YOUR NAME:____

- 1. N radioactive gas molecules are inserted into a gas at a time t = 0 and at a distance x_0 from a wall. The molecules then diffuse through time as determined by a diffusion constant D.
 - (a) If the wall absorbs all molecules that touch it, find the density of gas molecules as a function of x, the distance from the wall, and t.
 - (b) Repeat assuming that the molecules reflect off the wall.
- 2. An ideal gas of particles of mass m is initially at a temperature T_0 , has zero collective velocity, and as far as one cares to look, the number density profile initially has an exponential profile in the x direction:

$$\rho(x,t=0) = \rho_0 e^{-x/\lambda}$$

The gas then expands expands hyrodynamically.

- (a) What is the temperature, T(x, t)?
- (b) What is the density profile, $\rho(x, t)$?
- 3. Assume that early in the universe, at a proper time τ_0 , that some massive dark matter particles of mass M froze out at a temperature, $T \ll M$, and ceased to interact. Assume that these particles had spin-0 and that they were chemically populated as if they had zero chemical potential. Further assume that the universe expanded such that the velocity gradient is consistent with a boost-invariant non-accelerating system,

$$\vec{v} = \frac{\vec{r}}{t}, \qquad \nabla \cdot v = \frac{3}{\tau}.$$

- (a) What was the density of particles at τ_0 ?
- (b) What was the phase-space density of particles at τ_0 ?
- (c) Assuming that the particles completely ceased to interact (no collisions or changes in their number), what is their density as a function of $\tau > \tau_0$?
- (d) What is their phase space density at $\vec{r} = 0$ as a function of τ ?
- (e) How would the answer change if the particles were allowed to maintain kinetic equilibrium through collisions, but with their chemistry frozen?