Physics 321 Quiz \#1 - Friday, Jan. 11th
Work in groups of 3 (assigned in class) to complete this assignment.

1. Using the definition and anti-symmetrization properties of the Levi-Civita symbol defined in Eq. (1.16) from the lecture notes,
(a) $(5 \mathrm{pts})$ show that

$$
\begin{aligned}
\vec{A} \times \vec{B}=-\vec{B} \times \vec{A} & -\varepsilon_{i k j} B_{k} A_{j} \\
& =-(\vec{B} \times \vec{A})_{i} B_{k}=-\varepsilon_{i k j} A_{j} B_{k}
\end{aligned}
$$

(b) (5 pts) Express

$$
\vec{A} \times(\vec{B} \times \vec{C})-(\vec{A} \times \vec{B}) \times \vec{C}
$$

without any vector products (but you can use dot products). Hint: Use Eq. (1.17) from the

$$
\begin{aligned}
& \vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})+\vec{C} \times(\vec{A} \times \vec{B}) \\
&=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})+\vec{A}(\vec{B} \cdot \vec{C})-\vec{B}+\vec{A} \cdot \vec{C})=\vec{A}(\vec{B} \cdot \vec{C}) \\
&(\mathrm{c})(5 \mathrm{pts}) \text { Express }
\end{aligned}
$$

$$
\nabla \times(\nabla \times \vec{A})-(\nabla \times \vec{\nabla} \times \vec{A}
$$

without any curl operators.
$=\nabla(\vec{\nabla} \cdot \vec{A})-\left(\begin{array}{l}\text { an opentars } \\ \nabla\end{array} \nabla\right) \vec{A}$
$=\vec{\nabla}(\vec{\nabla} \vec{A})-\nabla^{2} A$
2. Consider two velocities \vec{a} and \vec{b}.
(a) (5pts) Find a vector $\overrightarrow{\boldsymbol{a}}^{\prime}$ that is parallel to $\overrightarrow{\boldsymbol{b}}$, and with a magnitude such that

$$
\vec{a}^{\prime} \cdot \hat{b}=\vec{a} \cdot \hat{b}
$$

i.e. \vec{a}^{\prime} is the same as the component of $\overrightarrow{\boldsymbol{a}}$ in the \hat{b} direction if one were to use a coordinate system where the vector \vec{b} was along one of the coordinate axes defined by a unit vector \hat{b}. One can state these constraints as $\vec{a}^{\prime} \times \vec{b}=\underline{0}$ and $\vec{a} \cdot \vec{b}=\vec{a}^{\prime} \cdot \vec{b}$. Express you answer using dot
$\vec{a} \quad{ }^{\text {products. }}(\hat{b}, \vec{a})=\frac{\vec{a}-\vec{b}}{\vec{b} \cdot \vec{b}} \vec{b}$
(b) (5 pts) Repeat the same, but find a vector $\overrightarrow{\boldsymbol{a}}^{\prime}$ in a coordinate system where \hat{b} is one of the defining unit vectors, such that the two components of \vec{a}^{\prime} perpendicular to \vec{b} are the same as for \vec{a}, but the component of \vec{a}^{\prime} in the direction of \hat{b} is zero. One can state this as $\vec{a}^{\prime} \cdot \vec{b}=\mathbf{0}$.

$$
\vec{a}^{\prime}=\vec{a}-\frac{(\vec{a} \cdot b) \vec{b}}{\vec{b} \cdot \vec{b}}
$$

