Physics 321 Quiz #6 - Friday, March 2

You can work in groups of up to 3 for this quiz. You should turn in one quiz for your group, with all three names. This is open book.

1. Consider a particle of mass m moving in a radially symmetric potential

$$U(r) = V_0 r^{\alpha}$$

~ >0

< 2

no stable orbits

- (a) (5 pts) If $V_0 > 0$, for what values of α can you have stable orbits?
- (b) (5 pts) If $V_0 < 0$, for what values of α can you have stable orbits?
- 2. Consider a particle of mass *m* moving in a radially symmetric potential

$$U(r)=rac{V_0}{r^lpha}.$$

- (a) (5 pts) If $V_0 > 0$, for what values of α can you have stable orbits? no stable α bits?
- (b) (5 pts) If $V_0 < 0$, for what values of α can you have stable orbits? $\boldsymbol{\prec}$
- 3. Consider a particle of mass m moving in an attractive radially symmetric potential

$$U(r) = -rac{V_0}{r^2}$$

If the particle reaches r = 0, it is annihilated.

- NO (a) (5 pt) Are there any stable orbits?
- (b) (5 pts) For a particle with kinetic energy *T*, what is the cross section for a death spiral, σ_{death} ?
- (c) (30 extra credit quiz points, all or none) For a trajectory with impact parameter b, solve for the trajectory $r(\theta)$, using a coordinate system where the initial angle is $\theta = 0$. Express your answer in terms of b and $a^2 \equiv |(V_0/E) - (L^2/2m)|$. Give answers for three cases:
 - (a) for trajectories with $b < b_{crit}$, where annihilation occurs
 - (b) for trajectories with $b > b_{crit}$, where annihilation doesn't happen
 - (c) for the trajectory with $b = b_{crit}$.

This work should be done independently (no groups).

b)
$$\frac{L^2}{zm} = V_0$$
 $\frac{m \sqrt{b}}{z} = V_0$
 $\overline{\Pi b^2} = G_{\alpha,t} = (\overline{\Pi V} / E)$

