- 1. Consider an electron in an external magnetic field B directed along the z axis and an electric field E in the y direction.
 - (a) Choosing the vector potential to lie along the y axis and describe both the electric and magnetic fields, show that the Hamiltonian may be written in the form,

$$H = rac{p_z^2}{2m} + rac{p_x^2}{2m} + rac{1}{2}m\omega^2(x-x_0-v_0t)^2 \, ,$$

and find ω , and v_0 in terms of E, B, e, m and c.

(b) Show that Schrödinger's equation, $i(\partial/\partial t)\Psi=H\Psi$ is satisfied by the form

$$\Psi(x,y,z,t) = e^{-i\epsilon t/\hbar + imv_0x/\hbar + ik_z z} \phi_n(x-x_0-v_0t) \, ,$$

where ϕ_n refers to a harmonic-oscillator wave function characterized by the frequency ω . Find the expectation of the Hamiltonian for a particle in a state described by n=0.

a) Find the expectation of the Hamiltonian for a particle in a state described by
$$n = 0$$
.

a) $\overrightarrow{E} = \frac{-1}{C} \overrightarrow{\partial A} - P \overrightarrow{\Phi}$, $\overrightarrow{F} = \overrightarrow{V} \times \overrightarrow{A}$

$$\overrightarrow{A} = \overrightarrow{g} \left(\overrightarrow{B} \times - c \overrightarrow{E} t \right)$$

$$\overrightarrow{F} = \overrightarrow{V} \times \overrightarrow{A}$$

$$\overrightarrow{F} = \frac{1}{C} \overrightarrow{A} + \frac{1}{C} \overrightarrow{A$$

2. Consider the coherent state $|\eta\rangle$ defined by,

$$|\eta
angle = e^{-\eta^*\eta/2} \exp{(\eta a^\dagger)} |0
angle$$

(a) Show that the overlap of two states is given by,

$$\langle \eta' | \eta
angle = e^{-|\eta'|^2/2 - |\eta|^2/2 + \eta'^*\eta}$$

(b) Show that the normalized coherent state $|\eta\rangle$ may be rewritten in the following form

$$e^{-|\eta|^2/2}e^{\eta a^\dagger}|0
angle=e^{\eta a^\dagger-\eta^*a}|0
angle.$$

Hint: You may wish to use the Baker-Campbell-Hausdorff lemma.

(c) Consider bosonic creation and destruction operators, a^{\dagger} and a. Consider a linear combination,

$$b = \alpha a + \beta a^{\dagger}$$

What is the constraint on α and β if one is to demand that $[b, b^{\dagger}] = 1$?

