2. Consider the one-dimensional potential,

$$V(x) = \left\{ egin{array}{ll} 0, & x < -a \ -V_0, & -a < x < a \ 0, & x > a \end{array}
ight.$$

Here, $V_0 > 0$. For fixed a, find the minimum V_0 for the number of bound states to equal or exceed 1,2,3....

formula, for , n bound stoles Expressed $\frac{1}{2} \left(\frac{(n-1)}{2} \right)^{2} \frac{\pi^{2} 7 t^{2}}{2 m a^{2}}$ $V_0 > \frac{t^2}{2ma^2}$ 25

Consider a particle of mass m under the influence of the potential,

$$V(x)=V_0 heta(-x)-rac{\hbar^2}{2m}eta\delta(x-a),\;\;V_0 o\infty,\;eta>0.$$

- (a) Find the transcendental equation for the energy of a bound state?
- (b) What is the minimum value of β for a ground state?
- (c) For increasing β can one find more than one bound state?

4. Consider plane wave moving in the $-\hat{x}$ direction to be reflected off the potential of the previous problem. For (x>a) the plane wave will have the form

$$e^{-ikx} - e^{2i\delta}e^{ikx}$$
.

- (a) Find the phase shift δ as a function of ka, and plot for $\beta a = 0.5$.
- (b) Repeat for $\beta a = 2$.

$$A \sin ka = e$$

$$\left(\frac{\sin k\alpha}{k \cos k\alpha - \beta \sin k\alpha}\right) = -\frac{i \sin (k\alpha + \delta)}{-i k \cos (k\alpha + \delta)}$$

$$S = -ka + tan^{-1}(x)_{2} \times = \frac{ksinka}{kaska - \betasinka}$$

- (b) Repeat for $\beta a = 2$.
- 5. Consider a particle of mass m interacting with a repulsive δ function potential,

$$V(x)=rac{\hbar^2}{2m}eta\delta(x).$$

Consider particles of energy \boldsymbol{E} incident on the potential.

- (a) What fraction of particles are reflected by the potential?
- (b) Show that the currents at $x = 0^+$ and $x = 0^-$ are the same.

	ikx + A e-i		Reiky	
1 + A -	= B) = ikB -	JS 13		
2 ik =	2 ik 13 - 13	B	- i B/-	
\$ =	1 + i B	/A = B	-1 - 1 + i B	
ract ion	reflected.	/A/2 =	1 + 13 2/4 k2	
) Jeft		$\frac{ R }{m}/A ^2 =$	$\frac{k}{m}$ $\frac{3^{2}}{4k^{2}}$	
Jaisht	= k B 2	= !R -	1 + B ² /4 k ²	

7. Calculate $\langle 0|aaa^{\dagger}aa^{\dagger}a^{\dagger}|0\rangle$ and $\langle n|a^{\dagger}a^{\dagger}a^{\dagger}a|m\rangle$.

8. Find $\psi_1(x)$, the wave function of the first excited state by applying a^{\dagger} , defined in Eq. (1.55), to the ground state.

$$a^{+} = \sqrt{\frac{mw}{2h}} \times - i \sqrt{\frac{2hmw}{2h}} + \sqrt{\frac{h}{2mw}} \times - i \sqrt{\frac{h}{2hmw}} \times - i \sqrt$$

- 9. Consider a particle of mass m in a harmonic oscillator with spring constant $k=m\omega^2$.
 - (a) Write the momentum and position operators for a particle of mass m in a harmonic oscillator characterized by frequency ω in terms of the creation and destruction operators.

l,

Э

- (b) Calculate $\langle n|\mathcal{X}^2|n\rangle$ and $\langle n|\mathcal{P}^2|n\rangle$. Compare the product of these two matrix elements to the constraint of the uncertainty relation as a function of n.
- (c) Show that the expectation value of the potential energy in an energy eigenstate of the harmonic oscillator equals the expectation value of the kinetic energy in that state.

- 10. (a) What is the representation of the position operator in the momentum basis how is $\langle p|\mathcal{X}|\Psi\rangle$ related to $\langle p|\Psi\rangle$?
 - (b) Suppose that the potential is $v(\mathbf{x}) = (k/2)x^2$. What is the Schrödinger equation written in momentum space; that is, what is the equation of motion of the amplitude $\langle p|\Psi(t)\rangle$?

$$O(\rho) \times 12) = \int_{\partial x} \langle p|x \rangle \times \langle x|2 \rangle dx$$

$$= i + \partial \rho \int_{\partial x} \langle p|2 \rangle \langle x|2 \rangle dx$$

$$= i + \partial \rho \langle p|2 \rangle$$

$$= i + \partial \rho \langle p|2 \rangle$$

$$= \frac{1}{2} + \frac{1}{2} k k^{2}$$

$$= \frac{1}{2} + \frac{1}{2} k \partial \rho + \frac{1}{2} k \partial \rho$$

$$+ \frac{1}{2} k \partial \rho + \frac{1}{2} k \partial \rho$$

$$+ \frac{1}{2} k \partial \rho + \frac{1}{2} k \partial \rho$$

$$+ \frac{1}{2} k \partial \rho + \frac{1}{2} k \partial \rho$$

$$+ \frac{1}{2} k \partial \rho + \frac{1}{2} k \partial \rho$$

$$+ \frac{1}{2} k \partial \rho + \frac{1}{2} k \partial \rho$$

11. Consider a potential

$$V(x) = egin{array}{ll} 0, & x < -a \ u(x), & -a < x < a \ 0, & x > a \end{array}$$

where u(x) is an arbitrary real function. Consider a wave incident from the left. Suppose that the transmission amplitude, defined as the ratio of the transmitted wave at x = a to the incident wave at x = -a, is S(E). Now consider a wave incident from the right.

Show that the transmission amplitude, now defined as the ratio of the transmitted wave at -a to the incident wave at a, is also S(E). (Hint: the Schrödinger equation in this case is a real equation.)

12. (a) Derive and solve the equations of motion for the Heisenberg operators a(t) and $a^{\dagger}(t)$ for the harmonic oscillator.

(b) Calculate $[a(t), a^{\dagger}(t')]$.

$$\frac{d}{dt} a(t) = \frac{d}{dt} e^{iHt/t} a e^{-iHt/t}$$

$$= \frac{i}{t} e^{iHt/t} [H, a] e^{-iHt/t}$$

$$= \frac{i}{t} e^{iHt/t} [H, a] e^{-iHt/t}$$

$$= \frac{i}{t} e^{iHt/t} [H, a] e^{-iHt/t}$$

$$= \frac{i}{t} w (a^{t}aa - aa^{t}a)$$

$$= \frac{i}{t} w (a^{t}aa - aa^{t}a)$$

$$= -iw a$$

$$= -iw a^{t},$$

$$= -iw a^{t}$$

- 3. (a) Calculate the correlation function $\langle 0|x(t)x(t')|0\rangle$ where $|0\rangle$ is the harmonic oscillator ground state, and x(t) is the position operator in the Heisenberg representation.
 - (b) Suppose that a time dependent force F(t) is applied to a particle in the oscillator potential. Show that x(t) obeys the equation of motion,

$$m\left(rac{d^2}{dt^2}+\omega^2
ight)x(t)=F(t)$$

where
$$\omega$$
 is the oscillator frequency.

From perevious S
 $A(t) = e^{-i\omega t} a$, $A(t) = i\omega t$ at

 $A(t) = \sqrt{2\pi\omega} \left[e^{-i\omega t} a + e^{i\omega t} a^{\dagger} \right]$
 $A(t) = \sqrt{2\pi\omega} \left[e^{-i\omega t} a + e^{i\omega t} a^{\dagger} \right]$
 $A(t) = \sqrt{2\pi\omega} \left[e^{-i\omega t} a + e^{i\omega t} a^{\dagger} \right]$
 $A(t) = \sqrt{2\pi\omega} \left[e^{-i\omega t} a + e^{i\omega t} a^{\dagger} \right]$
 $A(t) = \sqrt{2\pi\omega} \left[e^{-i\omega t} a + e^{i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} \right]$
 $A(t) = \frac{1}{2\pi\omega} \left[e^{-i\omega t} a + e^{-i\omega t} a^{\dagger} a + e^{-i\omega t} a^{\dagger} a^{$

14. What are the matrix elements of the operator $1/|\mathbf{p}|$ in the position representation? That is, find $\langle \mathbf{r}|1/|\mathbf{p}||\mathbf{r}'\rangle$. Work the problem in three dimensions.

15. Calculate the Wigner transform f(p, x) for a particle in the ground state of an infinite square well potential,

$$V(x) = \left\{ egin{array}{ll} \infty, & x < 0 \ 0, & 0 < x < a \ \infty, & x > a \end{array}
ight. .$$

Are there any regions with phase space densities either greater than unity or less than zero?

