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1.1Z rrooiems

1. Using the methods of Lagrange multipliers, find « and y that minimize the following func-
tion,

f(x,y) = 32? — 4wy + v°,
subject to the constraint,

3z +y=0.
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2. Consider 2 identical bosons (A given level can have an arbitrary number of particles) in
a 2-level system, where the energies are 0 and €. In terms of € and the temperature T,
calculate:

(a) The partition function Z¢

(b) The average energy (FE). Also, give (E) in the T' = 0, oo limits.

(c) The entropy S. Also give S in the T' = 0, oo limits.

(d) Now, connect the system to a particle bath with chemical potential p. Calculate
Zcc(p,T). Find the average number of particles, (IN) as a function of p and T.

Also, give the T' = 0, oo limits.
Hint: For a grand-canonical partition function of non-interacting particles, one can

state that Zge = Z,Z5---Z,, where Z; is the partition function for one single-
particle level, Z; = 1 + e Plei—1) 4 e=20(ci—n) 4 e=38(ci—n) ... where each term
refers to a specific number of bosons in that level.
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3. Repeat the problem above assuming the particles are identical Fermions (No level can have
more than one particle, e.g., both are spin-up electrons).
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4. Beginning with the expression,
TdS = dE + PdV — pdQ,
show that the pressure can be derived from the Helmholtz free energy, FF = E — T'S, with
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5. Assuming that the pressure P is independent of V' when written as a function of pand T,
ie,In Zge = PV/T (true if the system is much larger than the range of interaction),

(a) Find expressions for E/V and Q/V in terms of P, T, and partial derivatives of P
or P/T wrt. a« = —p/T and 3 = 1/T. Here, assume the chemical potential is
associated with the conserved number Q.

(b) Find an expression for Cy = dE/dT|Q,V in terms of P/T, E, Q, V and the deriva-
tives of P, P/T, E and Q w.r.t. 3 and a.

(c) Show that the entropy density s = 9rP|,.
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6. Beginning with:

derive the Maxwell relation,

dE = TdS — PdV + pudQ,
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7. Beginning with the definition,

oS
Cp = Tﬁ . ,
Show that
oC, - _7 o*Vv
OP | n OT? | p

Hint: Find a quantity Y for which both sides of the equation become 8*Y /9T OP.
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8. Beginning with
TdS = dE + PdV — pdQ, and G = E+ PV — TS,

(a) Show that
oG V= oG

~ 9T|np’  OP|yg
(b) Beginning with
as as as
8S(P,N,T) = —6P + —86N + — 4T,
oP ON ar

Show that the specific heats,

satisfy the relation:

or

2 oV -1
P,N opP TN

Note that the compressibility, = —9V/9P, is positive (unless the system is unstable),
therefore Cp > Cly.

Cp = CV—T<
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9. From Sec. 1.11, it was shown how to derive fluctuations in the grand canonical ensem-
ble. Thus, it is straightforward to find expressions for the following fluctuations, ¢ppr =
(OEOE) ]V, ¢pgo = (0Q0Q)/V and ¢pgr = (§ESQ)/V . In terms of the 3 fluctuations
above, calculated in the grand canonical ensemble, and in terms of the volume and the
temperature T, express the specific heat at constant volume and charge,

dE

Cy = —| .
Y dT |y

Note that the fluctuation observables, ¢;;, are intrinsic quantities, assuming that the corre-
lations in energy density occur within a finite range and that the overall volume is much
larger than that range.
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1. Consider classical non-relativistic particles acting through a spherically symmetric poten-
tial,
V(r) = Voexp(r/A).

Using the equipartion and virial theorems, show that

<£V(r)> — 3T.




2. Consider a relativistic (¢ = y/m? + p?) particle moving in one dimension,

(a) Using the generalized equipartion theorem, show that

(b) Show the same result by explicitly performing the integrals in

(2 - Lo (p/e)e= "

€ [ dpe—</T

HINT: Integrate the numerator by parts.
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3. Beginning with the expression for the pressure for a non-interacting gas of bosons,

PV

=InZgc = Z In (1 + e Pler—1) 4 e=2B(ep—m) 4. Z o (23—}—1)(2 BE /dap,

show that \ -
(28 + 1) 3 yu e Ple—n
= 4(21&'/:)3 | d pif(p), where f = 1 — ohtem"

Here, the energy is relativistic, € = /p? + m?2.
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4. Derive the corresponding expression for Fermions in the previous problem.
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5. Derive the corresponding expression for Bosons/Fermions in two dimensions in the pre-
vious problem. Note that in two dimension, P describes the work done per expanding by
a unit area, dW = PdA.
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6. For the two-dimensional problem above, show that P gives the rate at which momentum
is transferred per unit length of the boundary of a 2-d confining box. Use simple kinematic
considerations.
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7. Consider a massless three-dimensional gas of bosons with spin degeneracy IV,. Assuming
zero chemical potential, find the coefficients A and B for the expressions for the pressure
and energy density,

E
P = AN,T*, (V) — BN,T*
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8. Show that if the previous problem is repeated for Fermions that:
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9. Consider a three-dimensional solid at low temperature where both the longitudinal and
transverse sound speeds are given by ¢, = 3000 m/s. Calculate the ratio of specific heats,

Cy (due to phonons)
Cyv (due to photons)’

where the photon calculation assumes the photons move in a vacuum of the same volume.
Note that for sound waves the energy is € = hw = cshk = cgp. For phonons, there
are three polarizations (two transverse and one longitudinal), and since the temperature
is low, one can ignore the Debye cutoff which excludes high momentum nodes, as their
wavelengths are below the spacing of the crystal.

Data: ¢ = 3.0 X 108 m/s, h = 1.05457266 X 10734 Js.
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10. For a one-dimensional non-relativistic gas of spin-1/2 Fermions of mass m, find the change
of the chemical potential §u(T), p) necessary to maintain a constant density per unity
length, p, while the temperature is raised from zero to T'. Give answer to order T2
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11. For a two-dimensional gas of spin-1/2 non-relativistic Fermions of mass m at low temper-
ature, find both the quantities below:

d(E/A)
dT

d(E/A)
ITA'S ’ dT

N,V

Give both answers to the lowest non-zero order in T', providing the constants of propor-
tionality in terms of the chemical potential at zero temperature and m.
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12. The neutron star, PSR J1748-2446ad, discovered in 2004, spins at 716 times a second. Spin
half particles have a spin angular momentum of S, = =£h/2. If the neutron star has a tem-
perature of 10 K, what is the polarization due to the spinning? P = (ny —n;)/(ny +
n,). Note that this neglects the polarization due to the magnetic field.
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3.6 Problems

1. Consider a low density three-dimensional gas of non-relativistic spin-zero bosons of mass
m at temperature T' = 1/3 and chemical potential p.
(a) Find po as defined in Eq. (3.1) in terms of m and 7.

(b) Expand the density p to second order in e°¥, i.e., to €°*. Express your answers for
this part and the next two parts in terms of po.

(c) Expand p? to second order in e”*.

(d) Expand 6P = P — pT to second order in e’*. (Hint: it is easier if you use the
expression for P expanded in fo = eP*=P¢ ie,In(1+ fo+ fZ+ f3---) = —In(1 —
fo), then expand the logarithm in powers of f)

(e) Determine the second virial coefficient defined by Eq. (3.1).
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2. Consider the Van der Waals equation of state in scaled variables,

t 1

—_ 3

p_v—l v

where p = P/ap?,v=V/V,, t =T/ap,.
(a) Derive the Maxwell relation,
o(P/T)
ap

(b) Find the scaled energy per particle e = E/(apsN) as a function of v and ¢ using the
Maxwell relation above. Begin with the fact that e = (3/2)tas v — oo.

oFE
N,V ov

N,T

(c) Show that the change of entropy/particle s = S/ N between two values of v at a fixed

temperature t is:
Sb — Sq = In[(vp — 1) /(ve — 1)].

(d) Using the fact that ts = e + pv — p, show that

2 2 vp Vg vp — 1
Hb—[.taz—v—+—+t —_ —tln .
b

Va vy — 1 Vg — 1 Vg — 1

(e) Show thatast — 0, p, will equal p, if v, — oo and v, = 1 + t. Then, show that in
the same limit, p, will equal py, if v, = te'/t.
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Ap s = fats

e/ AVIME== Z e os T =09

(f) Find the latent heat L = t(s, — sq) for the small ¢ limit. How does it compare with
the minimum of e at ¢t = 0?

(g) Att = 0, the system will have p = 0 in order to minimize the energy. Using the
Clausius-Clapeyron equation, find dp/dt along the coexistence line at t = 0.

_()L_: A Lo e P e e )

’2f——|

e :——‘)L—:R{

p il s _L——=~‘,,é e
X

- T



3. Using Eq. (3.23), calculate the second-order virial coefficient for a gas of distinguishable
non-relativistic particles of mass m at temperature T' that interact through a hard core

potential,
o, r<a

V(T):{ 0, r>a

Consider only the s-wave contribution (valid at low T').

Gy e A )
k&“—((: @J = EeEaats

LU MU LU L UL LG VLI CA PG DI L SO L ey

23/22/ (2£—|—1)d6£ e

_}LZ/’LW\T
A ! cr
R ARy E By S Ty

— ke T
/,—L(z ) = joUié
B mEY 2N dEuRE )



4 Chapter 4

30



1. A molecule of mass m has two internal states, a spin-zero ground state and a spin-1 excited
state which is at energy X above the ground state. Initially, a gas of such molecules is at
temperature T; before expanding and cooling isentropically to a temperature T. Neglect
quantum degeneracy of the momentum states for the following questions.

(a) What is the initial energy per particle? Give answer in terms of m, T;, X and the
initial density p;.
(b) Derive an expression for the initial entropy per particle in terms of the same variables.

(c) After insentropically cooling to T, find the density p;. Give answer in terms of p;,
T;,, Ty and X.




2. Repeat problem #1 above, but assume the molecule has the excitation spectrum of a 3-
dimensional harmonic oscillator, where the energy levels are separated by amounts fiw =
X, with X << T.
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3. Alarge number of N diatomic molecules of mass m are confined to a region by a harmonic-
oscillator potential,

1
V(7)) = —kr?.
(™=
The system is at a sufficient temperature T so that the gas can be considered dilute and the
energy levels are practically continuous. The temperature is in the range where rotational
modes are routinely excited, but vibrational modes can be neglected.
(a) (10 pts) What is the energy per particle? Give your answer in terms of m, T, and k.
(b) (10 pts) Derive an expression for the entropy per particle in terms of the same vari-
ables. Begin with the expression,

S =1InZ + BE,

where

and z is the partition function of a single molecule.

(c) (10 pts) If the spring constant is adiabatically changed from k; to ky, and if the initial
temperature is T, find T.




4. Consider an ideal gas with C,,/C, = = going through the Carnot cycle illustrated in Fig.

4.1. The initial volume for N molecules at temperature T expands from V, to V;, = 2V,
and then to V. = 2V,
(a) Interms of NTy, find the work done while expanding from a — b.

(b) Again, in terms of NTy, how much heat was added to the gas while expanding from
a—b.

(c) Interms of NTy, find the work done while expanding from b — c.
(d) What is the efficiency of the cycle (abed)?
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5. Consider a refrigerator built by an inverse Carnot cycle. What is the efficiency of the re-
frigerator in terms of the temperatures T and T'x?
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6. Consider a hydrodynamic slab which has a Gaussian profile along the x direction but is

translationally invariant in the y and z directions. Assume the matter behaves as an ideal
gas of non-relativistic particles. Initially, the matter is at rest and has a profile,

p(z,t =0) = po exp(—a}2/2R(2,),

with an initial uniform temperature T,. Assume that as it expands it maintains a Gaussian
profile with a Gaussian radius R(t).

(a) Show that entropy conservation requires

r =z, ()",

(b) Assuming the velocity has the form v = A(t)x, show that conservation of particle
current gives

R
A=—.
R
(c) Show that the hydrodynamic expression for acceleration gives
, RY’T,
2__ "0 -0
A+ A" = mR8/3

Putting these two expressions together show that R(t) can be found by solving and

inverting the integral,
‘ [m~ (R dx
- V3T Jro V1= (Ro/x)2/3
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7. Consider a gas obeying the Van der Waals equation of state,
pT

_ _ 2
1—p/ps

ap”.

(a) First, using Maxwell relations, show that the speed of sound for P(p, T') is given by

78 P oP|\* T
me? = — + [ — .
s 9p |r or p p*Cyv
(b) Consider a gas described by the Van der Waals equation of state, which has a density
equal to that of the critical point, p,/3. What is the range of temperatures for which

the matter has unstable sonic modes? Express your answer in terms of the critical
temperature Tt.
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8. Consider an initially thermalized three-dimensional Gaussian distribution for the phase
space density of non-relativistic particles of mass m,

,,.2 pZ
r,t =0) = ex — — .
f(p7 9 ) fO P { 2R3 2mT0}

Assume the particles move freely for ¢ > 0.

(a) Atagivenr and t > 0, show that f(p,r,t) can be expressed in terms of a locally
thermalized distribution of the form,
(p — mv(r, t))z}

,T,t) = C(t)e " /2R*®) {—
F(p,r,t) (t)e exp T (x, 1)

Then, find C(t), R(t), v(r,t) and T'(r,t). In addition to r and ¢, these parameters
should depend on the initial Gaussian size Ry, the initial temperature Ty and the
mass m.

(b) Find the density as a function of r and ¢, then compare your result for the density and
temperature to that for a hydrodynamic expansion of the same initial distribution as
described in the example given in the lecture notes.

(c) Using the fact that a hydrodynamic expansion assumes infinitely high collision rate,
and that the Boltzmann solution was for zero collision rate, make profound remarks
about how the hydrodynamic and free-streaming evolutions compare with one an-
other.

(d) Calculate the total entropy as a function of time for the previous problem assuming
fo is small.
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9. Assume that there exists a massive species of neutrinos, m, = 10 eV. Further assume that
it froze out at the same time as the example of the text, when the Hubble time as 107 years
and the temperature was 4000 K. If the Hubble expansion was without acceleration after
that point, and if the current Hubble time is 14 x 109 years, find:

(a)
(b)

the current effective temperature of the massive neutrino.

If the neutrino has two polarizations (just like photons) what would be the relative
population, IV, /N,,/, at freezeout? Assume the chemical potential for the neutrino
is zero (otherwise there would be more neutrinos than anti-neutrinos) and treat the
neutrino non-relativistically,
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10. Consider a hot nucleus of radius 5 fm at a temperature of 1 MeV. The chemical potential
for a cold (or warm) nucleus is approximately the binding energy per particle, p ~ —7
MeV. Estimate the mean time between emitted neutrons. (Treat the nucleus as if it has
S {’ i3 fixed temperature and assume a Boltzmann distribution (not Fermi) for f(p)).
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11. Consider a hot nucleus of radius R with an electric charge of Z at temperature T". Assum-
ing that protons and neutrons have the same chemical potential, find the ratio of proton
spectra to neutron spectra,

dNprot /d3pdt

dNyeut/d?pdt

as a function of the momentum p. Approximate the two masses as being equal, m,, = m,,
and neglect quantum degeneracy. Assume that all incoming nucleons would be captured
and thermalized if they reach the position R. HINT: The emission ratio equals the ratio of
capture cross sections.




12. A drift detector works by moving the electrons ionized by a track through a gas towards
readout plates.

(a) Assuming the mean free path of the electrons is A = 300 nm, and assuming their ve-
locity is thermal at room temperature (Vgherm =~ /T/m), estimate the size R (Gaus-
sian radius) that the diffusion cloud imprints onto the plates after drifting for 200 us.
Use the approximation that D &= Avgherm-

(b) Assume an electric field E is responsible for the drift velocity. If the drift velocity is
approximately a - 7/2, where a is the acceleration and 7 = A/V¢herm is the collision
time, find an analytic expression for the Gaussian size R of the cloud if it travels a
distance L. Give R in terms of the temperature T, the electron mass m and charge e,
the electric field E, the mean free path A and L.
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13. A cloud of radioactive mosquitos is being blown by the wind parallel to a high-voltage
mosquito-zapping plate. At at time ¢ = 0, the cloud is at the first edge of the plate (x = 0).
The probability they start out at a distance y from the plate is:

p(y,t = 0) = Agye "/ F0)

The speed of the breeze is v,, and the length of the plate is L. The mosquito’s motion in
the y direction can be considered a diffusion process with diffusion constant D.

(a) What is the distribution p(y, t)? Assume that the form for p(t) is the same as for pg
only with A and R becoming functions of ¢. Solve only for ¢t < L/v,.

(b) What fraction of mosquitos survive?

. 31/?_ Kt(‘e\
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14. For an expanding system, the Diffusion equation is modified by adding an extra term pro-
portional to V - v,

9]
°P + p(V -v) = DV?p.
or

The second term accounts for the fact that the density would fall due to the fact that the
matter is expanding, even if the the particles were not diffusing. For a Hubble expansion,

v =r/7,and the V - v = 3/7 (would be 2/7 or 1/7 in 2-D or 1-D). Thus in a Hubble
expansion, the diffusion equation becomes

op 3

— + —p=DV?p.

ot + 2P p
Instead of the position r, one can use the variable

7
s
The advantage of using 7 is that because the velocity gradient is 1/, the velocity differ-
ence between two points separated by dr = 7dn is dv = dn. Thus if two particles move
with the velocity of the local matter, their separation 77; — 1, will remain fixed. Next, one
can replace the density p = dN/d3r with

dN 3
=-——=7p.

d3n

Here, we have been a rather sloppy with relativistic effects, but for || much smaller than
the speed of light, they can be ignored. One can now rewrite the diffusion equation for p,,
9py 2
ar DV~<p,.
This looks like the simple diffusion equation without expansion, however because the den-
sity is changing D is no longer a constant which invalidates using the simple Gaussian
solutions discussed in the chapter. For an ultrarelativistic gas, with perturbative interac-
tions, the scattering cross sections are roughly proportional to 1/T2, and the density falls as
1/T3, which after considering the fact that the temperature then falls as 1/7, the diffusion
constant would roughly rise inversely with the time,

q

Pn

r
D(t) = DO:.
0

This time dependence would be different if the particles had fixed cross sections, or if the
gas was not ultra-relativistic. However, we will assume this form for the questions below.
(a) Transform the three-dimensional diffusion equation,

9py
aT
into an equation where all derivatives w.r.t. r are replaced with derivatives w.r.t. 7.

= D(1)V?p,

(b) Rewrite the expression so that all mention of 7 is replaced by s = In(7/79).
(c) If a particle is at 77 = 0 at 7q, find p,, (7, s).

aa



15. Consider Fick’s law for the number density and the number current, j=-DVp.

(a) Rewrite Fick’s law in terms of the gradient of the chemical potential, showing that D
is replaced by Dx where x = dp/dp.

(b) Replacing the gradient of the chemical potential with the gradient of electric potential,
assuming the particles have charge e, find an expression for the electric current, j, =
ej, in terms of a gradient of the electric potential energy e®.

(c) Express the electric conductivity, o, in terms of D, x and e.
L= a
A e AN e e D
J o
e e e



/ é ﬁ Consider Eq. (4.108) for a one-dimensional system:

(@) In terms of v, T', At and m, estimate the amount of time required for the variance of
the sum of random impulses in one direction to reach mT, the thermal variance.

(b) Calculate (v(t = 0)wv(t)), the velocity-velocity correlation in the limit At — 0.

(c) Calculate the r.m.s. distance traveled by a particle in time ¢ in the same limit.

(d) For large times, t >> 1/+, estimate the diffusion constant.
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5.5 Problems
1. The speed of sound in copper is 3400 m/s, and the number density is pc, = 8.34 x 1028
m~3.

(a) Assuming there are two free electrons per atom, find an expression for Cy /N, (where
N, is the number of atoms) from the free electrons in copper by assuming a free gas

of electrons. Use the expression from chapter 2 for a low-T' Fermi gas,

11.2

0B =T -D(e),

where D(¢) is the density of single particle electron states at the Fermi surface. Give
answer in terms of T' and the Fermi energy €.

(b) In terms of € and hwp, find an expression for the temperature at which the specific
heat from electronic excitations equals that from phonons. Use the low T expression
for the specific heat of phonons.

(c) Whatis fiwp in eV? in K?
(d) Whatis ep in eV?in K?

(e) What is the numerical value for the answer in (b) in K?

s ST %’f)(z)”r‘
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1. The speed of sound in copper is 3400 m/s, and the number density is pc, = 8.34 X 1028

m

(a) Assuming there are two free electrons per atom, find an expression for Cy /N, (where
N, is the number of atoms) from the free electrons in copper by assuming a free gas

of electrons. Use the expression from chapter 2 for a low-T' Fermi gas,

11'2

0B =T -D(e),

where D(¢) is the density of single particle electron states at the Fermi surface. Give
answer in terms of T' and the Fermi energy ep.

(b) In terms of € and hwp, find an expression for the temperature at which the specific
heat from electronic excitations equals that from phonons. Use the low T expression
for the specific heat of phonons.

(c) Whatis fiwp in eV? in K?
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2. Consider the mean-field solution to the Ising model of Eq. (5.18).
(a) For small temperatures, show that the variation §(o) = 1 — (o) is:
§(o) ~ 2e~24/T,

(b) Consider a function of the form, y(T) = e~*/T. Find dy/dT, d*y/dT?, and d"y/dT™
evaluated at T = 0T. What does this tell you about doing a Taylor expansion of y(T)
about T = 01?
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3. Show that in the mean field approximation of
d

bec

omes

(o)

dB’

_ A =(a))p
T T —T.+ (0)2T,

the Ising model the susceptibility,




L=t (o)L

4. The total energy for the Ising model in the mean field approximation from summing over
all the sites in Eq. (5.16) is

N 2
H = ——qJ(0)" — NuB(o),

where N is the number of sites, and the factor of 1/2 is a correction for double counting.
In terms of T', T.., B and (o), find an expression for
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5. Consider the one-dimensional Ising model. For the following, give analytic answers in
terms of T, uB and J.

(a) What are the high B and low B limits for {(o)?

(b) What are the high T' and low T limits for {(o)?

(c) Find an exact expression for the specific heat (per spin) in terms of T', uB and J.
(d) What are the high B and low B = 0 limits for the specific heat?

(e) What are the high T" and low T limits for the specific heat?
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6. Consider two-dimensional bond percolation of a large L x L simple square lattice. First
consider the red lattice, where we will remove a percentage p of the red bonds. Next, we
will remove all blue bonds that intersect a surviving red bond. Thus, in the limit of a large
lattice, the fraction of blue bonds broken will be (1 — p).

(a) List which combinations of the following are possible.
a) A connected string of blue bonds extends all the way from the bottom blue row
to the top of the lattice.
b) There is no connected string of blue bonds that extends all the way from the bot-
tom to the top.
c) A connected string of red bonds extends all the way from the left side to the right
side of the red lattice.

d) There is no connected string of red bonds that extends all the way from the left
side to the right side of the red lattice.

(b) What is p, for a simple square lattice in bond percolation?
oA : b
a,) a , Cl
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7. Consider a one-dimensional bond percolation model of an infinitely long string, where the
probability of any set of neighbors being connected is p.

(a) In terms of p, find the probability that a fragment will have size A.

(b) What is the average size of a fragment?

o) PCA) = PA-\ (il
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6 Chapter 6

6.1 Consider the example for which the surface energy was calculated, where

A
AU =Py =P+ (= po)p= 5o = pe) = o).

Using E. (6.17), solve for the density profile p(z) between the two phases.

d {A[(P O s
d(9xp) 2(0zp) 2

let p — p. = &, such that 9,6 = d,p = & and the previous equation can be re-written

(%p] =0

d [A[E2—a?)? &, B
A
£
Al2—o? dE Al -’ k]
{ g g _2} !
¢’ 26A 5 oy n-1
e (€% = a®] (¢)
Then,
€2 = Alg? - a?P

¢ = \/3[52 —a’]

_ tanh ™! (z/a)

¢ a
-1
. tanh a(:z/a) + e )

6.2 Consider the one-dimensional Ising model, with the total energy in the mean field approximate
being,

E=— Z %qJ(a)ai.

(2

(a) Let p = probability of 0 = 4+1 and q = 1 - p = probability of o = —1.
Then (o) = p(+1) +¢(—1) =2p —1 and

S/N = —plnp —qlng
- [1 —1—2(0) N <1 +2<a>>} - [1 —2<0> . <1 —2<0>>} )
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GFIS) s T (1)) LTy, (1200
— )0} + L G - 8)
—0
26¢.J (o) = In G f 23) (3)

(c) This expression is equivalent to the previous expression:
(1= (0)) = (1= (o))t
e2B8aJ(o) _q
eBat(o) _ o—BaJ(o)
= eBal(o) + ¢—Bal(o)
— tanh(8q.J (o)) (4)

g) =

(d)
F/A = /po [1/(0, T)+ g(VJ)z} dz — /po [V(Ux:ioo,T) + g(VU)izim} dx

The last term in this is 0 (see figure 6.1), and we limit our region of interest to o = 04 so

Teq v(o,T) —v(oeq, T) K
—0Oeq 7 |: 6370- - 2

_ / e [87; + ’;(axa)] do (5)

—0Oeq

F/A=

(axg)] do

(e) We have to minimise the integrand in (5) to find the surface energy. Using 6.17,

0z0 =1/ IR
K
K Teaq
F/A = \/;po/ 2VRdo
e

(5) becomes

(6)
At T =0, v =—1T.0? and v(0 = +0eg) = —2qJ(£1)> = =T, Then (6):
1
FIA= e [ [0 02)] do
= /rposin~t(1)
_ VEpom
— TO (7)
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6.3 Again we assume a quadratic potential

Alo (z)]?
- Al ©
The one-dimensional Fourier transform and inverse transform are defined as follows:
- 1 r ikx
o = ﬁ dx e ¢ () 9)
b () = o= S ehegy, (10)
\/E k
The free energy can then be expressed as
F—17d Al + x| 2] (1)
=3 T T K o
_! A+ 5k |6 1
=2 (A ) |6 (12)
IS w) [(Redy) + (Smdk)
—2;( + kk?) ( egbk> + (\squk) . (13)
The equipartition theorem then tells us that
N2 SN2
(A + sz) Re Py (A + /-;k:Q) Sm o
< (Redi) > _ < (3m ) > _ T (14)
2 2 2
and so ) o7
- _ . 1
<‘¢k‘ > A+ kk? (15)

Since distinct Fourier components are uncorrelated, we find the correlation of two Fourier
components to be

<<5Z<Z~5k'> = Ok <GEZ<51€> (16)
= Ok <‘¢~>k‘2> (17)
e ()
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Invoking (10) and (18) and replacing a sum with an integral, we have

(a0 (&) = S5 (G (19)

/ / 2T(5 /
i(kz—k'x kk
I Z Z A A+ rk? (20)
el
_r 7 Ldk M=) (22)
L or A+ kk?’

Without loss of generality, we set 2’ = 0:

. T 7 dk etk
@@ o) =" [ s

— 00

(23)

We can replace this integral with a contour integral in which k traverses counterclockwise a
semicircle in the upper half of the complex plane, taking the radius of the semicircle to oo and
noting that the extra piece of the contour we are adding does not contribute to the integral
because the integrand vanishes as k approaches oo in any direction.

W e ) == f ( dk e (24)

™" k+z\/§> <k—z\/§>

where I' is the contour of integration. I' encloses a single singularity at & = i\/% . Thus by
the residue theorem, we have

(6(2)" 6 (0) = —— (25)

where £ = /% is the correlation length.

6.4 We are given the definition of the average density:

Tr [e—ﬁHeBuf d3rp(r)}

(p) = (27)
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The derivative of (p) with respect to u can be evaluated via the derivative quotient rule:

dd<5> _ { CZL Tr [e—ﬁHeﬁuf dr p(r) p(O)] Tr [e—ﬂHeBuf d%p(r)}
—Tr [e”BHeﬂ“deTp(r)P (0)} di Tr [e”BHeﬂ“fdg”p(r)} } (28)
0
_ {Tr [e—ﬁHeﬁuf d3rp(r)” 2

—= {Tr i [6—5H€Bufd37’p(r)p(0)] Tr {6—5Heﬁufd3rp(r)}

Ty [e—ﬁHeﬂufd%p(r)p(O)} Tr dCL [e—ﬁHeﬁuf d3rp(r)” (29)
2

_ {Tr [e—ﬁHeBuf d3rp(r)} }

(The trace and derivative commute.)

Ty {e—ﬁﬂeﬁufdi”rp(r)} Ty [e—ﬁHeﬁufd?’rp(r) o (0)}

- Tr {e'BHﬂ [ / d*rp (r)] Pt d'°‘w<r>}>

, {Tr [e—ﬁHeﬁuf d?’rp<r)} }*2

= (w{ess| [ @rpm] sy o)

Tr [e—ﬁHeﬂﬂfd‘"’rp(r)} Ty [e—ﬂHeﬁufd37’p(r)p (0)}

Ty {e—ﬁHﬁ [ / dr p(r)] o] dgw(ﬂ})

: {Tr [e—ﬁﬂeﬂuf dz»,)(r)} }‘2
BT [T [ () (0)
) Tr [e—ﬁHeﬂMf d3rp(r)}

32
BTr [e_ﬂHeﬁufd3r p(r)p (0)} Tr [e—ﬂHeﬁ#fdgr p(r) f d3’l”p (I‘)] ( )

{Tr [e—ﬂHeBuf d3rp<r)} }2
=B{p(r)p(0)) = B(p(r)) {p(r)). (33)

In this last step, I am assuming that the expected value of p (r) is the same for all points and
thus equals the expected value of p (0). Next, multiplying both sides by T = 37!, we arrive

at
T{jﬁ’f = (p()p(0)) — (p(x))?. (34)
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