1. A molecule of mass m has internal excitations consistent with that of a **TWO-DIMENSIONAL** harmonic oscillator with tightly packed levels, $\hbar \omega << T$. Initially, a gas of such molecules is at temperature T_i before expanding and cooling adiabatically to a temperature T_f. Neglect quantum degeneracy of the momentum states for the following questions. (HINT: A two-dimensional oscillator behaves like two independent one-dimensional oscillators.)

(a) Find the average energy per particle in terms of the temperature T, the mass m and $\hbar \omega$.

(b) Derive an expression for the initial entropy per particle in terms of m, T_i, $\hbar \omega$ and the initial density ρ_i.

(c) After adiabatically cooling to temperature T_f, find the density ρ_f. Give answer in terms of T_i, T_f and ρ_i.
2. (Extra Credit) Consider a fluid with an ideal gas equation of state, \(P = \rho T \), and a mass density \(\rho_m = m \rho \). The energy density is that of a non-interacting gas, \(\epsilon = (3/2)\rho T \). At time \(t = 0 \), the temperature is uniform, \(T = T_0 \), and the collective velocity is zero everywhere, but the density varies exponentially (as far as the eye can see),

\[
\rho(x, t = 0) = \rho_0 e^{-x/\lambda}.
\]

Solve for the evolution of the density \(\rho(x, t) \), the collective velocity \(v(x, t) \), and the temperature \(T(x, t) \), by solving the equations:

\[
(\partial_t + v \partial_x)v(x,t) = -\frac{\partial_x P(x,t)}{m \rho(x,t)},
\]
\[
(\partial_t + v \partial_x)\rho(x,t) = -\rho(x,t) \partial_x v(x,t),
\]
\[
(\partial_t + v \partial_x)\epsilon(x,t) = -[P(x,t) + \epsilon(x,t)] \partial_x v.
\]

Hint: Use your intuition and assume SIMPLE forms for the time and spatial dependence of \(v, \rho, T, \cdots \).