Symmetry and Conservation Laws Practice Problems

Ginnett, Nalamwar, and Watson

26 April 2019

1. Consider a particle of mass m moving in a potential of the form

$$V(x, y, z) = V_0(x^2 + y^2)$$

What are the conserved quantities of the particle?

- (a) p_x
- (b) p_y
- (c) p_z
- (d) L_x
- (e) L_y
- (f) L_z
- (g) E
- (h) $|\vec{p}|$
- (i) $|\hat{L}|$

Solution: there are three conserved quantities in this problem: p_z , L_z , and E.

- $\underline{p_z}$: the main reasoning behind why p_z is conserved is because V(x, y, z) does not have an explicit dependence on z. This means that small changes in the position with respect to z will not alter the potential of the particle, so momentum in the z-direction is conserved.
- $\underline{L_z}$: the main reasoning behind why L_z is conserved is because V(x, y, z) has rotational symmetry about the z-axis. This means that small rotations about the z-axis will not result in a difference in potential of the particle, meaning that the angular momentum of the particle in the z-direction is conserved.
- \underline{E} : the main reasoning behind why E is conserved is because V(x, y, z) does not have an explicit dependence on t, so the total energy of the particle is not changing over time. Therefore, E is conserved.

- <u>Other quantities</u>: V(x, y, z) depends on x and y, so p_x and p_y are not conserved. This also means that $|\vec{p}|$ is not conserved as a result. Additionally, V(x, y, z) does not have rotational symmetry about the x axis or y axis, so L_x and L_y are not conserved. This also means that $|\vec{L}|$ is not conserved as well.
- 2. Consider a particle of mass m moving in a potential of the form

$$V(x, y, z) = \frac{-V_0}{\sqrt{r}}$$

Here, V_0 is just a constant. Which of the following quantities are conserved?

- (a) p_x
- (b) p_y
- (c) p_z
- (d) L_x
- (e) L_y
- (f) L_z
- (g) E
- (h) $|\vec{p}|$
- (i) $|\vec{L}|$

Solution: there are five conserved quantities: E, L_x, L_y, L_z , and $|\vec{L}|$.

- \underline{E} : the main reason why E is conserved is that there is no explicit dependence on time.
- L_x, L_y, L_z , and $|\vec{L}|$: the main reasoning why each of these components are conserved is that the potential is spherically symmetric. This means that you can rotate about the x, y, and z axes and the graph potential would not change. Since $|\vec{L}| = \sqrt{L_x^2 + L_y^2 + L_z^2}$, and each of the components of angular momentum are conserved, the magnitude of the angular momentum vector is also conserved.
- Other quantities: since r is the length vector, $r = \sqrt{x^2 + y^2 + z^2}$. V(r) does depend on $\overline{x, y}$, and z. This means that p_x, p_y , and p_z are not conserved and additionally, $|\vec{p}|$ is not conserved.

3. Consider a particle of mass m moving in a potential of the form

$$V(x, y, z) = \frac{V_0}{1 + \tan^2(yz) - \sec^2(yz) + \alpha^2}$$

Here, α is just a constant. What are the conserved quantities of the particle?

- (a) p_x
- (b) p_y
- (c) p_z
- (d) L_x
- (e) L_y
- (f) L_z
- (g) E
- (h) $|\vec{p}|$
- (i) $|\vec{L}|$

Solution: the answer is that all of the quantities are conserved! Using trigonometry identities, we can reduce the denominator to

$$1 + \tan^2(yz) - \sec^2(yz) + \alpha^2 = \sec^2(yz) - \sec^2(yz) + \alpha^2 = \alpha^2$$

This means that

$$V(x, y, z) = \frac{V_0}{\alpha^2}$$

so the potential is constant. Therefore, all of the quantities are conserved.