your name(s)_

FY

Work in groups of 2 or 3. This is open-book, open-note, open-mouth. Consider a particle of mass m moving in a radially symmetric attractive potential,

$$V(r) = -rac{lpha}{r^4}.$$

If the particle makes it all the way to r = 0, it will be absorbed. A beam of such particles with energy E are shot toward the target.

- 1. (10 pts) For a trajectory with angular momentum L, sketch the potential V(r), the centrifugal potential $L^2/(2mr^2)$ and the effective potential, $V_{\text{eff}} = V(r) + L^2/(2mr^2)$.
- 2. (10 pts) For a fixed energy E, find the angular momentum L_{crit} such that particles with $L < L_{crit}$ are absorbed whereas particles with $L > L_{crit}$ are not.
- 3. (5 pts) What is the cross section for absorption.

