1. A drop of poison is placed into the middle of a long narrow pipe carrying water. The poison then diffuses away from the initial position, \(x = 0 \), toward \(x = \pm \infty \). The diffusion equation is
\[
\frac{\partial \rho}{\partial t} = D \frac{\partial^2 \rho}{\partial x^2},
\]
where \(\rho \) is the number of poison molecules per unit length. If the net number of molecules is \(N \), find an expression for \(\rho(x, t) \) in terms of \(N \) and \(D \).

2. Consider a non-accelerating Hubble expansion, where freezeout occurs for both photons and the mythical spartino at a temperature of \(T_0 = 3 \times 10^5 \) K, when the age of the universe is \(\tau_0 = 1.4 \times 10^5 \) years. The phase space density of the photons at this time is thermal with temperature \(T_0 \). The spartino is an extremely massive fermionic particle, whose phase space density at freeze-out was also thermal and was given by:
\[
f_{\text{spartino}}(p, \tau_0) = \exp\left(\frac{\mu_0}{T_0} - \frac{p^2}{2mT_0}\right)\frac{1}{1 + \exp\left(\frac{\mu_0}{T_0} - \frac{p^2}{2mT_0}\right)}.
\]
Later, at a time \(\tau \), the spartino’s phase distribution is
\[
f_{\text{spartino}}(p, \tau) = \frac{\exp\left(\mu/T - \frac{p^2}{2mT}\right)}{1 + \exp\left(\mu/T - \frac{p^2}{2mT}\right)}.
\]
For time \(\tau = 1.4 \times 10^{10} \) years, find
(a) The temperature describing the spectrum of photons.
(b) The temperature \(T \) describing the spartino spectrum above
(c) In terms of \(\mu_0 \), what is the new chemical potential \(\mu \)?