your name(s)_____

Physics 321 Quiz #3 - Friday, Feb. 9

Work in groups of 3. CLOSED-BOOK, CLOSED-NOTES

Graded on 20 point scale (15 extra credit points) FYI:

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta,$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta,$$

$$\frac{1}{\cos^2 \theta} = 1 + \tan^2 \theta.$$

A particle of mass m moves (in one dimension) through a medium that provides a drag force, $F_d = -bv$. Additionally, the particle experiences an external oscillating force,

$$f = F_0 \sin \omega t$$
.

- 1. (5 pts) For the case where $F_0 = 0$, solve for v(t) with an arbitrary constant, i.e. the homogenous solution $v_h(t)$.
- 2. (5 pts) Again, with $F_0 = 0$, solve for x(t) given x(t = 0) = 0 and $v(t = 0) = v_0$.
- 3. (10 pts) Now, consider $F_0 \neq 0$. Solve for the particular solution solution $v_p(t)$.
- 4. (5 pts) Again assuming $F_0 \neq 0$, given $v(t = 0) = v_0$, solve for v(t).
- 5. (5 pts) Again with $F_0 \neq 0$, given x(t=0) = 0 and $v(t=0) = v_0$, solve for x(t).
- 6. (5 pts) From (5) express x(t) for large times in the form

$$x(t \to \infty) = \bar{X} + A\sin(\omega t + \gamma),$$

i.e. express \bar{X} , A and γ in terms of v_0 , m, b, and F_0 .

1.)
$$mi + bv = 0$$
 $v = Be^{-b/m}t$
 $V = Be^{-b/m}t$
 $V = Volume = b/m t$
 $V = Volum$

4)
$$v = B = \frac{b}{b} + V \sin(w + \varphi)$$
 $v = B + V \sin \varphi$
 $S = V_0 - V \sin \varphi$
 $v = (V_0 - V \sin \varphi) = \frac{b}{b} + V \sin(w + \varphi)$
 $v = \frac{b}{b} (V_0 - V \sin \varphi) (1 - e^{-\frac{b}{b}} + V \cos \varphi)$
 $v = \frac{b}{b} (V_0 - V \sin \varphi) + \frac{v}{w} \cos \varphi$
 $v = \frac{b}{b} (V_0 - V \sin \varphi) + \frac{v}{w} \cos \varphi$
 $v = \frac{b}{b} (V_0 + V \frac{b}{w} + \frac{v}{w} \cos \varphi)$
 $v = \frac{b}{b} (V_0 + V \frac{b}{w} + \frac{v}{w} \cos \varphi)$
 $v = \frac{b}{b} (V_0 + V \frac{b}{w} + \frac{v}{w} \cos \varphi)$
 $v = \frac{b}{b} (V_0 + V \frac{b}{w} + \frac{v}{w} \cos \varphi)$
 $v = \frac{b}{b} (V_0 + V \frac{b}{w} + \frac{v}{w} \cos \varphi)$
 $v = \frac{v}{w} + A \cos (w + \varphi)$
 $v = \frac{v}{w} + A \cos (w + \varphi)$
 $v = \frac{v}{w} + A \cos (w + \varphi)$
 $v = \frac{v}{w} + A \cos (w + \varphi)$

 $X = \overline{X} + A sin(\omega + + \gamma)$