Periodic Potentials:
Translational Symmetry

Eric Flynn



Goal: Understand set of problems featuring translational invariance that are likely to be on
subject exam

* |In class we looked at two classes of problems

1. Translational invariant interaction (periodic potential problem like Kronig-Penny Model)
2. Translationally invariant systems (circular chain of mass in notes)

« Typically, these problems involve solving for the energy levels of a particle (or many
particles) in the presence of a periodic potential.

| think for the subject exam, we would only need to worry about 1-d problems however,
a lot of what we cover here can carry over to 2-d and 3-d. For example, it might be
possible to reduce a 3-d or a 2-d problem to a 1-d problem.

Without getting too crazy, | think the Kronig-Penny model in 1-d has a lot of useful
physics for the subject exam.
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Problem: 1-d lattice with periodic step potentials. Find the allowed energy levels of an electron
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in this lattice.
« The first step in solving any periodic potential problem is to first ignore the lattice
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Problem: 1-d lattice with periodic step potentials. Find the allowed energy levels of an electron
in this lattice.

The first step in solving any periodic potential problem is to first ignore the lattice.

This is a much easier problem to solve. First we solve the Schrodinger equation in
regions 1 and 2

« For now, we assume the electron’s energy is F, > ()
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Now that we have our solutions for simple problem, we need to extend it to a periodic
lattice.

We require that 1)(x) = 1)(x 4+ na) where n is an integer. This is known as a Born-
Von Karman Boundary condition.

Since our potential is periodic, V' (z) = V (x + na), the translational operator
commutes with the Hamiltonian. This means our wavefunctions can be eigenfunctions
of T and H.

Any time we have these two conditions, we can apply Bloch’s Theorem (no proof here)

_ 1ikx Where () has the
w ('CC) — € U(CIZ’) same periodicity as the
lattice
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« Now that we know the form of our solution, we now need to consider boundary
conditions:

1. Continuity on both boundaries:
¥1(0) = 12(0) P1(a —b) = a(—b)

2. Smoothness on both boundaries:

$1(0) = 2(0)  1(=b) = 5(a —b)



Skipping the algebra, we get 4 equations and 4 unknowns.
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This is of the form AZ = 0 and since we want a non-trivial solution, A needs to be
singular. We guarantee this by solving det(A) = 0.



Result for E > 0:

cos(ka) = cos(8b) cos(a(a — b)) 1

What does it mean?
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sin(8b) sin(a(a — b))

« This gives us the relationship between the electron’s wave vector k (related to it’s
momentum) and the energy inside and outside the potential barriers.

. Since cos(ka) € |[—1,1], this places a restriction on (v and 3 (hence E) .

« There will exist some region of E that will not satisfy this equation. These regions
where there are no solutions in the k-E plane are called “band gaps”.

Resultfor E<0: o — 72¢v
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cos(ka) = cos(Bb) cosh(a(a — b)) — sin(Bb) sinh(a(a — b))



Recover Dirac Delta model solution:
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+  To get the Dirac delta solution, we take b — () Vo — o

cos(Bb) ~1 as b—0
sin(8b) ~ Bb as b — 0

cos(ka) = cos(b) cos(a(a — b)) sin(6b) sin(a(a — b))

sin(aa)

cos(ka) ~ cos(aa) + p as b— 0,Vy) — o
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