
Solution: A problem concerning free energy

1. Using F = E − TS and dE = TdS − pdV + µdN ,

dF = dE − TdS − SdT = −SdT − pdV + µdN (1)

reading off S, p, µ

S = −
(
∂F

∂T

)
V,N

p = −
(
∂F

∂V

)
T,N

µ =

(
∂F

∂N

)
T,V

(2)

Energy, Gibbs’ Free Energy, and the Grand Potential can be found by writing them in terms of Helmholtz Free
Energy and using the results above.

For Energy,

E = F + TS = F − T
(
∂F

∂T

)
V,N

= −T 2

(
∂(F/T )

∂T

)
V,N

(3)

Gibbs free energy

G = F + pV = F − V
(
∂F

∂V

)
T,N

= −V 2

(
∂(F/V )

∂V

)
T,N

(4)

Grand potential

Ω = F − µN = F −N
(
∂F

∂N

)
T,V

= −N2

(
∂(F/N)

∂N

)
T,V

(5)

2. From (5) we have

Ω = −T lnZG.C. = F −N
(
∂F

∂N

)
T,V

= −T lnZC −N
(
∂(−T lnZC)

∂N

)
T,V

= −T lnZC +NT

(
∂ lnZC

∂N

)
T,V

(6)

So,

lnZG.C. = lnZC −N
(
∂ lnZC

∂N

)
T,V

(7)

3. The standard result from statistical mechanics is

ZG.C. =
∑
N

e−αNZC(N) (8)

This differs from 7 due to assumptions made when moving from Free Energy and canonical ensemble to the
Grand Potential and grand canonical ensemble. When we move from the grand canonical to canonical and
F (T, v,N) we are fixing the particle number to be the average particle number in the grand canonical ensemble,
N̄ . This assumptions becomes more exact in the macroscopic limit N →∞. As N grows the fluctuations (which

go as δN =
√
N) become infinitesimally small compared to N. That is δN

N � 1.
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Examining ZG.C. the main contribution is going to come from the region N̄ ± δN . So,

ZG.C. ≈ δNe−αN̄ZC(N̄) (9)

taking the log of both sides,

lnZG.C. ≈ lnZC(N̄)− αN̄ + ln δN (10)

= lnZC(N̄)− N̄
(
∂ lnZC

∂N̄

)
+ ln δN (11)

The last term log δN is negligibly small compared to the rest, so in the macroscopic limit 8 approaches 7.


