1. To show why derivatives are defined as shown in Eq. (13.12), show that

2 _
o,x” = 2x,,

2 _ 2 .2 2 .2
where * = x5 — i — =5 — x3.
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2. Consider a charged relativistic particle interacting with the electromagnetic field, and de-
scribed by the Klein-Gordon equation.

[(ih(’)t —e®)? + 2h?9? — mzc4] P(x,t) =0

The electrostatic potential & is illustrated in the diagram below.

Consider a solution for a particle incident from the left,
py(m,t) = e(TiBtHka)/h | Be(—iBt—ike)/h
Yrr(a, t) = CelTiBtHika)/h,
where E = v/m2c? + k2.

Calculate the charge and current densities (include direction) in regions I and II for each of
the following three cases.

(@) e® < E — mc2.
(b) E—mc? < e® < E 4+ mc2.

(c) e® > E + mc2.

a) B 1+ = C c (1]
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2. Consider a charged relativistic particle interacting with the electromagnetic field, and de-

scribed by the Klein-Gordon equation.

((ihd — e®)? + h?82 — m*c*] p(x,t) =0

The electrostatic potential @ is illustrated in the diagram below.

Consider a solution for a particle incident from the left,
iz, t) = eCiBHkD/l 1 Be

Wi, t) = CeiBHHD/I

where E = v/m?2c* + k2.

(—iBt—ika)/h

Calculate the charge and current densities (include direction) in regions I and II for each of

the following three cases.

(@) e® < E — mc?.
(b) E—mc? < e® < E +mct

() e® > E + mc2.

@ K\: <E\'_e@>—\/\f\«

iy
fl

= ¢ W &

(S\'V\C/\/La_/

2k

”L“i\k‘)
Yo (| I

)

g “rz=)



2. Consider a charged relativistic particle interacting with the electromagnetic field, and de-
scribed by the Klein-Gordon equation.

[(ih8, — e®@)* + P02 — m*c*| p(z,t) =0

The electrostatic potential @ is illustrated in the diagram below.

Consider a solution for a particle incident from the left,
Pr(x, ) = e(“iBtHk/h | Be(~iBtiks)/n
1/)”(91’ t) — Ce(—iEH»ik’w)//r’
where E = vVmZ2c? + k2.

Calculate the charge and current densities (include direction) in regions I and II for each of
the following three cases.

(@) e® < E — mc®.
() E—mc®> < e® < E +mc®.

(c) e® > E + mc2.
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3. Consider the same case as above, except with no electrostatic potential. Instead, consider
a different mass in region I and region II, with m; > m;. For each of the following two
cases, calculate the charge and current densities in regions I and II.

(@) E > myrc?
(b) E < myc?
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4. Consider the Dirac representation,

10 . [0 &
=(o05) a=(57)

and the chiral representation, <L ) Z a
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The spinors, uy+ and u,, represent positve-energy eigenvalues of the Dirac equation as- > = * — 7~ =

suming the momentum is along the z axis.

(mﬂ + pzaz) u(pz) = EU(Pz) ) F

The spin labels, 1- and |, refer to the positive and negative values of the spin operator,

Write the four-component spinors w4+ and u in terms of p, E and m :

(a) in the Dirac representation.

(b) in the chiral representation.

(c) in the limit p, — 0 for both representations.
(d) in the limit p, — oo for both representations.
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. Consider a solution to the Dirac equation for massless particles, u (), where the + de-
notes the fact that the solution is an eigenstate of the spin operator in the p directions,

(i : ﬁ)u+(ﬁ$ iB) =u4 (ﬁv :E)

Show that the operator 3 operating on u, (p) gives a negative energy solution but is still
an eigenstate of 5. P with eigenvalue +1.



6. Consider a massless spin half particle of charge e in a magnetic field in the 2 direction
described by the vector potential

—

A = Buzg.
The Hamiltonian is then
H = o,(—1ihd,) + ay(—ihd, — eBx).

(a) Show that the Hamiltonian commutes with —2hd, and ¢h0,.

(b) The wave function can then be written as

Py ko (2, Y, 2) = BV (2),
After setting k, = k. = 0, show that the energy can be found by solving the equation
E*¢y(x) = (—h?0? + B?*z® — ehBX.,) ¢+ ().
(c) Show that the eigen-values of the operator H? are
E} =(2n+1F1)ehB, n=0,1,2.,
where the & refers to eigenvalues of X,. You can do this mapping to the harmonic

oscillator and then using the solutions to the harmonic oscillator from Chapter 3. Note
that when the the eigenvalue of X, is 41, there exists a solution with E = 0.
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7. Using the definitions for o and 8 in Eq. (13.73) show that

0) shows Lot Hn itz ate st

This demonstrates that the eigenstates of the new Hamiltonian are still eigenstates of the
charge operator written in the old basis.

b) Show that the state .
|0) = cos 6|0) + sin Od bl |0)

is destroyed by both o, and 3. This is the vacuum in the new basis.
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