Solution: A problem concerning free energy
1. Using F=FE —TS and dE =TdS — pdV + udN,

dF = dE — TdS — SdT = —SdT — pdV + udN (1)
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Energy, Gibbs’ Free Energy, and the Grand Potential can be found by writing them in terms of Helmholtz Free
Energy and using the results above.
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2. From (5) we have
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So,
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3. The standard result from statistical mechanics is
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This differs from 7 due to assumptions made when moving from Free Energy and canonical ensemble to the
Grand Potential and grand canonical ensemble. When we move from the grand canonical to canonical and
F(T,v, N) we are fixing the particle number to be the average particle number in the grand canonical ensemble,

N. This assumptions becomes more exact in the macroscopic limit N — co. As N grows the fluctuations (which
go as 0N = v/ N) become infinitesimally small compared to N. That is 6WN < 1.



Examining Zg.c. the main contribution is going to come from the region N + dN. So,
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taking the log of both sides,
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The last term log d N is negligibly small compared to the rest, so in the macroscopic limit 8 approaches 7.



