150 J
d. 200 J
20. An adiabatic free expansion refers to the fact that:
a. No heat is transferred between a system and its surroundings.
b. The pressure remains constant.
c. The temperature remains constant.
d. The volume remains constant.
21. A 4-mol ideal gas system undergoes an adiabatic process where it expands and does 20 J of work on its environment. What is its change in internal energy?
a. -20 J
b. -5 J
c. zero
d. +20 J
22. A 4-mol ideal gas system undergoes an adiabatic process where it expands and does 20 J of work on its environment. How much heat is received by the system?
a. -20 J
b. zero
c. +5 J
d. +20 J
23. A 5 -mol ideal gas system undergoes an adiabatic free expansion (a rapid expansion into a vacuum), going from an initial volume of 10 L to a final volume of 20 L . How much work is done on the system during this adiabatic free expansion?
a. -50 J
b. -10 J
c. zero
d. +50 J
24. A heat engine receives 6000 J of heat from its combustion process and loses 4000 J through the exhaust and friction. What is its efficiency?
a. 33%
b. 40%
c. 67%
d. 73%
25. If a heat engine has an efficiency of 30% and its power output is 600 W , what is the rate of heat input from the combustion phase?
a. 1800 W
b. 2400 W
c. 2000 W
d. 3000 W
26. A turbine takes in $1000-\mathrm{K}$ steam and exhausts the steam at a temperature of 500 K . What is the maximum theoretical efficiency of this system?
a. 24%
b. 33%
c. 50%
d. 67%
27. A $2.00-\mathrm{kg}$ block of ice is at STP while it melts completely to water. What is its change in entropy? (For ice, $L_{f}=3.34 \times 10^{5} \mathrm{~J} / \mathrm{kg}$)
a. zero
b. $584 \mathrm{~J} / \mathrm{K}$
c. $1220 \mathrm{~J} / \mathrm{K}$
d. $2450 \mathrm{~J} / \mathrm{K}$
28. One kilogram of water at 1.00 atm (boiling point $=100^{\circ} \mathrm{C}$) is heated until all the water vaporizes. What is its change in entropy? (For water, $L_{v}=2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$)
a. $12100 \mathrm{~J} / \mathrm{K}$
b. $6060 \mathrm{~J} / \mathrm{K}$
c. $3030 \mathrm{~J} / \mathrm{K}$
d. $1220 \mathrm{~J} / \mathrm{K}$
29. What is the change in entropy (ΔS) when one mole of silver (108 g) is completely melted at $961{ }^{\circ} \mathrm{C}$? (The heat of fusion of silver is $8.82 \times 10^{4} \mathrm{~J} / \mathrm{kg}$.)
a. $5.53 \mathrm{~J} / \mathrm{K}$
b. $7.72 \mathrm{~J} / \mathrm{K}$
c. $9.91 \mathrm{~J} / \mathrm{K}$
d. $12.10 \mathrm{~J} / \mathrm{K}$
30. An avalanche of ice and snow of mass 1800 kg slides a vertical distance of 160 m down a mountainside. If the temperature of the ice, snow, mountain and surrounding air are all at $0^{\circ} \mathrm{C}$, what is the change in entropy of the universe?
a. $31000 \mathrm{~J} / \mathrm{K}$
b. $10000 \mathrm{~J} / \mathrm{K}$
c. $3200 \mathrm{~J} / \mathrm{K}$
d. $1100 \mathrm{~J} / \mathrm{K}$
31. An electrical generating plant operates at a boiler temperature of $220^{\circ} \mathrm{C}$ and exhausts the unused heat into a nearby river at $18^{\circ} \mathrm{C}$. What is the maximum theoretical efficiency of the plant? $\left(0^{\circ} \mathrm{C}=273 \mathrm{~K}\right)$
a. 61%
b. 32%
c. 21%
d. 41%
32. An electrical generating plant operates at a boiler temperature of $220^{\circ} \mathrm{C}$ and exhausts the unused heat into a nearby river at $19^{\circ} \mathrm{C}$. If the generating plant has a power output of 800 megawatts (MW) and if the actual efficiency is $3 / 4$ the theoretical efficiency, how much heat per second must be delivered to the boiler? $\left(0^{\circ} \mathrm{C}=273 \mathrm{~K}\right)$
a. 5200 MW
b. 1810 MW
c. 3620 MW
d. 2620 MW
33. During each cycle of operation a refrigerator absorbs 55 cal from the freezer compartment and expels 85 cal to the room. If one cycle occurs every 10 s , how many minutes will it take to freeze 500 g of water, initially at $0^{\circ} \mathrm{C} ?\left(L_{v}=80 \mathrm{cal} / \mathrm{g}\right)$
a. 800 min
b. 4400 min
c. 120 min
d. 60 min
34. Which of the following increases the internal energy of a solid metal rod?
a. raising it to a greater height
b. throwing it through the air
c. having the rod conduct heat
d. having the rod absorb heat
35. What is the work done on the gas as it expands from pressure P_{1} and volume V_{1} to pressure P_{2} and volume V_{2} along the indicated straight line?
a. $\left(P_{1}+P_{2}\right)\left(V_{1}-V_{2}\right) / 2$
b. $\left(P_{1}+P_{2}\right)\left(V_{1}-V_{2}\right)$
c. $\left(P_{1}+P_{2}\right)\left(V_{1}-V_{2}\right) / 2$
d. $\left(P_{1}-P_{2}\right)\left(V_{1}+V_{2}\right)$

36. As the ideal gas expands from pressure P_{1} and volume V_{1} to pressure P_{2} and volume V_{2} along the indicated straight line, it is possible that:
a. the temperature stays constant.
b. the internal energy decreases.
c. the gas is changing state.
d. all of the above are impossible for this particular graph.

37. Heat is applied to an ice-water mixture to melt some of the ice. In this process:
a. work is done by the ice-water mixture.
b. the temperature increases.
c. the internal energy increases.
d. all of the above are correct.
38. In which system is heat usually transferred from the cooler part to the warmer part?
a. a stove as it heats up water
b. a refrigerator that is running
c. an electric fan that is running
d. none of the above, because it is impossible to transfer heat in this manner
39. An ideal gas at pressure, volume, and temperature, P_{0}, V_{0}, and T_{0}, respectively, is heated to point A, allowed to expand to point B also at A's temperature $2 T_{0}$, and then returned to the original condition. The internal energy increases by
$3 P_{0} V_{0} / 2$ going from point T_{0} to point A. How much heat entered the gas from point T_{0} to point A?
a. 0
b. $P_{0} V_{0} / 2$
c. $3 P_{0} V_{0} / 2$
d. $5 P_{0} V_{0} / 2$

40. An ideal gas at pressure, volume, and temperature, P_{0}, V_{0}, and T_{0}, respectively, is heated to point A , allowed to expand to point B also at A's temperature $2 T_{0}$, and then returned to the original condition. The internal energy decreases by $3 P_{0} V_{0} / 2$ going from point B to point T_{0}. How much heat left the gas from point B to point T_{0} ?

$$
V_{0} \quad 2 V_{0}
$$

a. 0
b. $P_{0} V_{0} / 2$
c. $3 P_{0} V_{0} / 2$
d. $5 P_{0} V_{0} / 2$
41. An ideal gas at pressure, volume, and temperature, P_{0}, V_{0}, and T_{0}, respectively, is heated to point A , allowed to expand to point B also at A 's temperature $2 T_{0}$, and then returned to the original condition. The internal energy decreases by $3 P_{0} V_{0} / 2$ going from point B to point T_{0}. In going around this cycle once, which quantity equals zero?

a. the net change in internal energy of the gas
b. the net work done by the gas
c. the net heat added to the gas
d. All three are zero.
42. When gasoline is burned, it gives off $46000 \mathrm{~J} / \mathrm{g}$ of heat energy. If an automobile uses 13.0 kg of gasoline per hour with an efficiency of 21%, what is the average horsepower output of the engine? ($1 \mathrm{hp}=746 \mathrm{~W}$)
a. 47 hp
b. 110 hp
c. 67 hp
d. 34 hp
43. A bottle containing an ideal gas has a volume of $2.0 \mathrm{~m}^{3}$ and a pressure of $1.0 \times 10^{5} \mathrm{~Pa}$ at a temperature of 300 K . The bottle is placed against a metal block that is maintained at 900 K and the gas expands as the pressure remains constant until the temperature of the gas reaches 900 K . The change in internal energy of the gas is $+6.0 \times 10^{5} \mathrm{~J}$. How much heat did the gas absorb?
a. 0
b. $4.0 \times 10^{5} \mathrm{~J}$
c. $6.0 \times 10^{5} \mathrm{~J}$
d. $10 \times 10^{5} \mathrm{~J}$
44. A bottle containing an ideal gas has a volume of $2.0 \mathrm{~m}^{3}$ and a pressure of $1.0 \times 10^{5} \mathrm{~Pa}$ at a temperature of 300 K . The bottle is placed against a metal block that is maintained at 900 K and the gas expands as the pressure remains constant until the temperature of the gas reaches 900 K . The change in internal energy of the gas is $6.0 \times 10^{5} \mathrm{~J}$. Find the change in entropy of the block associated with the heat transfer to the gas.
a. 0
b. $+670 \mathrm{~J} / \mathrm{K}$
c. $-440 \mathrm{~J} / \mathrm{K}$
d. $-1100 \mathrm{~J} / \mathrm{K}$
45. Suppose a power plant uses a Carnot engine to generate electricity, using the atmosphere at 300 K as the low-temperature reservoir. Suppose the power plant produces $1 \times 10^{6} \mathrm{~J}$ of electricity with the hot reservoir at 500 K during Day One and then produces $1 \times 10^{6} \mathrm{~J}$ of electricity with the hot reservoir at 600 K during Day Two. The thermal pollution was:
a. greatest on Day One
b. greatest on Day Two
c. the same on both days
d. zero on both days
46. The efficiency of a Carnot engine operating between $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ is most nearly:
a. 7%
b. 15%
c. 27%
d. 51%
47. The surface of the Sun is at approximately 5700 K and the temperature of the Earth's surface is about 290 K . What total entropy change occurs when 1000 J of heat energy is transferred from the Sun to the Earth?
a. $2.89 \mathrm{~J} / \mathrm{K}$
b. $3.27 \mathrm{~J} / \mathrm{K}$
c. $3.62 \mathrm{~J} / \mathrm{K}$
d. $3.97 \mathrm{~J} / \mathrm{K}$
48. An $800-\mathrm{MW}$ electric power plant has an efficiency of 30%. It loses its waste heat in large cooling towers. Approximately how much waste heat (in MJ) is discharged to the atmosphere per second?
a. 1200 MJ
b. 1900 MJ
c. 800 MJ
d. 560 MJ
49. A gasoline engine with an efficiency of 30.0% operates between a high temperature T_{1} and a low temperature $T_{2}=320 \mathrm{~K}$. If this engine operates with Carnot efficiency, what is the high-side temperature T_{1} ?
a. 1070 K
b. 868 K
c. 614 K
d. 457 K
50. Entropy is a measure of the \qquad of a system.
a. disorder
b. temperature
c. heat
d. internal energy
51. On a P-V diagram, an \qquad process is represented by a horizontal line.
a. isobaric
b. isothermal
c. isovolumetric
d. adiabatic
52. A thermodynamic process that happens very quickly tends to be
a. isobaric.
b. isothermal.
c. isovolumetric.
d. adiabatic.
53. The Carnot cycle consists of a combination of \qquad and \qquad processes.
a. isobaric, isovolumetric
b. isovolumetric, adiabatic
c. isobaric, isothermal
d. adiabatic, isothermal
54. Of the following heat engines, which has the highest efficiency?
a. Hero's engine
b. a Carnot engine
c. a car's gasoline engine
d. a truck's diesel engine
55. A Carnot engine runs between a hot reservoir at T_{h} and a cold reservoir at T_{c}. If one of the temperatures is either increased or decreased by 3.5 K , which of the following changes would increase the efficiency by the greatest amount?
a. increasing T_{h}
b. increasing T_{c}
c. decreasing T_{c}
d. cannot be determined from information given
56. On a P-V diagram, if a process involves a closed curve, the area inside the curve represents
a. internal energy.
b. heat.
c. work.
d. zero.

Chapter 12 - Answers

\#	Ans	Difficulty	\#	Ans	Difficulty
1.	B	1	29.	B	2
2.	A	2	30.	B	2
3.	C	1	31.	D	2
4.	B	1	32.	D	2
5.	A	1	33.	C	3
6.	C	1	34.	D	1
7.	D	1	35.	A	2
8.	C	1	36.	D	3
9.	B	1	37.	C	2
10.	A	1	38.	B	1
11.	B	1	39.	C	3
12.	B	2	40.	D	3
13.	D	2	41.	A	3
14.	D	1	42.	A	2
15.	D	1	43.	D	2
16.	C	1	44.	D	3
17.	D	1	45.	A	3
18.	A	2	46.	C	2
19.	D	1	47.	B	3
20.	A	1	48.	B	2
21.	A	1	49.	D	2
22.	B	1	50.	A	1
23.	C	2	51.	A	2
24.	A	1	52.	D	2
25.	C	1	53.	D	2
26.	C	1	54.	B	1
27.	D	1	55.	C	3
28.	B	1	56.	C	2

